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Direct Visual-Inertial Ego-Motion Estimation
via Iterated Extended Kalman Filter

Shangkun Zhong and Pakpong Chirarattananon

Abstract—This letter proposes a reactive navigation strategy
for recovering the altitude, translational velocity and orientation
of Micro Aerial Vehicles. The main contribution lies in the
direct and tight fusion of Inertial Measurement Unit (IMU)
measurements with monocular feedback under an assumption
of a single planar scene. An Iterated Extended Kalman Filter
(IEKF) scheme is employed. The state prediction makes use of
IMU readings while the state update relies directly on photomet-
ric feedback as measurements. Unlike feature-based methods,
the photometric difference for the innovation term renders an
inherent and robust data association process in a single step. The
proposed approach is validated using real-world datasets. The
results show that the proposed method offers better robustness,
accuracy, and efficiency than a feature-based approach. Further
investigation suggests that the accuracy of the flight velocity
estimates from the proposed approach is comparable to those
of two state-of-the-art Visual Inertial Systems (VINS) while the
proposed framework is ≈ 15 − 30 times faster thanks to the
omission of reconstruction and mapping.

Index Terms—Aerial systems: perception and autonomy, sen-
sor fusion.

I. INTRODUCTION

EFFICIENT and robust motion estimation plays a vital
role in the operation of autonomous aerial robots. In

recent years, several Visual-Inertial Systems have emerged as
a framework for simultaneously recovering camera’s motion
and 3D map points by complementing visual sensors with
IMU measurements. The visual-inertial motion estimation is
one of the most intensively researched areas thanks to its
accuracy, scalability and low cost. VINS, either optimization-
based [1], [2], [3] or EKF-based [4], [5], [6], are capable
of providing precise state estimation as environmental map
points and camera poses are incrementally refined over a
prolonged period. However, drawbacks of VINS exist. The
refinement of a large number of poses and landmarks is of high
computational complexity. While the sparse structure of the
normal equation in the bundle adjustment and the incremental
technique have been exploited to reduce the computational
load [7], they are still unsuitable for real-time application on
small robots with limited computational power. In addition,
the robustness of VINS is influenced by the ability to con-
tinuously track features over a long period. This brings about

Manuscript received: September, 8, 2019; Revised December, 11, 2019;
Accepted January, 2, 2020.

This paper was recommended for publication by Editor Eric Marchand
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by the Research Grants Council of the Hong Kong Special
Administrative Region of China (grant number CityU-11215117).

The authors are with the Department of Biomedical Engineering, City
University of Hong Kong, Hong Kong SAR, China (emails: shanzhong4-
c@my.cityu.edu.hk, pakpong.c@cityu.edu.hk).

P

μ

ωv

d

IMU

Camera

Surface

g

Fig. 1. Diagram of an IMU-camera rig movement. The moving IMU-camera
setup observes a single non-horizontal plane. The linear velocity v, angular
velocity ω, point P on the surface, the unit normal vector µ and the
normalized gravity vector g are expressed in the camera frame.

some susceptibility to rapid motion, low-textured scenes, and
varying light conditions.

Another family of motion estimation methods is the reactive
navigation. As a less demanding approach, reactive navigation
only relies on the processing of most recent frames of images
and sensory data. Most prevalently, it employs optical flow
from the visual sensor to track features between consecutive
frames [8]. In contrast to the map-based navigation, the
absence of landmarks’ estimation significantly reduces the
computational burden. Besides, optical flow-based methods
offer more robust solutions as they are not required to maintain
prolonged feature tracks.

There have been several developments related to optical
flow-based navigation. Izzo et al. presented a safe landing
strategy using ventral optical flow and time-to-contact [9].
Nevertheless, similar to VINS, uses of a monocular camera
alone are unable to provide the metric scale. For this reason,
Ho et al. proposed a distance and velocity estimator by taking
into account the control inputs (instead of acceleration) to
recover the metric scale [10]. In another example, Grabe et al.
incorporated onboard IMU data to recover the linear velocity
and orthogonal distance to planar scenes by the formulation of
a nonlinear observer under a single plane assumption [11]. In
the implementation, the plane’s normal was assumed aligned
with the gravity vector that is absolutely determined rather
than estimated by the IMU measurements. To address the
shortcoming, Hua et al. presented a nonlinear observer to
estimate the depth, velocity, and gravity direction using the
horizontal plane assumption [12]. The observer is unable to
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Fig. 2. A sketch comparing the measurement model of the patch-based
approach [16] with the proposed method: (a) the patch-based method in [16]
and (b) the proposed method. In [16], an intensity patch around each image
feature in the reference frame Ir is warped into the current frame Ic according
to the feature’s depth and relative pose between two frames provided by the
IMU prediction. The difference between the warped patch and the actual
measurement constitutes the innovation term to update the state vector. The
black arrows denote the trajectory during the iterated update. In contrast, the
proposed method aligns the entire reference image Ir to the current image Ic
using the homography model under the single plane assumption. The image
deformation is predicted by the camera’s motion through the IMU integration.

