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Identification of the Propeller Coefficients and
Dynamic Parameters of a Hovering Quadrotor from

Flight Data
Damien Six1, Sébastien Briot2, Julian Erskine1 and Abdelhamid Chriette1

Abstract—Several methods can be applied to estimate the
propeller thrust and torque coefficients and dynamics parameters
of quadrotor UAVs. These parameters are necessary for many
controllers that have been proposed for these vehicles. However,
these methods require the use of specific test benches, which do
not well simulate real flight conditions.

In this paper, a new method is introduced which allows the
identification of the propeller coefficients and dynamic param-
eters of a quadrotor in a single procedure. It is based on a
Total-Least-Square identification technique, does not require any
specific test bench and needs only a measurement of the mass of
the quadrotor and a recording of data from a flight that can be
performed manually by an operator.

Because the symmetries of classic quadrotors limit the per-
formance of the algorithm, an extension of the procedure is
proposed. Two types of flights are then used: one with the initial
quadrotor and a second flight with an additional payload on the
vehicle that modifies the mass distribution. This new procedure,
which is validated experimentally, increases the performance of
the identification and allows an estimation of all the relevant
dynamic parameters of the quadrotor near hovering conditions.

Index Terms—Aerial Systems: Mechanics and Control, Cali-
bration and Identification

I. INTRODUCTION

QUADROTOR UAVs have recently experienced increas-
ing interest with advances in modeling, control and path

planning. Many control techniques have been proposed for
these vehicles [1]–[8]. Several of those control laws require a
knowledge of the UAV’s dynamics parameters (e.g. mass and
inertia parameters) and propeller thrust and torque coefficients,
and are sensitive to the accuracy of the parameters. An
accurate estimation of the parameters increases the precision
and robustness of the controllers and is therefore required.

Several methods can be applied to estimate the parameters
of quadrotor-style UAVs:
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• Estimation of the frame dynamic parameters from design
[9], [10]: This method can lead to an unevaluated lack of
precision in the estimation of the parameters.

• Experimental estimation of the structure parameters:
Apart from the mass which is directly measured with a
scale, the other parameters require specific test benches.
As an example, in [11], the inertia parameters are mea-
sured indirectly with a pendulum device. With such meth-
ods, the precision of the inertia parameters are impacted
by the precision of the other ones previously measured.

• Estimation of the dynamic parameters from the analysis
of flight data [12]–[14] by means of a Kalman filter
assuming the knowledge of, at least, the propeller co-
efficients of thrust and torque.

Those algorithms all require a knowledge of the propeller
coefficients. The estimation of those coefficients and the
modelling of aerodynamic effects are studied with specific test
benches [15]–[18] and may not be completely equivalent to
those appearing during a free flight of the drone.

For classical robotic manipulators, most of the dynamic off-
line identification methods use an Inverse Dynamic Identifica-
tion Model (IDIM), that gives a linear relation between the
joint forces/torques and the dynamic parameters, and estimate
the parameter values using least squares techniques (LS) [19]–
[21]. This procedure is called the IDIM-LS technique. An
extension of this method using Total Least Square (IDIM-
TLS) is also used to identify dynamic parameters and joint
drive gains of robot manipulators in a single procedure [22].

In this research, a new method is proposed to identify all the
structure and rotor parameters for a quadrotor UAV, inspired
by the IDIM-TLS procedure. Our approach aims to obtain an
identification of the dynamic parameters of the device without
any specific test bench or a computation of some of the param-
eters from design, as other methods would generally require. It
uses the command reference of the propeller velocities, and the
flight data collected while the robot is operated by a human
pilot. All the dynamic parameters and propeller coefficients
are calculated in one step as the Total Least Square solution
(TLS) of an overdetermined system. The method only requires
a knowledge of the vehicle mass, which is easily measured
using a scale. This algorithm was established in the scope of
a project on aerial manipulation. Thus, the study is limited to
near hovering flight configurations.

