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Understanding Inchworm Crawling for Soft-Robotics

Benny Gamus, Lior Salem, Amir D. Gat, and Yizhar Or

Abstract—Crawling is a common locomotion mechanism in
soft robots and nonskeletal animals. In this work we propose
modeling soft-robotic legged locomotion by approximating it with
an equivalent articulated robot with elastic joints. For concrete-
ness we study the inchworm crawling of our soft robot with
two bending actuators, via an articulated three-link model. The
solution of statically indeterminate systems with stick-slip contact
transitions requires for a novel hybrid-quasistatic analysis. Then,
we utilize our analysis to investigate the influence of phase-shifted
harmonic inputs on performance of crawling gaits, including
sensitivity analysis to friction uncertainties and energetic cost of
transport. We achieve optimal values of gait parameters. Finally,
we fabricate and test a fluid-driven soft robot. The experiments
display good agreement with the theoretical analysis, proving that
our simple model correctly captures and explains the fundamental
principles of inchworm crawling and can be applied to other soft-
robotic legged robots.

I. INTRODUCTION

In nature, many soft-bodied creatures are capable of com-
plex locomotion in challenging environments, inaccessible to
skeletal animals [|1]. Their ability to squeeze through gaps
smaller than their unconstrained body dimensions has been
one of the motivations for the emerging bio-inspired field of
soft robotics (2], [3]l.

Inchworm crawling is a common locomotion mechanism
among soft animals [1]], [4]] and robots [5]-[11]], characterized
by alternating stick-slip transitions of the contact points while
maintaining ground contact. The actual inchworm and similar
biological creatures use sophisticated methods, like gripping
spines, to actively change the contact interaction [12]. This is
implemented in some robots by active adhesion [13]] or active
directional friction manipulation [5], [8], [L1], [14] while
others perform crawling locomotion with passive frictional
contacts [[7], [9]]. It is also typical that crawling soft robots and
animals move rather slowly (relatively to their dynamic natural
frequencies), such that the inertial effects are negligible, and
they transition within a continuum of static equilibria. Hence,
the focus of this work is quasistatic locomotion. The mentioned
examples may also be classified as bipedal robots, since they
crawl on two contacts.

Creating soft-robotic locomotion in a desired pattern in-
volves increased complexity and requires theoretical modeling.
In soft-robotic actuators and manipulators, most works suggest
kinematic models for control, obtained either empirically [[15[]—
[17] or from static elasticity theories [[18]—[20] and few studies
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suggest dynamic models [21]—[23]. In soft-robotic crawling
and walking, some works rely on kinematic modeling of a
soft actuator for control [24], [25]] while the field is mostly
dominated by an experimental approach [6], [26], which is
very limited. For example, the high sensitivity of soft-robotic
gaits to variations in friction was shown in [27]. In legged
robotics, theoretical models and analysis of the locomotion are

Fig. 1: Time-snapshots of a single inchworm-like period of our fluid-
driven soft robot with two phase-shifted periodic inputs (1" is period
time, dashed cyan lines denote the equivalent three-link model)



essential for design of the gait and the robot’s structure and in
the pursuit of robots capable of dynamic movements. This was
demonstrated by few lumped models [28]]-[30]], which showed
applications to numerical control and gait optimization. Some
other studies also suggested theoretical modeling ideas [31]],
[32] and discretization method for a large-dimensional com-
putational model [33]].

For intuitive comprehension and analysis of the soft-robotic
legged locomotion, particularly inchworm crawling, we aim
to achieve a low-dimensional lumped model. A common
modeling approach in the field of mechanisms with com-
pliant elements is approximating the stiffness of the elastic
parts by lumped springs interconnecting rigid links [34]. This
was utilized in some articulated robots [35]], [36] and in a
limited way in soft robotics [37]. Our work presents the
application of this modeling approach, including the stick-
slip contact transitions [31]-[33[], on soft-robotic quasistatic
legged locomotion. Specifically, we analyze a three-link robot
as a model of inchworm crawling of a soft bipedal robot
(see Fig.[[) — which, according to our experiments, captures
well the major phenomena. To the best of our knowledge,
the frictional crawling of a three-link robot has not been
previously studied, though being a very basic form of multi-
contact bipedal locomotion, in analogy to McGeer’s biped [38]]
being a basic form a of bipedal walking. The only exception
is perhaps [39], which have exploited a similar mechanism to
study the properties of dogs’ walking gaits.