handle inclined planes.
The aforementioned map-based VINS and reactive naviga-

tion methods rely on feature extraction and association pro-
cesses such as the well-established Lucas-Kanade (LK) tracker
[8] to provide visual information. This feature identification
and tracking process is relatively computationally demanding
and may account for up to 99% of the total processing time
in reactive navigation as found in [13]. Alternatively, the
direct or featureless method, which eliminates the feature
detection and tracking process, has been proposed to further
reduce the computational complexity. Using image intensity,
direct implementations also enhance the robustness against
motion blur or in scenes with little texture. Nevertheless,
for map-based methods, intensive computation is required for
the generation of dense depth-map [14]. This issue is further
remedied by the integration of feature tracking with patches
of photometric feedback as a semi-direct approach [15], [16].

This paper presents a novel direct ego-motion estimation
method for reactive navigation. Unlike previous direct methods
for reactive navigation [17], [18], the proposed Iterated Ex-
tended Kalman Filter (IEKF) scheme efficiently estimates the
inverse altitude, flight velocity, gravity direction, and plane’s
normal from photometric feedback in a single step. To achieve
this, the single-plane assumption is employed. This is an
attractive compromise when landmarks and the corresponding
depth map is not considered. The assumption, also present
in [11], [12], [17], [18], radically simplifies the computation,
eliminating the preference to consider image patches to reduce
the computational complexity as found in recent map-based
strategies [15], [16]. Furthermore, the proposed approach has

no restriction on the motion pattern of the camera or the
plane’s inclination as present in [12], [17], [18].

The proposed framework takes motivation from the previous
indirect reactive navigation method [11] and the semi-direct
use of photometric feedback through IEKF [16]. That is, the
photometric error from an entire image is directly integrated
into the IMU measurements for the ego-motion estimation via
the IEKF framework under the assumption of a single planar
scene. As illustrated in Fig. 2, the proposed method differs
from the work [16] owing to the single-plane assumption.
The simplification means there exists only a low-dimension
state vector associated with the image measurement model and
the continuous homography equation. This makes the complex
data association and mapping process unnecessary. To enhance
the robustness, each pixel value on the image is integrated into
Kalman update step instead of the multiple patches around the
points of interest as in [16]. To deal with the large observation
vector comprising of pixel intensities from the entire image,
a Gauss-Newton Kalman gain [19] is used to substantially
reduce the computation complexity. The direct implementation
yields an implicit and robust tracking process. Meanwhile,
the gravity direction and plane’s normal are independently
estimated. To do so, a compact parameterization of bearing
vectors on manifolds is employed, avoiding the singularity.
IMU biases are also estimated.

The downsides of the proposed method exist. Compared
with the popular VINS, the proposed system is less versatile
as it cannot be applied when multiple planes exist in the
view. Without mapping, the 3D position is not formulated.
Nevertheless, the efficiency, robustness, and precision of our
system serve as a potential surrogate for computationally
constrained platforms, such as small and insect-scale flying
robots [20], [21].

The rest of this paper is structured as follows. Section
II provides background on the continuous homography con-
straint. Section III presents the IEKF formulation for directly
estimating the inverse altitude, ratio velocity, planar normal
vector and gravity direction from photometric feedback. In
Section IV, extensive flight experiments were performed to
evaluate and benchmark the performance of the proposed
method with respect to two state-of-the-art VINS [2], [16].
Lastly, conclusion and future directions are provided.

II. CONTINUOUS HOMOGRAPHY CONSTRAINT
AND OPTICAL FLOW

In this section, we briefly recall the derivation of the con-
tinuous homography constraint. Throughout the manuscript,
vectors and matrices are represented by bold letters. Vectors
are expressed with respect to the camera’s frame unless stated
otherwise.