The paper is organized as follows. In the next Section,
we define the inverse dynamic identification model of the
quadrotor. In Section III, the TLS identification procedure is
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Fig. 1. Local frame and propeller positions P1...P4 of the quadrotor.

introduced. Two different types of data can be collected in
order to feed the identification model: data from the Inertial
Measurement Unit (IMU) or from a motion capture system
(MOCAP). Identification results by using the first or second
set of data are then compared in the Section IV. Because
a classic quadrotor presents some symmetries that will lead
to a failure of the identification of some dynamic parameters
using the TLS method, an extended version of the procedure
is introduced in order to overcome this limitation. It is based
on a modification of the mass distribution of the UAV and
recordings of two types of flight data: a first set for the usual
quadrotor, and second set with a modified configuration of the
quadrotor. Finally, in Section V, conclusions are drawn.

II. DYNAMIC MODEL OF A QUADROTOR

The quadrotor vehicle consists of four individual rotors
attached to a rigid cross airframe (Fig. 1). The control of
a quadrotor is achieved by differential control of the thrust
and drag torques generated by each rotor. The system is
underactuated, with only four inputs available to control the
six Degrees of Freedom (DoF). The dynamics of the quadrotor
are described through a combination of the rigid body dynamic
equations (Section II-A) and the model of the propellers
(Section II-B).

A. Rigid body dynamics

Let us consider a mobile frame Fd(Od,xd,yd, zd) attached
to the quadrotor (Fig. 1). The origin of this frame Od is
at the middle of the cross. The xd axis is placed along the
axis of one of the arms and the zd axis is aligned with the
quadrotor propellers axes. A standard assumption in quadrotor
modelling and control is to consider this origin as the Center
of Mass (CoM) of the vehicle. However, this assumption
is not guaranteed in general. We aim to identify the real
position of the CoM with the identification procedure. For
this purpose, a general model of the rigid body dynamics is
used. In this model, mechanical effects affecting the main body
of the quadrotor are described. This study however neglects
aerodynamical forces acting on the quadrotor frame. Those
forces become non negligible at high speed (over 5 m/s) [23]
but those flight configurations are out of the scope of this
study. The ten dynamic parameters of a rigid body are the
followings:

• The mass m

• The 3 components msx, msy , msz of the first moment
of inertia ms in the local frame, at its origin Od,

• The 6 components of the symmetric inertia matrix in the
local frame, at its origin Od,

I =

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz


The mass is the only parameter that is easily measured. All
the others unknown parameters are regrouped in a vector χ:

χT = [msx,msy,msz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz]

The following notations are also defined
• g = [0, 0,−g]T , g > 0, is the gravity vector, defined in

the world frame.
• ζ is the position of the mobile frame origin Od.
• ad = [ax, ay, az]

T is the acceleration of Od expressed in
the local frame Fd.

• R is the rotation matrix defining the orientation of
the mobile frame with respect to the world frame. In
this paper, the rotation sequence of the Bryant angles
(η = [ψ, θ, φ]T ) is chosen, i.e. R = Rz(ψ)Ry(θ)Rx(φ).
Ru(α) is the elemental rotation about axis u though the
angle α.

• ω = [ωx, ωy, ωz]
T is the angular velocity of the mobile

frame, expressed in frame Fd.
• f , τ are the vectors of forces and the torques applied to

the quadrotor by the propellers at Od, expressed in Fd.
The Newton-Euler equations, expressed at the body frame
origin Od in body frame Fd are given in [21] as:

mad + ω̇ ×ms + ω × (ω ×ms) = mR−1g + f (1)

I ω̇ + ω × Iω + ms× ad = ms× (R−1g) + τ (2)

Equations (1) and (2) give the dynamics of the quadrotor body
as functions of the measured variables usually available from
the embedded IMU. In this paper, we consider also measure-
ments from a MOCAP system. Those measurements are the
position of Od given in world frame ζ and the orientation
coordinates given in Bryant angles η. The acceleration ad in
the body frame is related to η through

ad = R−1ζ̈ (3)

The angular velocity ω and its time derivative are related to
the first and second time derivatives of Bryant angles η by

ω = Tηη̇ (4)

ω̇ = Ṫηη̇ + Tηη̈ (5)

The matrix Tη depends on the rotation representation chosen
[24]. Using (3) and (4), the dynamic equations (1) and (2)
as function of the measurements of the MOCAP and their
derivatives are given by

mR−1ζ̈ + (Ṫηη̇ + Tηη̈)×ms

+ Tηη̇ × (Tηη̇ ×ms) = mR−1g + f
(6)