Problem introduction

We now present our soft-robotic bipedal prototype, for
concrete illustration of the proposed modeling approach and
experimental validation. The soft robot in Fig.[T|consists of two
separately controlled continuous soft-robotic actuators, each
causing bending of the respective segment. We implement
the bending actuators by embedded slender fluidic networks
[23]l, [40] as illustrated in Fig.P] and described in Section [[TI}
Nevertheless, the ideas and analysis presented in this paper
are applicable to any bending actuators. When introducing
periodic pressure inputs with a phase shift into the two channel
segments, a progression pattern emerges as depicted by the
time-snapshots in Fig.[T] Similar results were observed in other
inchworm-like robots [6], but the design of the inputs in
literature is mostly done by trial and error. The purpose of
this study is to model and understand the mechanism behind
frictional crawling for improved gait-planning and structural
design.

The main contributions of our work are as follows. First,
we propose a simple lumped modeling method for legged
soft robots, by equivalent articulated robots with elastic joints.
Another contribution is developing a novel hybrid-quasistatic
locomotion analysis which is required to correctly solve stati-
cally indeterminate systems with stick-slip contact transitions.
Next we show how utilizing our analysis method gives insights
regarding the performance of gaits and provides optimal values
of gait parameters. Finally, we fabricate and test a fluid-
driven soft robot, and obtain good qualitative agreement with
the theoretical predictions, proving the applicability of our
analysis.

II. QUASISTATIC CRAWLING LOCOMOTION ANALYSIS

We now turn to model the continuous soft mechanism
by an articulated three-link robot with torsion springs at its
joints, as illustrated in Fig.[3] This section presents the model
and analysis of the articulated mechanism’s locomotion, while
Section [[T]] shows the corroboration of the experiments on our
soft robot to this analysis.

In our continuous elastic robot shown in Fig.[2] it is observed
that each segment bends roughly about its middle. Hence, we
choose a three-link configuration with identical uniform distal
links, with length [ and mass m, and a central uniform link with
length lp = 81 and mass mg = B m (see notations on Fig[3).
From the observation above, we have empirically chosen a
constant § = 2. The total length L = (2 + ()l and mass
M = (2+ B)m correspond to the properties of the soft robot,
summarized in Table[ll from which [ and m can be calculated.

In order to account for the elasticity of the continuous
structure we introduce equivalent torsion springs at the joints
with linear stiffness k£, which are at rest when the robot
is “flat”. To account for the bending actuation of the two
beam segments, we apply additional internal input torques
7;(t) at the joints (where ¢ is the time). For relative angles
between the joints ® () = [p1(t) p2(¢)]T and input torques
7(t) = [r1(t) 72()]", the total internal torque at the i-th joint
is

Ti(t) = 73(t) = k(pi(t) = ). (1)

Calibration of the springs’ stiffness coefficient and the actu-
ation torques for our soft robot in Fig.[2] is presented in the
Supplementary Material [41], and should be performed per
specific prototype.

In order to maintain contact with the surface at both ends,
the mechanism must satisfy the kinematic relation

sin (1 — 0) — sin (g + 0) + Bsinf = 0, )

which dictates the absolute orientation angle of the central link
6(t) as a function of the joint angles ®(t) as

sin 7 — sin
tanf = p1 $2

3

cos 1 + cos g — 3

Fig. 2: Schematics of our soft robotic bipedal inchworm-like crawler.
The robot consists of an elastic beam containing two segments of
embedded fluidic networks, which are separately controlled by time-
varying pressure inputs.



The horizontal distance between the contact points is
d(t) = l(ﬁ cos @ — cos (1 — 0) — cos (pa + 9)) 4)

Denoting the center-of-mass horizontal distance from the left
contact point (see Fig.[3)

x(t) = ﬁ((? + B)Bcosf—

— (834 28) cos (1 — 0) — cos (w2 + 9)), 5)

the static balance of external forces and torques gives the
tangential and normal forces, fi;, fy, at the i-th contact as

fi1=—fr2 = fi(t) (6a)

and
L Tc

foa®) = (1=2) Mg, fua®) = (%) Mg, (6b)

where g is the gravity acceleration.