As illustrated in Fig. 1, suppose a point P ∈ R3 associated
with a flat surface stationary in the inertia frame is observed by
a moving camera with the linear velocity v ∈ R3 and angular
velocity ω ∈ R3. The motion of point P resulting from the
camera movement is

Ṗ = −[ω]×P − v, (1)
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where [ω]× ∈ R3×3 denotes the skew-symmetric matrix
associated with ω. Let µ ∈ S2 denote a unit vector normal
to the plane, not necessarily parallel to the gravity direction
g, and d = µTP denote the orthogonal distance from camera
center to the plane as illustrated in Fig. 1. Eq. (1) becomes

Ṗ = −([ω]× +
1

d
vµT )P . (2)

Let p =
[
u, v, 1

]T
be the projection of point P on the image

plane and λ denote depth of the point P in the camera frame
(λ > 0), this yields

P = λM−1p, Ṗ = λ̇M−1p+ λM−1ṗ, (3)

where M ∈ R3×3 is the pinhole camera intrinsic matrix.
Substituting Eq. (3) into (2) provides

ṗ = −Hp− λ̇

λ
p, (4)

where H ∈ R3×3 is known as the continuous homography
matrix relating the optical flow ṗ to its coordinates p [22]:

H = M([ω]× +
1

d
vµT )M−1. (5)

In Eq. (4), since the third element of ṗ is always zero, we
obtain

λ̇/λ = −eTzHp, (6)

where ez =
[
0, 0, 1

]T
. Substituting the result into Eq. (4)

yields

ṗ = −(1− peTz )Hp, (7)

where 1 is a 3× 3 identity matrix. Eq. (7) relates the camera
motion and orientation with respect to the plane to the optical
flow ṗ.

III. IEKF ESTIMATION FRAMEWORK

In this section, we present the IEKF framework for es-
timating i) the distance to a flat plane, ii) the camera’s
translational velocity, iii) the plane’s normal vector, and iv)
the gravity direction. To achieve this, the IMU measurements
are employed for propagation of the state and covariance
estimates, while the photometric feedback from the camera
is directly used for the correction of the predicted state.

A. State Definition

The state vector consists of the following elements:

x := (α,ϑ,µs, gs, ba, bω) , (8)

where α is the inverse orthogonal distance (α = d−1) from the
camera center to the surface. The inverse parameterization has
been shown to produce superior accuracy in [16]. Similar to
[18], ϑ := v/d ∈ R3 is defined as the ratio of flight velocity
to the distance. The unit normal vector µ of the plane and
the normalized gravity vector g are represented as members
of manifolds on S2 [16]. They can be obtained by rotating the
basis vector ez via rotations µs, gs ∈ SO(3), such as µ =
µs(ez) and g = gs(ez). Compared to other parametrization

method, such as azimuth and elevation, this implementation
does not suffer from the singularity issue and it is relatively
simple to derive their differentials. The separate treatment of
µs and gs allows the estimation to deal with non-horizontal
ground. The terms bi’s represent IMU biases as defined below.

B. State Prediction

The state propagation begins with the discretization of the
continuous dynamic model.

1) State Dynamics: The dynamics of the state is dependent
on the specific acceleration â and the angular rate ω̂ of the
camera frame. These quantities are related to the measure-
ments from the accelerometer (am) and gyroscope (ωm). For
simplicity, the IMU frame is assumed to be aligned with the
camera’s frame. In addition, the IMU readings are assumed to
be corrupted by a bias b and white noise w such that

am = â+ ba +wa, ωm = ω̂ + bω +wω. (9)

Consequently, the state dynamics (ẋ) are:

α̇ = αµTϑ+ wα, (10)

ϑ̇ = α(â− g0g) + (µTϑ1− [ω̂]×)ϑ+wϑ, (11)

µ̇s = N(µs)
T ω̂ +wµ, (12)

ġs = N(gs)
T ω̂ +wg, (13)

ḃa = wba , ḃω = wbω , (14)

where g0 = 9.8 ms−2 is the gravitational acceleration. The
terms wi’s are zero-mean Gaussian white noise. The operator
N (•) linearly projects a 3 × 1 unit vector into the tangent
space of a unit vector in R2 such that

N(µs) =
[
µs(ex),µs(ey)