I (Ṫηη̇ + Tηη̈) + Tηη̇ × ITηη̇ + ms×R−1ζ̈

= ms× (R−1g) + τ
(7)
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B. Propellers model

The steady-state wrench provided by a hovering propellor
in free air along the zd axis is composed of a thrust fp and a
drag torque τ p given by [2]

fp = ktΩ
2zd, τ p = −sign(Ω)kdΩ

2zd (8)

The sign(x) function extracts the sign of a real number x. Ω is
the propeller rotational velocity about zd. In the scope of this
study (near hovering), kt and kd are considered as positive
coefficients named respectively thrust and torque coefficients.
They depend on the rotor design and are grouped in a vector
named χk, i.e. χTk = [kt kd]. In a real flight, there are
many aerodynamic (blade flapping, ground and ceiling effects,
etc) [25] and gyroscopic effects associated with any rotor
craft that modify the simple force model introduced above.
However, those effects are generally neglected or considered
as disturbances for control application [26] [2] and will not
be considered in our model.

Assuming that the thrust and torque coefficients are the
same for all the propellers, the contribution of all the propellers
are summed and expressed at the frame origin Od. The total
wrench w = [fT τT ]T acting on the body (see Fig. 1 for the
position of each propeller) is

f =

 0
0

kt
∑
i

Ω2
i

 , τ =

 ktd(−Ω2
1 + Ω2

2)
ktd(−Ω2

3 + Ω2
4)

kd
∑
i

−sign(Ωi)Ω
2
i

 (9)

where

• d is the distance of a propeller axis from Od along xd
and yd.

• Ωi is the angular velocity of the propeller i around zd.

The dynamic model of the hovering quadrotor is obtained
through the equations of its body dynamics (1)-(2) and the
equation of the total wrench applied by the propellers (9). For
other multi-rotors, this method only requires a modification of
(9) to include the wrench effects of the extra propellers.

C. Inverse Dynamic Identification Model (IDIM)

The IDIM-TLS procedure [22] requires an expression of
the dynamic model linear w.r.t. the dynamic parameters and
propeller coefficients that need to be identified. This linearity is
well known for classical robots [21] and can be easily obtained
for the quadrotor dynamic model.

Equations (1), (2) and (9) giving the dynamic model of a
quadrotor are linear w.r.t. the mass m, the unknown dynamic
parameters χ and the coefficients of the rotors grouped in χk.
Then the dynamic model can be written under the form

mDm + Dχ = Dkχk (10)

with

D =


−ω2

y − ω2
z ωxωy − ω̇z ωxωz + ω̇y 0 0

ωxωy + ω̇z −ω2
x − ω2

z −ω̇x + ωyωz 0 0
ωxωz − ω̇y ω̇x + ωyωz −ω2

x − ω2
y 0 0

0 az + gcφcθ −ay − gsφcθ ω̇x −ωyωz
−az − gcφcθ 0 ax − gsθ ωxωz ω̇y
ay + gsφcθ −ax + gsθ 0 −ωxωy ωxωy

0 0 0 0
0 0 0 0
0 0 0 0

ωyωz −ωxωz + ω̇y ωxωy + ω̇z ω2
y − ω2

z

−ωxωz ω̇x + ωyωz −ω2
x + ω2

z −ωxωy + ω̇z
ω̇z ω2

x − ω2
y ω̇x − ωyωz ωxωz + ω̇y



DT
k =



0 0
0 0∑

i
Ω2
i 0

d(−Ω2
1 + Ω2

2) 0
d(−Ω2

3 + Ω2
4) 0

0
∑
i
−sign(Ωi)Ω

2
i



Dm =
[
ax − gsθ ay + gsφcθ az + gcφcθ 0 0 0

]T
where c and s are shorthand for cosinus and sinus.

Because of perturbations due to measurement noise and mod-
eling errors, the model (10) differs from reality by an error e
such that

mDm + Dχ = Dkχk + e (11)

Equation (11) is called the Inverse Dynamic Identification
Model (IDIM). Note that the IDIM model may be extended to
include any additional effects as long as the dynamic model
remains linear w.r.t. the coefficients of those effects. Non linear
coefficients have to be identified either with a separate study
or with a linear approximation.