It is seen from @ that the robot is statically indeterminate,
and additional considerations are required in order to fully de-
termine the tangential reaction forces f;. Assuming Coulomb’s
dry friction model, the tangential forces must maintain

|fe.il < pfni - for a sticking contact (7a)

and

|ft,i| = /an,i

where 1 is Coulomb’s friction coefficient (for simplicity, we do
not distinguish between static and kinetic friction coefficients
in this work). Hence, deducing the contact states (stick-stick,
stick-slip, slip-stick or slip-slip) resolves the indeterminacy by
imposing the tangential forces f;(¢) and hence the configura-
tion ®(t), or vice versa — determining the configuration im-
poses the forces and dictates the contact states. It is emphasized
that such analysis is always required for quasistatic locomotion
with two or more frictional contact points.

— for a slipping contact, (7b)

A. Prescribed angles locomotion

For initial comprehension and simplified analysis of the
locomotion, we first consider the case where the trajectories
of the two joint angles ®(¢) (and hence the angular velocities
®) are prescribed directly as controlled inputs. In that case
the configuration and the kinematics are fully defined, giving

Fig. 3: Three-link robot model

the distance between the contact points d(t) (from (4) and )
and its time-derivative

d(t) = 1[ sin (o2 + 0) (2 + 0)+
+sin (g1 — 0)(¢r — 6) — ﬁsineé] @)

Since d(t) # 0 for general prescribed angles 1 (t), @a(t)
(except for discrete zero-crossing times), we deduce that at
least one of the contacts must slip — which resolves the
contact forces as previously mentioned. From (7), assuming
all possible combinations of stick and slip contact states for
each leg and plugging into (6)), it follows that only the contact
with the smaller normal force shall slip — which means the
foot farther away from the center-of-mass (in the horizontal
direction). The slip-slip contacts state (both legs at slippage)
is generically impossible in the quasistatic case.

It is deduced that crawling with passive frictional contacts
is generated by shifting the center-of-mass back and forth from
one foot towards the other, which imposes alternating stick-
slip transitions at the contacts. We may even denote a slippage
criterion variable

1+3
= ——1I]cos + 6) — cos -0)], O
which indicates that when A = 0 a switching occurs between
right-leg-slippage (A < 0) and left-leg-slippage (A > 0).
From (6) and (7)), the tangential forces are obtained as

fo = 1 fu,s signd, (102)

where s is the index of the slipping leg
s=1 when A >0, (10b)
s=2 when A <O. (10c)

This notion completes the prescribed configuration and kine-
matics with the contact states.

To illustrate the resulting crawling gaits we study periodic
reference inputs ¢;(t) at the i-th joint of the form

$1(t) = 71 + Agsin (wt +1/2),
P2(t) = 72 + Az sin (wt —1p/2),

where ~; is the nominal angle of the reference input, A; is the
oscillation amplitude and ¢ is the phase difference between
the inputs. Here, since we assume prescribed joint angles,
pi(t) = ¢;(t). It is also of note, that as long as the actuation
frequency w is slow enough for the quasistatic assumption
to hold, the solution is time-scalable, and wt in fact only
indicates the phase of the cycle. Fig.[] depicts (in solid curves)
the prescribed angles (Fig.[la) and the resulting positions of
the contacts (Fig.db) and Fig.[6a] depicts the contact forces
for one time period T = 27/w, inputs v1 = 2 = 7/2,
A1 = Ay =7/6, ¢ = w/4 and the parameters summarized in
Table[l] (which approximate the parameters of the robot in the
experimental setup).

(11a)
(11b)



120

100

@i(t) [deg]

80

60

| | |
0 1/4 172 3/4 1
t/T

()

1
3L
1
3,
2|
S
1
1
|
0 —50 0 50
x1(t) and z2(t) [mm]
(b)

Fig. 4: Simulation solutions for the three-link robot’s configuration — Prescribed joint angles (solid curves) vs. prescribed torques with realistic
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The simplifying assumption of directly prescribed joint
angles, which was presented and analyzed above, is perhaps
valid for a robot whose joints can be controlled in closed-loop
with a fast response time. However, this is not the case in most
soft robotic applications, where usually internal torques are
imposed as control inputs. In this case both the contact states
and the configuration ®(¢) must be determined simultaneously
from the prescribed torques 7 (t).