]
, (15)

where ex =
[
1, 0, 0

]T
and ey =

[
0, 1, 0

]T
such that µs(ei)’s

are the basis vectors of the coordinate system.
2) Discretization: The dynamics of the state described by

the Eq. (10)-(14) are nonlinear in nature. To leverage the IKEF,
they are discretized using the forward Euler method:

x−k ≈ x+
k−1 � ∆T ẋ+

k−1. (16)

where k denotes the time index at instant tk and ∆T denotes
the IMU sample time. x+

k−1 is an a-posteriori estimate at time
tk−1 and x−k an a-priori estimate at time tk. The boxplus (or
boxminus) operator in Eq. (16) behaves as a regular addition
(or subtraction) in the Euclidean space. The exception is when
it is applied to unit vectors defined on 2-manifolds (S2).
Readers are referred to [16] for the detailed definition of these
operators.

The propagation of the covariance matrix of the state
uncertainty follows

Σ−k = Fk−1Σ
+
k−1F

T
k−1 +Gk−1Qk−1G

T
k−1, (17)

with Σ+
k−1 denoting an a-posteriori covariance at time tk−1

and Σ−k an a-priori covariance at time tk. Fk−1 and Gk−1
are the Jacobians of the propagated states with respect to the
previous state x−k−1 and process noise wk−1. Qk−1 is the
covairance matrix of the additive process noise wi’s at tk−1.
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The state prediction is performed according to Eq. (16)
and (17) at the rate determined by the frequency of the
IMU measurements (∆T−1), independent of the observation
or visual feedback.

C. Photometric Measurements

We directly use pixel intensities from the whole image as
measurements for the state update. This constitutes one key
contribution of our work.

1) Image-based Measurement Model: At time tr, a point
on the surface projected onto the reference image plane at pr
has the corresponding pixel intensities Ir(pr) with I ∈ Rm×n
denoting the 2D image domain. After a time period (δT ), each
spot displaces to a new location on the current image plane
Ic according to the current state (xk). This motion can be
described using a homography projective transformation map-
ping Hk(pr|xk). The corresponding pixel intensity remains
identical under the constant brightness assumption:

Ir(pr) = Ic(Hk(pr|xk)), (18)

where the mapping Hk(pr|xk) is derived from Eq. (7),

Hk(pr|xk) ≈ pr − δT (1− preTz )Hk(xk)pr. (19)

From here, we define an observation vector zk ∈ Rmn
obtained by stacking the elements of Ic(Hk(pr|xk)) from the
entire image. Let h(xk) be an observation model derived from
Eq. (18) and (19). Subsequently, the measurement of pixel
intensities over the entire image is modeled as

zk = h(xk) + ηk, (20)

where ηk is the observation noise assumed to be zero-mean
Gaussian white noise with covariance Rk. This means the
entire image is used as feedback for the state xk.

2) Iterated State Update: The update step is executed once
a new image is available. Instead of relying on identified
image features [2] or using the sparse patch-based intensity
measurements as in [16], pixel intensities from the entire
image are used as a measurement vector as outlined by Eq.
(20). In addition, the use of IEKF reduces the susceptibility
to the inaccuracy of the initial estimate of the standard EKF.

The update step is designed to find a Kalman gain that
provides an approximate maximum a-posteriori probability
estimate. This is equivalent to finding the a-posteriori estimate
that minimizes the cost function

arg min
x+

k

∥∥x+
k � x−k

∥∥2
Σ−

k

−1 +
∥∥zk − h(x+

k )
∥∥2
R−1

k

. (21)

Since the dynamic model and measurement model are nonlin-
ear, Eq. (21) is solved recursively via the IEKF framework.
That is, each update step contains several iterative steps
(denoted by a subscript j). Starting from j = 0, the a-posteriori
estimate of the state at the jth iteration is

x+
k,j+1 =x+

k,j � ∆xk,j . (22)

∆xk,j =Kk,j

((
zk − h(x+

k,j)
)

+ Sk,jLk,j

(
x+
k,j � x

−
k

))
−Lk,j

(
x+
k,j � x

−
k

)
, (23)

where matrices Lk,j and Sk,j are Jacobians [16]:

Lk,j =
∂x−k � ∆x

∂∆x

(
x+
k,j � x

−
k

)
, Sk,j =

∂h(x+
k,j)

∂x+
k,j

. (24)

Rather than using a regular Kalman gain for Eq. (23), we use
the Gauss-Newton (GN) Kalman gain [19]:

Kk,j =
(
(LTk,jΣ

−
k Lk,j)

−1 + STk,jR
−1
k Sk,j

)−1STk,jR−1k .
(25)

The use of GN gain dramatically improves the computational
efficiency. The calculation of a standard Kalman gain is
dominated by an inverse operation of an mn × mn matrix,
which is overwhelmingly large for m × n image feedback.
The inverse operation in Eq. (25) is performed on a square
matrix of which the dimension is determined by the length of
x or 14× 14. The complexity of Eq. (25) is prevailed by the
multiplication Sk,j or O{(mn)2} operations only.