III. IDENTIFICATION OF THE QUADROTOR DYNAMIC
PARAMETERS USING THE TOTAL LEAST SQUARE (TLS)

PROCEDURE

A. Identification of the propellers coefficients and dynamic
parameters

The off-line identification of the UAV’s dynamic parameters
can be achieved thanks to the data obtained for feeding the
matrices Dm, D and Dk. The data are collected while the
vehicle is flying (methodology is discussed in Section III-C).
The model (11) is sampled, low-pass filtered and, in standard
identification procedures like [20] decimated in order to get
the following overdetermined linear system of n×6 equations
and 11 unknowns (variables in χ and χk):

Wkχk + Wχ+mWm = ρ (12)

in which:
• W = [DT

1 DT
2 . . . DT

n ]T ,
• Wm = [DT

m1 DT
m2 . . . DT

mn]T ,
• Wk = −[DT

k1 DT
k2 . . . DT

kn]T ,
• ρ = [eT1 eT2 . . . eTn ]T ,

where Di = D(t = ti), Dmi = Dm(t = ti) and Dki =
Dk(t = ti) (i = 1, ..., n) are the matrices D, Dm and Dk,
respectively, computed with the motion’s data collected at time
t = ti, while ei is the error of the model at time ti.
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Considering that the mass m of the quadrotor is accurately
known, and grouping all unknowns χ and χk into a single
vector χt, (12) is re-expressed as

Wtχt = ρ (13)

where Wt = [Wk W mWm] is a (r× 12) (r = 6n) matrix
and χt = [χTk χ

T 1]T is a vector of dimension 12.
Based on this form of equation, it is possible to find the

unknowns in χt thanks to a Total Least Square identification
procedure [27], [28]. Indeed, without perturbation, ρ = 0. As
a result, Wt should be rank deficient. Then would exist an
infinite number of solutions to the Eq. (13) that are all in the
kernel of Wt:

χ̂t = λχ̂∗
t (14)

where χ̂∗
t is the unit vector such that Wtχ̂

∗
t = 0 and λ is a

scalar value.
Due to measurement perturbations and, in our case, model

errors, Wt is of full rank. Therefore the system (13) is changed
to the closest compatible system w.r.t. the Frobenius norm.
This system is obtained through the “thin” Singular Value
Decomposition (SVD) of Wt.

Wt = USVT (15)

where U and V are (r×nt) (nt = 12) and (nt×nt) matrices
and S is a diagonal matrix with the singular values sj of Wt

sorted in decreasing order. The closest rank deficient matrix
Wt is given by

Wt = Wt − snt
Unt

VT
nt

(16)

where snt
is the smallest singular value of Wt and Unt

(respectively Vnt
) is the last column of U (respectively V).

Then, the normalized solution χ̂∗
t such that

Wtχ̂
∗
t = 0 (17)

is given by the last column of V, i.e. χ̂∗
t = Vnt

.
There is an infinite number of solutions χ̂t = λχ̂∗

t to
equation (17). However, the only solution respecting the
second condition given by (13), i.e. last value of χ̂t equal
to one, is obtained for λ = 1/χnt , where χnt is the last value
of χ̂∗

t . Then, the dynamic parameters identified are given by
χ̂t = χ̂∗

t /χnt
.

B. Statistical analysis, essential parameters and weighted TLS

In order to compute the standard deviations σχ̂j
(j =

1, . . . , 11) on the dynamic and propeller coefficients, it is
assumed that all errors in data matrix Wt are independently
and identically distributed with zero mean, and the common
covariance matrix CWW is defined by

CWW = σ̂2
W Irnt (18)

where Irnt
is the identity matrix of dimension (rnt × rnt).