Static balance of torques acting on individual links, consid-

ering (6), gives
- o1 —T sin (p1 — 6)
F(®,7.f)=1—k Lp; — w] —! [sin (<,012 + 9))] fet

(14 B)*mg [cos (1 — ) gﬁ cosf — 2cos (g2 + 9); _0
2d(p1,p2) |cos(p2+6)(Bcosh —2cos(p1 —0))|

completes and allows for ®(t) and f;(¢t) to be (nu-
merically) solved for prescribed actuation torques 7(t). The
assumed stick-stick state is only consistent as long as the
calculated tangential force f; maintains the contact-sticking
requirement (]E) at both contacts, i.e.

|fel < pmin{foy, fo2}- (14)

When inequality (T4) is crossed, slippage occurs. Following
the previous analysis, the contact with the smaller normal
force will slip in the direction opposing the friction — i.e.
sign d = sign f;. For the emerged stick-slip or slip-stick state,
the tangential force is now given by (I0), which completes
and allows to solve for the configuration ®(t). These
states are only consistent as long as d # 0, otherwise we

return to the stick-stick state governed by nd (13). Note

(12) that calculating d(t) requires differentiating (12) with respect

This gives two scalar nonlinear transcendental equations
F(®, T, fi) = 0 that relate the prescribed actuation torques
7(t) to three unknowns — the configuration ®(¢) and the
tangential force f;(t).

B. Torque-driven locomotion — Hybrid quasistatics

As explained above, this static indeterminacy is resolved
by deducing the contact state, which completes (I2) with
an additional scalar equation and allows to solve for the
configuration ®. Then one has to check the solved forces
and configuration for consistency of the assumed contacts
state or, when inconsistent, deduce a change of the state. The
requirements and assumptions of the states is presented next
and illustrated in the contacts states’ transition graph in Fig[5]

Since d(t) is no longer imposed, d(t) can vanish for
finite time-intervals, which makes the stick-stick state possible
(contact-sticking of both contacts). In such case, an additional
kinematic requirement d = 0 or

d(t) = const, (13)

to time to find P ().

The described solution procedure gives rise to a hybrid
quasistatic non-smooth system with contact-state transitions
(a quasistatic analog of hybrid dynamical systems [42])). Fig[3]
depicts the transition graph of the contact states. This analysis
allows for continuous (yet non-smooth) contact forces and

Stick-Stick
F(®,7, fi) = 0 from eq.(12)

with d(t) = const

d=0 fe = pmin | fr ;]

Stick-Slip
F(®,7, f;) =0 from eq.(12)
with f; = pu f, s signd from (10)

Fig. 5: Hybrid-quasistatic system — transition graph of contacts states
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configuration of the robot, without turning to a full dynamical
model. It is of note that this nonlinear transcendental system
may have multiple solutions. We have implemented a time-
stepping numerical algorithm which “tracks” a solution and
detects crossing of each contact state’s inequalities.

We now turn to illustrate gaits resulting from this analysis.
It is convenient to consider torque input of the form

Tl‘(t) =k (qbz(t) - 7T) . (15)

Substituting (I3)) into (I)) gives the total internal torque at each
joint as T; = —k(w; — ¢;). This can be interpreted as changing
the reference angles of the torsion springs from 7 to ¢;(t).
The hybrid-quasistatic solution for the configuration ;(t) is
non-smooth and its deviation from the reference trajectories
¢;(t) depends on the ratio of the tortional stiffness % to the
gravitational terms MgL in (I2). Fig.da] shows time plots
of the solution for configuration ®(t) for the same reference
trajectories and parameters of Section We compare
the case of realistic stiffness k ~ 2.7M gL (dashed curves)
and arbitrary low stiffness k = 0.3M gL (dotted curves). The
solid curves depict the solution for the case of prescribed
joint angles, which are chosen as identical to the reference
trajectories ¢; in (I3).

