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A Lightweight and Accurate Localization Algorithm
Using Multiple Inertial Measurement Units

Ming Zhang, Xiangyu Xu, Yiming Chen, and Mingyang Li

Abstract—This paper proposes a novel inertial-aided local-
ization approach by fusing information from multiple inertial
measurement units (IMUs) and exteroceptive sensors. IMU is a
low-cost motion sensor which provides measurements on angular
velocity and gravity compensated linear acceleration of a moving
platform, and widely used in modern localization systems. To
date, most existing inertial-aided localization methods exploit
only one single IMU. While the single-IMU localization yields
acceptable accuracy and robustness for different use cases, the
overall performance can be further improved by using multiple
IMUs. To this end, we propose a lightweight and accurate
algorithm for fusing measurements from multiple IMUs and
exteroceptive sensors, which is able to obtain noticeable per-
formance gain without incurring additional computational cost.
To achieve this, we first probabilistically map measurements
from all IMUs onto a virtual IMU. This step is performed
by stochastic estimation with least-square estimators and prob-
abilistic marginalization of inter-IMU rotational accelerations.
Subsequently, the propagation model for both state and error
state of the virtual IMU is also derived, which enables the
use of the classical filter-based or optimization-based sensor
fusion algorithms for localization. Finally, results from both
simulation and real-world tests are provided, which demonstrate
that the proposed algorithm outperforms competing algorithms
by noticeable margins.

Index Terms—Sensor Fusion; Localization; SLAM.

I. INTRODUCTION

IN recent years, commercial products which exploit inertial
measurement units (IMUs) have been under fast develop-

ment. This popular motion sensor can be found in robotics,
personal electronic devices, wearable devices, and so on [1].
On one hand, the maturity of MEMS manufacturing process
significantly reduces the size, price, and power consumption
of the IMU hardware. On the other hand, significant progress
has also been made in both algorithm and software design
for IMUs, ranging from sensor characterization and calibra-
tion [2]–[5], measurement integration [6]–[8], sensor fusion
[9]–[13], and so on.

In this work, we focus on the inertial-aided localization,
which is to estimate the 6D poses (3D position and 3D
orientation) of a moving platform. Since localization with
only IMU inevitably suffers from pose drift, measurements
from other sensors (i.e. aiding), e.g., RGB cameras, depth
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Fig. 1. The IMU array board used in this work, which contains nine ST
LSM6DSOX IMUs marked by red rectangles and a processor interface to
connect cameras. The IMUs are synchronized by an embedded processor.

cameras, or LiDARs (Light Detection And Ranging sensors),
are typically used in combination with IMUs to provide long-
term performance guarantees [12], [14], [15]. To perform
accurate pose estimation, the majority of existing works use
measurements from IMU for pose prediction, which is fol-
lowed by probabilistic refinement using measurements from
other sensors [7]–[12].

To date, most algorithms on inertial-aided localization are
designed based on a single IMU [7]–[13]. Although these
algorithms are successfully deployed in different applications,
using additional IMU sensors creates new possibilities for
further improving the system accuracy and robustness. Com-
pared to other popular sensors for localization (e.g., cameras
or LiDARs), IMUs especially the off-the-shelf MEMS ones
are priced only hundredths or thousandths, and of smaller
size as well as lower power consumption. In addition, as a
reliable proprioceptive sensor, IMU also poses less restrictions
on operating environments and hardware configurations (in
contrast, e.g. stereo cameras require enough spatial baseline
to achieve performance gain [16], [17], which might not be
feasible on various applications including mobile devices).

Most existing methods on using multiple IMUs focus on
processing IMU measurements only or integration with global
navigation satellite systems (GNSS) [10], [18], [19]. Fusing
measurements from multiple IMUs with exteroceptive sensors
for localization is a less-explored topic. To the best of the
authors’ knowledge, the only work in recent years in this
domain is [20], which proposed an approach for vision-aided
inertial navigation using measurements from multiple IMUs.
However, the proposed algorithm is of significantly increased
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computation, which makes its real-world deployment on low-
cost platforms infeasible.