Finally, the iteration is terminated when the 2-norm of
∆xk,j is below a certain threshold or the iteration reaches the
maximum steps. The state covariance is updated only once
with the Jacobians at the last uth iteration step according to

Σ+
k = Σ−k −Kk,uSk,uL

T
k,uΣ

−
k Lk,u. (26)

Iterated updates effectively prevent the accumulation of errors
and improve the convergence and accuracy, especially in the
initialization with large uncertainty. On the other hand, the
pre-defined termination conditions limit the iteration to a few
steps, mitigating the extra computational burden.

IV. EXPERIMENTAL EVALUATION

This section presents the results from several experiments
to illustrate and assess our approach with various real-world
datasets in terms of accuracy and computational cost. Root
Mean Squared Errors (RMSE) of the estimated states with
respect to the ground-truth are used for evaluation. In section
IV-B1, we first compare the proposed direct method with the
traditional feature-based or LK method. Then a comparison
between the proposed method and two state-of-the-art VINS
is provided in section IV-B2. Lastly, the proposed method is
tested when the robot flies over planes with different angles
of inclination.

A. Experimental Setup

For the experiments, we collected real-world datasets with
an IMU-camera setup (MYNT AI, MYNT EYE) mounted on
an AscTec Hummingbird quadrotor (Ascending Technologies)
as shown in Fig. 3(a). A motion tracking system (NaturalPoint,
OptiTrack) was used to provide the ground-truth position and
orientation, allowing the true state to be evaluated. For a
horizontal surface, the true distance is the robot’s altitude. The
true velocity in the body frame is computed from the position
and then transformed into the body frame.

The visual-inertial sensor contains an ICM 2060 IMU from
InvenSense and a MT9V034 camera from ON Semiconductor,
both of which operate under hardware synchronization. Both
intrinsics and extrinsics between these two sensors were cal-
ibrated beforehand. The IMU provides the measurements of
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TABLE I
COMPARISON OF THE ESTIMATION RESULTS FROM THE D-IEKF, D-EKF AND LK METHODS.

Flight Speed Pattern ‖v‖a,‖v‖m1 Altitude RMSE (cm) Velocity RMSE (cm/s) Average time cost (ms)
(cm/s) D-IEKF D-EKF LK D-IEKF D-EKF LK D-IEKF D-EKF LK

1©

Low

CKB 24,83 2.2 2.3 4.9 2.0 2.0 1.4 1.36 1.33 6.97
2© CKB 21,113 3.7 3.7 7.3 1.2 1.2 1.8 1.35 1.34 7.01
3© CKB 24,94 3.2 3.2 73.6 2.2 2.2 118.5 1.37 1.34 6.91
4© VEG 21,64 2.9 3.6 5.5 1.4 1.4 1.4 1.38 1.33 7.11
5© VEG 22,86 3.2 5.7 29.7 2.0 2.2 35.4 1.37 1.34 7.13
6© High VEG 44,194 5.9 6.1 85.1 6.1 6.3 145.0 1.43 1.31 7.25
7© VEG 57,275 5.8 *2 75.3 7.0 * 146.2 1.44 0.63 7.22

1 ‖v‖a and ‖v‖m are the root mean squared velocity and maximum velocity magnitude computed from the motion capture system used
to describe the flight characteristics.