We now consider the horizontal position of the two contact
points in Fig. b When the angles are prescribed (solid curve),
one of the contacts must always be at slippage, while the hy-
brid solution (under prescribed torques) gives rise to additional
intermediate phases of stick-stick contact state, where both
contacts are stationary. It is also noticed that the maximal
distance between the contacts is smaller than the prescribed
angles case, since the hybrid configuration does not reach the
maximal amplitude of prescribed reference angles. Moreover,
as the ratio k/M gL is lower, the control struggles to impose
the reference trajectories, the robot slips less overall, and the
distance traveled per step decreases (until reaching full stop
below critical stiffness of &k ~ 0.1MgL).

Fig.[pa] shows how the assumption of prescribed angles
results in a discontinuous jump of the contact forces at the
instance of switching the slippage direction, which is un-
realistic. On the other hand, the hybrid solution in Fig.[6b]
involves a finite-time intermediate phase of the tangential
forces within the contact-sticking range (I4) before switching

slippage direction, thus keeping the forces continuous.
For further intuition on the behaviour of the crawling gaits
see Fig.[T] and the supplementary video [43]).

C. Parametric study

In order to study the gaits’ performance in the parametric-
space, we define a sub-class of gaits with ideal switching
— where one leg only slips during legs’ extension (d > 0)
while the other only slips during legs’ retraction (d < 0). This
means that d(¢) and A(t) in cross zero simultaneously,
thus maximizing the net distance traveled per step (see Fig.[I))

T

/ d(t) signA(t) dt.

0

S =

DN | =

In the case where the joint angles are prescribed, it can be
analytically proven that ideal-switching gaits are only possible
when the angles are symmetrical, i.e. 73 = v = 7 and
Ay = Ay = A in (TI), thus reducing the parametric space
to (v, A, ). Due to non-linearity of the hybrid case the same
conclusion is reached from numeric investigation.

We begin by studying the progression per step S in ¢ — vy
parametric space (for constant amplitude A = 7 /6) — depicted
in Fig.[7] for the parameters of the experimental setup (Table[l).
Two nontrivial insights are gained from this contour plot. First,
we deduce that the progression is optimal when the nominal
angle is v = 7 /2. This indicates that an “upright” II-shaped
robot is advantageous for frictional crawling and can be a
desired undeformed shapes of such robots, which implies on
their structural design.

Second, the progression S decreases monotonically with
the phase difference ¢ and even vanishes when ¥ — .
This means that smaller phase difference between the inputs
increases the distance traveled per step. An exception is the
limit case 1) = 0, in which the gait is completely symmetrical
and the progression vanishes. Moreover, it is noticed that as
the phase difference approaches zero the gait becomes more
symmetrical. Practical considerations suggest that such gaits
are more sensitive to inaccuracies in the model, particularly
in the friction. We perform sensitivity analysis of these results
by varying the two friction coefficient at the contacts such
that p1/pe € [1 —e,14 €] (where y; is the friction coefficient
at contact ). Fig.[8] depicts the distance S versus the phase
difference ¢ (including negative phase difference range) for
v = m/2 and A = 7/6 in solid blue line (note that this is
actually a section of the surface plot in Fig.[7). The shaded
blue area shows how the distance decreases as the inaccuracy
in the friction coefficients rises up to € = 0.1 (which is
close to the actual uncertainty in the friction as measured in
Section [III). Assuming the friction varies along the gait and
among the strides within this uncertainty range, we average the
distances in the shaded area by the dashed black curve. This
curves shows an optimal phase difference 1 that maximizes the
distance S. This also indicates an interesting trade-off between
the increasing distance (for ideal conditions) and the sensitivity
to friction uncertainties and nonuniformities. Interestingly,
these trends also hold for higher friction coefficients, though
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the progression will stop for certain ranges of parameters (see
the Supplementary Material [41] for details).

Another important insight gained from Fig.[] is the depen-
dence of the direction of the net progression (i.e. the sign of .S)
on the sign of the phase difference 1), such that the motion is
in the direction of the phase-leading joint. The supplementary
video [43]] contains experimental demonstration of reversing
the crawling direction by reversing the phase difference. This
feature enables achieving bi-directional motion of the soft
inchworm robot, in contrast to some other works that rely on
directional friction by ratchet-like mechanisms [9], [11], [[14].