In this paper, a systematic framework of using multiple
IMUs is proposed for localizing a moving platform, in com-
bination with exteroceptive sensors. Compared to methods of
using a single IMU, the proposed method is able to achieve
better localization accuracy without incurring noticeable extra
computation. The key contribution of this work is the design of
multiple-IMU propagation equation, which can be integrated
into both filter-based [11], [20] and optimization-based sensor
fusion algorithms [15], [21] for localization. To achieve this,
we first probabilistically map measurements from all IMUs
onto a virtual IMU. This step is performed by stochastic esti-
mation with least-square estimators and probabilistic marginal-
ization of inter-IMU rotational accelerations. Subsequently, the
propagation models for both state and error state of the virtual
IMU are derived, with closed-form representation of state-
transition and noise Jacobian matrices. By integrating them
into a representative vision-aided inertial localization system,
we show that the proposed method outperforms competing
methods by a wide margin. We also point out that, in this work,
experimental analysis on localization accuracy with different
number of IMUs is also provided, based on our customized
sensor platform consisting of nine IMUs (see Fig. 1).

II. RELATED WORK

We here group the related work by methods for inertial-
aided localization and methods using multiple IMUs.

A. Inertial Aided Localization

IMU typically generates measurements at high frequencies
and provides direct 6DoF (degrees of freedom) motion es-
timates of a moving platform. These properties make IMU
an important complementary sensor for designing localization
systems [22].

Camera is another widely used sensor in various appli-
cations. However, when used for localization, the methods
only relying on cameras have theoretical drawbacks. They are
unable to uniquely determine the roll and pitch angles against
gravity as well as the metric scale (in monocular camera
setup). This limits the localization accuracy and robustness.
However, when an IMU is used together with a camera, these
problems can be theoretically resolved, and the performance is
largely improved. As a result, there are a variety of algorithms
proposed in recently years on visual-inertial localization, rang-
ing from estimator design [9] [21], camera cost functions [23]
[24], efficiency and accuracy optimization [7] [8], sensor
calibration [3] [4], and so on.

IMU is also commonly used in combination with wheel
encoders and/or laser range finders (LRFs) [25]. When com-
bined with wheel encoders, IMU can help improve the dead
reckoning and general localization precision [14], as well as
detect wheel slippery [26]. On the other hand, LRF measures
intensity and range from each laser beam at typically lower
frequencies. Thus, the high-FPS measurements from an IMU
can provide motion estimates between LRF scans and then
derive more robust localization systems [15].

B. Methods of Using Multiple IMUs

The methods of using multiple IMUs have a long history
from inertial navigation community [27]. However, the scope
of early works is confined to fault detection and isolation
(FDI), rather than localization accuracy until quite recently.
An extensive literature review on multi-IMU FDI can be
found in [28]. In what follows, we focus on the methods
improving localization accuracy. Early works on processing
measurements from multiple IMUs aim on measurement noise
reduction via least-square estimation [29], [30]. However, the
crucial correlation terms between accelerometer measurements
and rotational accelerations are ignored, and then the estima-
tion becomes suboptimal. A method is proposed in [28] to
estimate acceleration/angular velocity based on a constrained
optimization. These algorithms are later improved by [10],
which presents a two-stage method by firstly computing error-
reduced rotational velocities and subsequently obtaining the
rotational accelerations and specific force vectors. [16] focuses
on improving calibration accuracy, designing an anti-parallel
multi-IMU array and using IMUs of mixed measurement
ranges to improve localization performance. Note that the
virtual IMU is generated by simply averaging the data of
multiple IMUs. Another category of methods of using multiple
IMUs is to design centralized estimators with a ‘stacked’ state
vector, concatenating the state of each IMU [31], [32]. This
type of methods does not require approximations of sensors’
measurements, and is typically of higher accuracy. However,
the size of the concatenated state vector grows along with the
number of IMU, and consequently so does the computation.
The third type of methods is to design federated filters, using
both local and master filters [33], [34]. Shared states are
estimated in both the local and master filter, while other states
such as biases are only estimated in the local filters.