2 The * symbol denotes a divergent estimate.

MYNT VI Sensor

Odroid XU4

XBee

IR Reflector for 

Motion-Capture Device

Hummingbird Platform

(a)

(c)(b)

Fig. 3. (a) An AscTec Hummingbird quadrotor with a downward-facing
MYNT VI sensor. (b), (c) two textures for experimental validation: Checker-
board (b) and Vegetation (c). The motion capture system is used for ground-
truth measurements. Real-time control commands are transmitted from the
ground station to the onboard controller via a pair of XBees. The white scale
bars in (b) and (c) are 0.5 m and 0.3 m.

specific accelerations and angular rates at 500 Hz. To attenuate
the disturbance from vibration, a low-pass filter was employed.
The IMU data were then downsampled to 100 Hz for the
state prediction (∆T = 0.01 s). Grayscale images of size
752×480px were acquired at 30 frames per second. Both IMU
measurements and images were recorded on the Odroid XU4
board and post-processed offline on a laptop with the Intel
Core i5-8250U CPU at 1.6GHz. The offline implementation
allows several estimation strategies to be compared using the
same datasets. To verify the proposed estimation strategy,
the algorithm was implemented in C++†. Consecutive image
frames are taken as the reference Ir and current image Ic
(δT−1 = 30 Hz). All estimates were obtained with the same
set of parameters unless specified. Assuming the state and
measurement noises are statistically uncorrelated from one
another and time independent, Qk and Rk become diagonal

†Available at https://github.com/ris-lab/direct-vi-iekf/

and constant. The maximum iteration steps during the update
stage (Eq. (21)) was set to three, the termination threshold of
2-norm of iteration change ∆xk,j to 0.05, the initial inverse
altitude α0 to 10.0 m−1, ratio velocity ϑ0 to 0.0 s−1. The
initial normal vector µ0 was chosen as [0.2,−0.1, 0.97]

T to
make the task more challenging and the initial gravity direction
was set to [0, 0, 1]

T .

B. Flights over Horizontal Ground

For validation, we initially performed seven flights over two
patterns on the horizontal ground and recorded the measure-
ments. These patterns, Checkerboard (CKB) and Vegetation
(VEG), shown in Fig. 3(b)-(c), were selected as they feature
salient corners and edges. During each flight, the robot was
remotely controlled to follow an arbitrary trajectory covering
an approximate 0.8 × 0.8 × 0.8m volume for over 60 s.
Among seven flights, five are low-speed flights with the
RMS velocities of ≈ 0.2 ms−1 and the other two are high-
speed flights with the RMS velocities over 0.4 ms−1. These
two flight regimes were tested to inspect the performance of
different estimation methods in different real-world scenarios.
Outdoor flights are excluded due to the difficulty in obtaining
ground-truth measurements and the single plane assumption
may not hold in a complex landscape.

1) Comparison of the Proposed Direct Method with the
LK Method: The use of the photometric difference between
the consecutive frames as IEKF innovation term is one key
feature of the proposed method. The featureless approach has
the potential to be more robust as it is not susceptible to
feature tracking errors. To verify this, the proposed direct
method is compared with the traditional LK method. In the
implementation of the estimation algorithms, for the proposed
direct method (D-IEKF), original images were downsampled
to 90 × 58px. For the LK method, the pipeline is similar
to [2]. That is, 50 Harris corners [23] were extracted from
original images (752×480px). These corners were then tracked
by the pyramidal LK method over consecutive images with
20 × 20 patch size and three image levels. The innovation
term in the proposed method is replaced with the difference
between the predicted and measured feature coordinates. Our
preliminary findings reveal that for the LK method, the update
step is vulnerable to tracking outliers, resulting in occasional
divergence. To resolve this, the objective function in Eq. (21)
is robustified with the Huber loss [24] for the LK method. In
addition to D-IEKF and LK, we also performed the estimation
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Fig. 4. Comparison of the estimates from the proposed and benchmak
methods using dataset 1©. The estimates of (a) altitude, (b) vVelocity (c)
gravity vector and (d) normal vector from the four approaches are plotted
against the ground-truth values (GT). Gray shaded areas indicate 2-σ bounds
of the D-IEKF estimates.

using photometric feedback with a standard EKF (this is
equivalent to setting the maximum iteration step of the IEKF to
one), notated as D-EKF. For all cases, the weights between the
prediction and the image measurements were tuned to obtain
the best results for all methods and retained the same for all
experiments.

For assessment, all estimation errors are computed after
the estimates converge to the ground-truth, this corresponds
to three seconds after the first image update is performed.
Table I shows the RMSEs of the estimated altitude, linear
velocity with respect to the ground-truth, and the average time
consumption per frame from all three implementations. It can
be seen that both direct methods produce lower RMSEs in the
linear velocity and altitude than LK while they are approxi-
mately five times faster. It can be concluded that the direct
methods outperform the LK method in terms of accuracy and
efficiency. This is because, in many circumstances, the quality
of the LK estimates suffers from the unreliability caused by
incorrect feature correspondences in certain frames. The LK
feature association fails to handle repetitive textures such as
the CKB pattern, despite the use of Huber loss function,
and subsequently corrupts the estimation. This issue could be
further ameliorated with an additional outlier rejection strategy
such as an application of the epipolar constraint between image
correspondences [2]. On the other hand, in direct methods, the
consistent homography projective constraint is imposed (Eq.
(19)), yielding an inherent outlier rejection. As a result, by
exploiting the single plane assumption, the proposed strategy
is more robust than the LK method.