Finally, the distance S rises monotonically with the increase
of the amplitude A, as expected — but increasing the amplitude
usually involves increased energetic expenditure. To study the
gaits’ energetic efficiency we define W as the positive work
expended by the actuators per cycle, assuming that negative
power cannot be stored and regenerated. The positive specific
cost of transport [44], given by

W+
+

Col™ = MgS’
measures the trade-off between the traveling distance and
the energetic cost. Fig.[0] shows the existence of energy-
optimal amplitude. Moreover, investigating different stiffnesses
k/MgL indicates that a “softer” robot is more energetically ef-
ficient, since the springs allow storing more elastic energy from
“negative” work, which is otherwise wasted. These insights are
of significance in the pursuit of untethered soft-robots. Such
robots are required to carry on-board their energy resources,
thus energetic consumption poses a challenging problem.

(16)

III. EXPERIMENTS

We now turn to investigate by experiments the results
achieved from the theoretical parametric study of the lumped
model in Section As previously introduced, our soft robot
consists of a rectangular elastic beam with two embedded
slender fluidic networks, which were studied extensively in
our previous works [22], [23]], [45]. The robot is fabricated by
casting Dragon Skin™ silicone rubber over two serpentine
cores 3D-printed from PVA, which is water-soluble. After-
wards the cores are dissolved by running water, leaving the
required inner cavities. The inlets of both network segments
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Fig. 8: Distance per step vs. phase difference — 111 = p2 (solid blue
curve), p1/pe — 1.1 (blue area) and average (dashed black)

are connected to Elveflow® OB1 MK3 pressure controller in
order to impose prescribed pressure functions. For comparison
with the analytical results, we investigate periodic pressure
inputs of the form (I'l;f[) Also, since rubber-like materials are
known to have complex frictional behaviour which does not
fit the simplified dry friction model, smooth masking tape was
applied to the contact areas.

Three calibration experiments are performed to fit the tor-
sion springs’ linear stiffness coefficient £ = 0.1677 [Nm/rad]
(with R? = 0.989), a quadratic relation of the pressure to the
angle of the form ;(t) = a; p(t)>+b; p(t) (with R? = 0.997)
— where the fitted constants a;, b; are summarized in Table
— and the static friction coefficient u = 0.3897003. The
calibration experiments’ protocol and results are shown in
detail in the Supplementary Material [41].

Periodic pressure inputs of the form (II) are applied.
Fig.[I0a and Fig.[I0b] depict the distance traveled per step,
normalized by the maximal distance S/ max{S}, from the
experiments (black curve with error bars) and the simulation
(blue solid curve) versus the nominal pressure py and the phase
difference v (respectively).

The excellent agreement of the normalized distances indi-
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Fig. 9: Specific cost of transport vs. torque amplitude — Large stiffness
(solid blue curve), realistic stiffness (dashed black curve) and low
stiffness (dotted purple curve)



[ Parameter | Notation | Value | Units |
Robot’s mass M 52 ar
Robot’s length L 120 mm
Stiffness coefficient k 0.1677 | Nm/rad

ai 0.092 | rad/bar?
Quadratic pressure as 0.089 | rad/bar?
coefficients by 0.127 | rad/bar

bo 0.144 rad/bar
Friction coefficient I 0.389 —

TABLE I: Summary of experimental setup parameters’ values

cates that the lumped model and the hybrid-quasistatic solution
capture very well the overall crawling mechanism and the
influence of the studied gait parameters. Moreover, as the
phase difference decreases we observe larger variance in
the measured distance and an optimum, as predicted by the
sensitivity analysis (Fig.[8).

Yet, it is of note that the non-normalized distance of the
robot is about 4 times larger than that of the 3-link model in
simulations. This is explained by manufacturing imperfections,
which introduce undesired variations in the bending curvature
(uneven between the two segments), that cannot be accounted
for by the proposed lumped model and shall be addressed in
future works. This leads, for example, to non-zero progression
at 1» = 0, which is supposed to be an ideally symmetric
configuration, due to the uncontrolled asymmetry.