Note that all previously mentioned methods focus on IMU
signal processing or GNSS localization only. To the best of
our knowledge, in existing literature, only [20] is dedicated
to general localization with multiple IMUs and exteroceptive
sensors. In [20], poses of each IMU are concatenated into
the state vector, and relative pose constraints are derived
between different IMUs. This approach is shown to generate
results with higher accuracy, while at a cost of significantly
increased computational complexity. In addition, although the
general sensor fusion accuracy can be improved by [20],
the improvement will only take effect after each update.
In other words, for applications that require high frequency
pose estimates from IMU forward integration (e.g., real-time
control for drones or low-latency rendering in virtual reality
headsets), [20] has limitations. By contrast, our method is able
to improve both overall localization and forward integration
accuracy without incurring additional computations.

The organization of the rest of this paper is as follows.
Sec. III revisits the single-IMU localization method. Sec. IV
presents the virtual IMU model generated from multiple IMUs,
which is used for deriving propagation equations in Sec. V.
Finally, Sec. VI presents experimental results.
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III. SINGLE IMU METHOD REVISITED

This section revisits a standard method of using measure-
ments from a single IMU for localization, which will be
extended to the multiple-IMU case in the following sections.

A. IMU Measurement Equations

Assuming an IMU, {I}, moves with respect to a global
frame {G}, the IMU measurements can be described by:

ωm= Iω+bg+ng, ng ∼ N
(
0,σ2

gI3
)
, (1)

am= IRG(Ga−Gg)+ba+na, na ∼ N
(
0,σ2

aI3
)

(2)

where ωm and αm ∈ R3 are the gyroscope and accelerometer
measurements, Iω and Ga the angular velocity and linear
acceleration of the IMU expressed in frames {I} and {G}
respectively, IRG the rotation from {G} to {I}, ng and na
the white Gaussian noises, bg and ba the measurement biases
modeled as random walk processes, and Gg the known gravity
vector in global frame.

B. IMU State Vector and Error State

Conforming to [6], [7], [12], the IMU state is defined as:

x =
[
G
I q̄

ᵀ
, bᵀg ,

GvI
ᵀ
, bᵀa,

GpI
ᵀ
]ᵀ
∈ R16 (3)

where G
I q̄ ∈ R4 represents rotation from IMU frame to global

frame (i.e. GRI ) in quaternion [6], and GpI and GvI stand
for the IMU position and velocity. The continuous-time motion
dynamics of the IMU are described as:

ẋ = f (x, ωm,am) (4)

whose detailed form is

GṗI(t)=GvI(t), ḃg(t)=nwg(t), ḃa(t)=nwa(t), (5)
Gv̇I(t)=GaI(t)= IRT

G (am − ba − na) + Gg (6)

G
I

˙̄q(t)=
1

2
Ω(Iω(t))GI q̄(t)=

1

2
Ω(ωm−bg−ng)GI q̄(t) (7)

where nwg ∼ N (0,σ2
wgI3), nwa ∼ N (0,σ2

waI3),

Ω(Iω) =

[
0 −Iωᵀ

Iω −bIωc

]
, (8)

and b·c represents the skew-symmetric matrix. Similar to [6],
[7], [12], the IMU error state is defined as:

x̃ =
[
I θ̃

ᵀ
, b̃ᵀg ,

GṽI
ᵀ
, b̃ᵀa,

Gp̃I
ᵀ
]ᵀ
∈ R15 (9)

in which the standard additive error definition is used for the
position, velocity, and biases. The quaternion local error I θ̃ is
defined as:

IRG ' (I3 − bI θ̃c)IR̂G (10)

where IR̂G represents the estimate of IRG.

C. IMU Propagation Equations

To implement probabilistic estimators, a general method is
to derive a nonlinear equation for predicting the state estimate
x̂ and a linearized one for characterizing the error state x̃:

˙̂x = f (x̂, ωm,am) (11)
˙̃x = Fx̃+ Gnc (12)

where F and G represent the continuous-time linearized state-
transition matrix and noise Jacobian matrix, and nc is the
process noise. Once Eq. 11 and 12 are defined, IMU measure-
ments can be straightforwardly integrated into different types
of localization estimators for motion estimation [3], [6]–[9],
[11], [12], [14], [15].