In [27], an unbiased estimation of the standard deviation σ̂W
is provided:

σ̂W = snt
/
√
r − nt (19)

In [27], the covariance matrix of the estimation error is also
approximated by

Cχ̂χ̂ ' σ2
W

(
1 + ||χ̂1:n−1||22

) (
W

T

t1:nt−1
Wt1:nt−1

)−1

(20)

with χ̂1:nt−1 the vector containing the nt−1 first coefficients
of χ̂ andWt1:nt−1

a matrix composed of the nt − 1 first
columns of Wt. Then the standard deviation of the jth
parameter is given by

σχ̂j
=
√

Cχ̂χ̂(j, j) (21)

with Cχ̂χ̂(j, j) the jth diagonal coefficient of Cχ̂χ̂. The
relative standard deviation of the jth parameter is given by

%σχ̂j
= 100σχ̂j

/|χ̂j | (22)

During the identification process, some small parameters
remain poorly identifiable because they have no significant
contribution in the dynamic model. They can be canceled
in order to simplify the dynamic model and to improve
the quality of identification of the other parameters. These
parameters are called “essential” parameters and are calculated
using an iterative procedure starting from the initial parameters
estimation. At each step the parameter which has the largest
relative standard deviation is canceled. A new TLS parameter
estimation of the simplified model is carried out. The proce-
dure ends when max(%σχ̂j

)/min(%σχ̂j
) < rσ , where rσ is

a ratio defined by the user. The remaining essential parameters
are enough to describe the dynamic model of the quadrotor.
Also, in order to improve the estimation of Wt, the rows
of Wt are weighted taking into account the confidence in
the measurements. As proposed in [22], to improve the TLS
solution, the following procedure is applied

1) The rows of Wt are regrouped as function for each com-
ponent of the wrench w in (9): Wt = [WT

1 . . .W
T
6 ]T

with Wj (j = 1 . . . 6) grouping all equations corre-
sponding to the jth component of w.

2) Each submatrix Wj (j = 1 . . . 6) is weighted by the
inverse of the standard deviation corresponding to the
equations in Wj .

C. Data collection for the observation matrix

The collection of data to fill the observation matrices can
be provided by several measurement sources. For this paper,
the propeller velocities Ωi (i = 1 . . . 4) required for the
observation matrix Wk are computed from the recordings
of each motor speed command related to the Pulse Width
Modulation command set in the electronic speed controller by
an empirical law. The propeller dynamics are neglected in this
study. If available, a direct measure of the propeller velocity
will increase the quality of the identification procedure. Two
sources are then explored to obtain data in order to estimate
the observation matrices Wm and W: the drone IMU and
an external MOCAP system. For classic robot identification
techniques, the IMU is generally not a good source of data to
conduct an identification process, as it is quite noisy and leads
to drift biases when reconstructing the position. However, in
the specific case of quadrotors, the local dynamic equations
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do not depend on the position of the device. In addition, the
orientation only impacts the gravity force which is included
in the accelerometer measurement. Thus it makes the IMU a
very good candidate to collect data for the identification of
the dynamic model of a quadrotor. As a result, we tested two
types of data collection for Wm and W:

1) Data collection from IMU: The angular velocity ω
and the acceleration (including gravity) ad −R−1g are
measured with the gyroscope and accelerometer, respec-
tively. Gyroscope biases are estimated and compensated
by an online Extended Kalman Filter. The angular accel-
eration estimation ˆ̇ω is obtained by sampling, band-pass
filtering the measure of ω with zero-phase noncausal
Butterworth filter and central difference algorithm [29].
Those three vectors are enough to compute the matrices
Dm and D in (10).

2) Data collection from MOCAP system: The position ζ
and the orientation coordinates given in Bryant angles
η are measured from the MOCAP system. Their deriva-
tives ˆ̇

ζ, ˆ̈
ζ, ˆ̇η and ˆ̈η are obtained by sampling, band-pass

filtering with zero-phase noncausal Butterworth filter
and central difference algorithm. Then, the acceleration
ad, the angular velocity and acceleration ω, ω̇ are
computed respectively from (3) and (4).

Using the IMU as a data source has several advantages. It
doesn’t require any external sensor in addition to those usually
available on a quadrotor. If the data collection is done onboard,
there is also no data synchronization required as the IMU and
the rotor speed data are both available on the UAV. Also the
data collected from the MOCAP must be differentiated twice,
while the acceleration is directly collected on the IMU. We
would expect a better data quality from the IMU, however,
depending on the IMU, its calibration and online measurement
processing, the data may be quite noisy and/or biased. This
is why we propose a comparison of the two data collection
methods in this paper.