IV. CONCLUDING DISCUSSION

This paper has addressed modeling of soft robotic crawl-
ing locomotion, proposing an approximation by articulated
robots with rigid links and lumped elasticity represented by
torsional springs at the joints. Focusing on a quasistatic bipedal
crawler with passive frictional contact transitions, which was
fabricated by the researchers, a lumped three-link model has
been suggested. This system is statically indeterminate, and
involves multiple contacts which undergo stick-slip transitions.
For quasistatic solution with a continuous configuration of
the robot, a novel hybrid analysis has been developed. This
modeling method combines kinematic relations and static
balances in a non-smooth way, and has been solved by a
custom numerical nonlinear time-stepping algorithm.

By simulating the lumped model, comprehension of the
crawling mechanism has been achieved, as well as insights
on gait-planing and structural design. Practical limitations
and energetic considerations have also been discussed. All
of those insights (except for the energetic efficiency which
was not tested) have shown remarkable qualitative agreement
to experiments on our fluid-actuated soft robotic inchworm
crawler. This proves the applicability of the proposed modeling
and analysis methods to the field of soft legged robots.

On the other hand, the discrepancies between the experi-
ments and the analytical results indicates the high sensitivity
and low robustness of the locomotion mechanism of crawling
with passive contacts, as have been observed in the experience
with our system and by other researchers [27]]. A model which
better captures the higher order elastic effects but remains

lumped enough for analytic insights remains an open challenge
which is currently under our investigation.
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SUPPLEMENTARY MATERIAL

This supplementary material describes in more details the
calibration experiments’ protocol and results, omitted from the
main paper for brevity, and illustrates the presented result
regarding the influence of higher friction on the observed
trends in phase difference .

Calibration experiments

Three calibration experiments are performed, as follows: in
order to find the stiffness coefficient £ we clamp the robot at
the center, apply a vertical force f at the edge (at x = L/2 =
w) via a force gauge and measure the vertical deflection of
the edge z utilizing millimetric paper. We then calculate the
angle of the edge from the deflection ¢ = sin™' z/w and
the torque resulting from the force M = fw cosy. We fit
a torsion spring with linear stiffness coefficient k¥ = 0.1677
[Nm/rad] with good agreement R? = (0.989 (see Fig..

Next, for the same clamped configuration, we introduce
gauged pressure into each channel segment by the controller,
and again measure the vertical deflection z of the edge. We
relate the input pressure to the angle ¢; of the edge of each
segment ¢ separately (while the other segment is clamped). The
angle is then related to the torque applied by the input pressure
via the previously measured stiffness k. A linear regression of
the form ;(t) = «; p(t) fits with fair agreement R? = 0.942.
Yet, performing the experiments for a significant range of
pressures pg requires achieving large deformations (about 50%
of the actuator’s length). At this range, a quadratic relation of
the pressure to the angle of the form o;(t) = a; p(t)% +b; p(t)
fits with better agreement R? = 0.997 (see Fig.|12).

Finally, the static friction coefficient p is estimated by
varying the slope angle of an inclined plane with the robot
standing on top, and recording the angle when the robot starts
to slip. The static friction coefficient is given by the tangent
of the measured angle. By repeating this experiment several

times the coefficient was measured as p = 0.3891003.
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Fig. 11: Stiffness calibration experiment — Measured data in ‘x’ and
fitted linear curve in solid blue
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Fig. 12: Pressure calibration experiment — Left segment in blue and
right segment in purple. Measured data in ‘x’, fitted linear curve in
dotted light curve and quadratic curve in solid curve

Influence of higher friction

We have also numerically investigated the influence of
higher friction coefficient on the trends we discussed in the
paper. Interestingly, our observations hold, and the progression
S still decreases monotonically with the phase difference v
(see Fig.[T3). Yet, as the friction rises, the robot’s progression
stops for a growing range of . This is due to the fact that
this analysis (and the actual robot) are torque-driven, and as
the friction rises the system struggles to follow the trajectory
prescribed by the torques. The actual angles’ amplitude be-
comes smaller, and the movement and progression per step
nulls.
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Fig. 13: Distance per step vs. phase difference — Measured friction
tm = 0.389 (solid blue curve) and multiplications of it
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