The results from D-EKF exhibit marginally larger RMSEs
in the distance and linear velocity compared to that of D-
IEKF, consistent with the outcomes in [16]. As anticipated,
the deprivation of the iterated update defers the convergence
of the estimates towards the ground-truth only at the beginning
in most cases. The comparable average time cost between
these two methods similarly indicates that multiple iterative
steps occur almost exclusively at the inception phase of all se-
quences. After convergence, only one iterative step is required
to meet the termination criterion. IEKF essentially accelerates
the convergence at a slight increase in computational cost.
In addition to the favorable speed-up of the convergence,
the result from flight 7©, in which the robot maneuvered at
relatively high speed, highlights the exceptional robustness
of D-IEKF. The high flight speed renders the LK method
to be extremely inaccurate and causes the D-EKF method to
diverge since a single update iteration was not sufficient for
the estimation to reduce the initial photometric error between
consecutive images and the prediction. The failure to properly
find the maximum a posteriori probability estimate (Eq. (21))
leads to an accumulation of errors and the divergence of
the estimates. This demonstrates that multiple iteration steps
enhance the robustness compared to a single iterative step.

Fig. 4 depicts the estimation results from flight 1© in detail.
The estimated altitudes from all three approaches converge
close to the ground truth at around t = 3 s (Fig. 4(a)). The
results from D-IEKF and D-EKF are nearly identical after
the convergence. Fig. 4(a)-(c) reveals that the estimates of the
altitude, velocity and gravity direction from all methods are
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Fig. 5. Boxplots comparing D-IEKF, VINS-Mono, and ROVIO in terms
of velocity errors. The left sub-figure shows the results from five low-
speed flights and the right sub-figure corresponds to two high-speed flights.
The increased flight speed deteriorates the estimation performance. ROVIO
estimates failed to converge in the case of high-speed flights.

only slightly different whereas the estimates of the plane’s
normal vector from D-IEKF and D-EKF in Fig. 4(d) display
a noticeable distinction at the beginning. This corroborates
the claim that the iterative update expedites the convergence.
Furthermore, it can be observed that the uncertainties of
the D-IEKF estimates, and likewise estimation errors, are
more pronounced at the extreme points of the velocity plots
(Fig. 4(b)). These points coincide with the periods where the
camera’s acceleration approaches zero. This is consistent with
the fact that the scale ambiguity of the monocular vision
cannot be resolved in the absence of acceleration.

2) Comparison of the Proposed Direct Method with the
State-of-the-art VINS: We further compare the D-IEKF
method against two state-of-the-art VINS: VINS-Mono [2]
and ROVIO [16] using their published C++ codes. Unlike
the proposed estimator for reactive navigation, VINS-Mono
and ROVIO are map-based VINS suitable for autonomous
navigation. Since these map-based VINS do not assume the
camera to be pointing toward a single flat terrain, the estimate
of the distance to a flat terrain or flight altitude is not immedi-
ately available for comparison. Despite substantial differences
in assumptions and computational complexity, both regimes
provide the estimated flight velocity that can be directly
compared. This serves as a surrogate measure for comparison
of distance estimation owing to the tightly coupled dynamics
of velocity and distance.

VINS-Mono is a variant of a visual-inertial SLAM system
rather than a front-end. It features an accurate joint opti-
mization of visual inertial information, loop closure, and map
merging and reuse [2]. For comparison, the estimates of flight
velocity from the sliding window estimator were logged out.
In contrast to VINS-Mono, ROVIO is characterized as a robust
and fast visual-inertial front-end. It leverages an IEKF frame-
work by tightly integrating patch-based photometric feedback
as its Kalman innovation term. For comparison with the
D-IEKF estimates, we used the default ROVIO parameter
configuration, which has been well-tuned to achieve a balanced
trade-off between accuracy and efficiency. The number of
tracked features per frame is set to 25 and the patch size to
6× 6. The second and third levels are employed for tracking
the multiple level features.