IV. CASE STUDY

A. Experimental protocol

Experimental validation was performed using a custom
quadrotor based on a Lynxmotion Crazy2fly frame, with
MT2208 brushless DC motors, 12A ESCs, and plastic 8045
dual-blade propellers. The controller was a Pixhawk 2.4 run-
ning PX4-v1.7.3. Motor speeds and IMU data were gathered
from the Pixhawk using an onboard Raspberry Pi 3B+. The
pose of the UAV was gathered using a Qualisys MOCAP
system with eight cameras. All data was nominally gathered
at 200 Hz.

In order to carry out robot dynamic identification, it is
usual to make the robot move along “exciting” trajectories,
i.e. optimized reference trajectories that can be computed by
nonlinear minimization of a criterion function of the condition
number of the observation matrix [30]. However, agressive
maneuvers in automatic flight mode would require a fine tuned
control strategy relying on an external system (such as the
MOCAP system). The objective of this paper is to propose a
method that does not require specific equipment and so the

Fig. 2. Test configuration B, were ma = 0.125 kg and mb = 0.042 kg

trajectories were performed by a human pilot. Flights of 60
to 90 seconds were performed with a fully charged 11.1 V
LiPo battery in a 6×4×4 m flying arena which limited the
dynamics of the flights. While an effort was made to excite
all dynamics of the quadrotor, the thrust and roll had the most
variation while the pitch and yaw were less aggressive due to
piloting skill and flight area constraints.

Tests were performed using two different quadrotor config-
urations. Configuration A corresponds to the base quadrotor
with a measured mass of 1.285 kg (Fig. 1). For configuration
B, a 0.125 kg mass was added to the arm in the +x direction
and a 0.042 kg mass to the arm in the -y direction (Fig. 2).

While an effort was made to acquire accurate data, the setup
has several systematic flaws which decreased the quality of
the experiment. A delay of at least 5 ms was present between
the MOCAP data and motors. The motor velocity used here
is the output reference for the speed controllers which have
a non-zero rise time, and thus leads the actual motor speed
by an unknown but likely non-negligible amount [9]. Another
source of error is the rigid-body model of the quadrotor,
when in reality it flexes. This particularly affects the roll-pitch
dynamics of the drone where part of the actuation moments
are used to flex the arms.

B. Identification from IMU

This section presents the identification results obtained from
the IMU data. Inspired by the results obtained with two
different configurations, we propose a procedure to identify
a more complete set of dynamic parameter on a quadrotor. In
order to distinguish the parameters associated to each config-
uration, parameters, vectors and matrices are annotated with
the superscripts A, B or AB respectively if they concern the
configuration A, B or both (resp.). The propeller coefficients
are not associated to superscripts as they do not depend on the
configuration of the drone.

The results obtained from the MOCAP data are presented
and discussed in the next Section.

1) Configuration A: The first identification procedure, us-
ing the methodology presented in Section III, is run on a
quadrotor without additional payload (configuration A). The
measured mass of the system is 1.285 kg. The left-hand side
of Table I presents the dynamic parameters identified with the
procedure. The algorithm shows a very good performance for
the identification of the thrust coefficient kt in comparison
to the other parameters. This performance is required to set
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TABLE I
ESSENTIAL PARAMETERS IDENTIFIED FROM IMU DATA (SI BASE UNITS)

Configuration A
Param. Value %σχ̂j
Amsx -4.32E-03 2.70
Amsy -1.95E-03 6.88
Amsz -6.16E-03 4.55
AIxx 1.69E-02 1.52
AIyy 1.76E-02 1.45
kt 3.46E-06 0.05

Configuration B
Param. Value %σχ̂j
Bmsx 4.30E-02 0.31
Bmsy -2.01E-02 0.80
Bmsz -1.22E-02 4.20
BIxx 2.43E-02 1.95
BIyy 3.58E-02 1.63
BIzz 4.75E-02 7.36
kt 3.65E-06 0.04
kd 5.40E-08 7.68

the ratio rσ (for computing the essential parameters, see Sec-
tion III-B) to 250, so to avoid discarding too many parameters
while selecting the essential ones (see also III-B).