Seven datasets collected from the previous section were
used to obtain the velocity estimates from both ROVIO and
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Fig. 6. Distance and velocity errors of the D-IEKF estimates from flights
over planes with different angles of inclination.

VINS-Mono as outlined. Fig. 5 presents the velocity estima-
tion errors using boxplots, depicting the medians and quartiles
of the errors. According to the plot, the results demonstrate no
overall significant distinction between the three methods in the
case of five low-speed maneuvers. Nevertheless, for the two
high-speed flights, ROVIO failed the initialization and sub-
sequent tracking as a result. VINS-Mono, on the other hand,
has a robust and complex initialization procedure that provides
relatively accurate initial estimates. For D-IEKF, the adoption
of entire images and iterated updates improve the robustness
to deal with the high-speed flights. From the obtained results,
it can be concluded that D-IEKF has comparable performance
to that of two state-of-the-art VINS when it comes to the flight
velocity estimation.

In terms of the efficiency, the time consumption per frame
averaged from all sequences from all three methods are D-
IEKF-1.42 ms, VINS-Mono-41.52 ms, and ROVIO-23.5 ms.
Note that for VINS-Mono three threads operate in parallel and
only the time cost of the sliding optimization is counted. While
the proposed estimator is approximately 15-30 times faster
than VINS-Mono and ROVIO, the exceptional computational
efficiency is compromised by the lack of mapping and the
requirement of a single observed flat surface.

C. Flights over Tilted Planes

Different from [11], [12], [18], our strategy to separately
estimate the gravity direction and the plane’s normal allows
the proposed method to relax the assumption that camera
observes horizontal ground. In other words, it is applicable
to flights above an inclined plane. To verify this, additional
flight experiments were carried out over surfaces covered by
the VEG texture with the angles of inclination up to 30◦ using
identical flight configurations and estimation parameters to the
experiments on horizontal ground.

Fig. 6 shows the errors of the estimated distance to the
inclined planes and the translational velocity. The data belong-
ing to flight 4© in Table I is employed as the flight above a
0◦-inclined plane. The plot shows that the accuracy of the
estimates is not visibly affected by the plane’s inclination.
Only marginal variation is seen across different angles. A
closer inspection is given in Fig. 7. The plot demonstrates the
angle between the estimated normal vector and the vertical for
different cases. The estimated angles evidently oscillate within



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

0 10 20 30 40 50 60

Time (s)

0

10

20

30
A

ng
le

s
(◦ )

0◦

15◦

20◦

24◦

30◦

Fig. 7. The angle between the estimated normal vector and gravity vector
on different incline planes. The dash lines are the ground-truth angles of the
corresponding plane obtained from the motion capture system.

the vicinity of the true planes’ inclination angles. The result
from the 20◦ case exhibits the largest deviation among the four
experiments. That is related to the deteriorated accuracy of the
velocity and distance estimates shown in Fig. 6, consistent with
the relationship predicted by Eq. (10) and (11).

V. CONCLUSION

In this paper, we have proposed a computationally ef-
ficient framework to estimate the inverse altitude, velocity
and the surface’s orientation for MAVs from a monocular
vision and IMU measurements. The key contribution of our
framework lies in the direct use of photometric feedback as
the Kalman innovation term. This renders a robust, efficient
and inherent data association in a single step. Extensive flight
experiments were conducted to demonstrate the effectiveness
of our approach. The results prove that the direct use of entire
images for feedback offers better accuracy, robustness, and
efficiency than the existing feature-based (LK) method. The
iterated update scheme improves the estimation with a minimal
increase in computation power. Further analysis comparing the
proposed method against two state-of-the-art VINS reveals
that the accuracy of the velocity estimates calculated from
the proposed method is comparable with the two benchmark
VINS. It should be highlighted that the exclusion of mapping
(and therefore, comprehensive odometry information) and the
single plane assumption in the proposed estimator permits it to
be ≈15-30 times faster than the two VINS. Finally, additional
flights were performed to showcase the estimator’s ability to
determine the plane’s normal vector. The results suggest that
the achieved estimation performance is not adversely affected
when the robot flies over non-horizontal surfaces. Overall, this
work offers an attractive lightweight navigation solution for
aerial robots with limited computational power.

Possible future directions include the extension of the
framework to be applicable with the observation of multiple
planes by dealing with the planar area segmentation and ego-
motion estimation in one step.
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