The algorithm discards the dynamic parameters AIxy , AIyz
and AIxz . This result is expected as the mobile frame is
aligned with the principal axes of inertia of the quadrotor.
We can also see that the procedure discards the parameters kd
and AIzz . Those parameters are mainly related to the moment
along the local zd axis. To understand why those parameters
are discarded, we can have a closer look at the equation
related to this moment. Using the Table I, we can assume
the hypothesis: Amsx ' 0, Amsy ' 0, AIxx ' AIyy and
AIxy = AIyz = AIxz = 0. Under those hypotheses, from
(10), we get

AIzzω̇z ' kd
∑
i

−sign(Ωi)Ω
2
i (23)

This equation is independent from all the other dynamic
parameters. In addition, the term kd is not present in the
other equations of the dynamic model and the AIzz terms
are linearly related to AIxx or AIyy in the other equations
of the drone’s moments. This configuration makes the terms
kd and AIzz completely independent from the other dynamic
parameter and, thus, impossible to identify, knowing only the
mass of the quadrotor. Note that Izz is often approximated as
Ixx + Iyy for quadrotors due to symmetry, but it is not seen
as rigorous within the scope of this paper.

In order to identify the parameters associated with the
moment about zd, it is necessary to break the symmetry of
the quadrotor. Configuration B fills this requirement and will
be used in a second identification procedure.

2) Configuration B: The second identification procedure is
run on a quadrotor with an additional payload that breaks the
symmetry of the device (configuration B). The measured mass
of the system is 1.452 kg. The right-hand side of Table I
presents the dynamic parameters identified with our procedure.
Since the dynamic symmetry of the quadrotor is broken, the
equation of the moment along zd contains now other dynamic
parameters in addition to the terms BIzz and kd. This allows
the algorithm to compute all the dynamic parameters, apart
from the non diagonal terms of the inertia matrix which still
do not sufficiently impact the dynamics of the quadrotor.

Since we obtained the torque coefficient kd with the config-
uration B, it would be interesting to feed it in the computation
of the configuration A to have a more complete identification
of the initial quadrotor (which is the one we want to control

TABLE II
ESSENTIAL PARAMETERS ESTIMATED FROM COMBINED IDENTIFICATION

PROCEDURE (SI BASE UNITS)

IMU Data MOCAP Data
Param. Value %σχ̂j

Value %σχ̂j
%δ

Amsx -4.54E-03 3.35 - - -
Amsz -8.31E-03 5.62 - - -
AIxx 1.82E-02 1.84 1.88E-02 3.49 3.3
AIyy 1.86E-02 1.79 1.93E-02 2.77 3.6
AIzz 2.88E-02 4.90 - - -
Bmsx 4.28E-02 0.18 4.25E-02 0.15 0.7
Bmsy -1.99E-02 0.47 -1.97E-02 0.37 1.0
Bmsz -1.30E-02 3.20 -1.20E-02 3.31 7.7
BIxx 2.42E-02 1.11 2.42E-02 0.88 0.0
BIyy 3.57E-02 0.93 3.84E-02 0.74 7.0
BIzz 4.76E-02 3.71 - - -
kt 3.63E-06 0.03 3.68E-06 0.02 1.4
kd 5.11E-08 3.84 - - -

%δ is the relative difference (in %) between the values identified from IMU
data and those identified from MOCAP data.

at the end), as the propellers coefficients are not modified
from one configuration to another. We could have done that
in two steps, getting the propellers coefficients from the
identification of configuration B then use them as known
variable in the identification of configuration A. However,
computing in cascade the coefficients and then the inertia is not
an efficient methodology because the error of identification of
the coefficients will impact the identification of the inertia. As
a result, in the next section, we propose an observation matrix
that includes both configurations and allows the computation
of all the dynamic parameters in a single computation.

3) Combined identification: The combined identification
consist in solving both identifications for configurations A
and B in a single TLS algorithm. The vector of the unknown
dynamic parameters ABχTu =

[
χTk

AχT BχT
]

is now
composed of 20 dynamic parameters: 9 inertia parameters
associated to each configuration (A and B) and 2 parameters
for the propellers coefficients which are not dependent on the
configuration. The observation matrix ABWt used in the TLS
equation is thus:

ABWt
ABχt = ρ, ABχTt =

[
χTu 1

]
(24)

It is equivalent to Eq. (13) and is then composed of several
observation matrices as described by the following equation

ABWt =

[
AWk

AW 0 AmAWm
BWk 0 BW BmBWm

]
(25)

In order to represent the higher trust we have in the iden-
tification of configuration B, an additional weighting was
performed on the lines of the matrix ABWt associated to the
configuration B by a coefficient kw > 1 (in this case kw = 2)..

The Table II presents the dynamic parameters identified
with the procedure. As desired, the algorithm takes advantage
of configuration B to estimate the parameter kd with the
consequence of also allowing the estimation of the parameter
AIzz for configuration A.

4) Cross-validation: In order to confirm the relevance of
the identified parameters, a cross-validation is performed on
flight data different from those used in the identification
procedure. Figures 3 and 4 give the estimations obtained using
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TABLE III
RELATIVE ERROR NORMS ||ρ||/||Wkχk|| (%)

Configuration A
Wrench component Fz Mx My Mz

10.46 46.15 43.73 -
Configuration B

Wrench component Fz Mx My Mz

4.40 20.99 10.70 45.19
Configuration A - Combined identification

Wrench component Fz Mx My Mz

8.47 47.07 42.96 68.13
Configuration B - Combined identification

Wrench component Fz Mx My Mz

3.96 20.96 10.59 46.79

the identified parameters from the combined identification
(Section IV-B3). Table III gives the error norm relative to the
motor inputs (||ρ||/||Wkχk||) respectively for configurations
A and B for all the identification procedures with the flight
data for cross-validation. We can see that the estimations are
completely relevant for the thrust. The moments are quite low
in amplitude, so unmodelled effects can have a non-negligible
impact on the accuracy of the estimations.

These unmodelled effects are several in nature: sensor bi-
ases and calibration, experimental recording delays, transitions
states, body flexibility, aerodynamic effects, battery load, etc.
Our estimation method gives the dynamic parameters for
the imperfect dynamic model provided which is confronted
with real flight data. It leads to the identification of dynamic
parameters that may not be the real ones but those best fitted
to the dynamic model used. The more precise the model, the
closer to the real dynamic parameters the estimation will be.
Nevertheless, in practice, the model provided should be the
same for the identification and for the control law, because
the identified values for a given model will be those leading
to less modelling errors, and thus the best dynamic behavior.

C. Identification from MOCAP

Identification from MOCAP data was performed. However,
worse data quality allowed the identification of fewer param-
eters, even with the combined identification procedure. The
Table II shows the identified values for the dynamic parameters
with data collected from the MOCAP system and a comparison
to the data obtained with the IMU. The relative difference up
to 7.7 % is quite low considering that the reference frame
between the two sensor systems are not perfectly aligned and
that each system has its own calibration.

V. CONCLUSIONS

In this paper we proposed a method to identify in one
single procedure the rigid body parameters and thrust and
torque coefficients of a hovering quadrotor from flight data.
The procedure does not require any specific benchmark, and
requires only the mass of the quadrotor and a recording of
flight data (motor inputs and IMU outputs). The flight did not
require a specific trajectory and can be performed manually
by a somewhat skilled human operator as long as it remains

“sufficiently exciting” [31] for the dynamics to be identified.
The identification was performed in real flight conditions,
giving the best fitting values in presence of perturbations and
avoiding biases that may appear on a specific test bench.

We observed that the symmetries of a classic quadrotor
limited the performance of the algorithm and we proposed an
extended identification procedure which required two types
of flights: one with the the initial quadrotor and a second
flight with an additional payload on the vehicle that broke the
mass distribution symmetries of the UAV. This new procedure
increased the performance of the identification and allowed an
estimation of all relevant dynamic parameters of the quadrotor.

The procedure has been presented in a near hovering
context. Future work includes an extension of the procedure
to aerodynamical effects in high speed flight. We believe also
that it could be adapted to other multi-rotor UAVs.
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