IV. VIRTUAL IMU GENERATION

Our high-level design principle of formulating multiple-
IMU algorithm is to derive IMU propagation equations con-
forming to the structure of Eq. 11 and 12, without non-
probabilistic assumptions. The main advantage of this design
is that the proposed algorithm can be directly integrated into a
variety of existing inertial-aided localization systems without
any complicated software re-design. To achieve this, we rely
on information from multiple IMUs to generate measurements
for a ‘virtual’ IMU, which are used to replace ωm and am in
Eq. 11. The entire process is described in this section. In the
next section, we derive the detailed equations for F and G in
Eq. 12, after the virtual IMU substitution. We also note that,
for the rest of this section, we discuss the representative case
when two IMUs are involved, which can be straightforwardly
extended to cases of more IMUs.

We begin by introducing our method of generating a ‘vir-
tual’ IMU from multiple real IMUs.

Virtual IMU Measurement. Suppose that synchronized mea-
surements ωmA, ωmB , amA and amB from IMU A and B are
given, along with their extrinsic calibration

(
ARB ,

BpA
)
. By

arbitrarily picking the extrinsics
(
ARV ,

V pA
)

for the virtual
IMU (reference frame V ) relative to IMU A, the corresponding
virtual gyroscope and accelerometer measurements can be
generated as:

ωmV = N+ωm (13)
amV = T (am − S(ωmV )) (14)

where

N=

[
ARV
BRV

]
,Y=

[
ARV bV pAc
BRV bV pBc

]
,T=(ZᵀN)

+
Zᵀ, (15)

ωm=

[
ωmA
ωmB

]
,am=

[
amA
amB

]
,S(·)=

[
ARV b·c2V pA
BRV b·c2V pB

]
, (16)

Zᵀ is left nullspace projection of Y , and A+ is the Moore-
Penrose inverse of a real matrix A, defined as:

A+ = (AᵀA)
−1

Aᵀ. (17)

In practice, for general multiple IMU setup with N =[
1Rᵀ

V ,
2 Rᵀ

V , . . . ,
nI Rᵀ

V

]ᵀ
, the evaluation of N+ can be sim-

plified as N+ = Nᵀ/nI . With the generated virtual IMU mea-
surements (Eq. 13 and 14), the prediction equation of the IMU
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state estimate (Eq. 11) can be used without any modification.
The following two subsections discuss the methodology and
derivations on generating the virtual IMU measurements.

A. Virtual Gyroscope Model

We first derive the measurement model for the virtual
gyroscope. To start with, we use the following identities:

Aω = ARV
V ω, Bω = BRV

V ω. (18)

Combination of Eq. 1 and 18 leads to:[
ωmA
ωmB

]
=

[
ARV
BRV

]
V ω+

[
bgA
bgB

]
+

[
ngA
ngB

]
(19)

Based on the measurements from IMUs A and B, the optimal
estimate of the virtual IMU angular velocity is given by:

V ω̂ = arg min
ω

∣∣∣∣∣
∣∣∣∣∣
[

ωmA

σgA
ωmB

σgB

]
−

[
1
σgA

ARV
1
σgB

BRV

]
V ω−

[
bgA

σgA
bgB

σgB

] ∣∣∣∣∣
∣∣∣∣∣
2

2

.

(20)

To simplify the analysis, we here assume σgA = σgB for
our derivations throughout the paper. Similar analysis can be
developed for σgA 6= σgB . We also note that, if an IMU array
is designed using the same type of IMUs, the σgA = σgB
assumption becomes exact. Solving for Eq. 20 leads to the
linear least-square estimate:

V ω̂ = N+

[
ωmA
ωmB

]
−N+

[
bgA
bgB

]
(21)

where N+ is defined by Eq. 15 and 17. In addition, by
substituting Eq. 19 into Eq. 21, we obtain:

V ω − V ω̂ = −N+

[
ngA
ngB

]
. (22)

With Eq. 21 and 22 being defined, we are able to formulate
the virtual gyroscope measurements, similar to the the original
IMU measurements (i.e. Eq. 1), as:

ωmV = V ω + bgV + ngV , ngV ∼ N (0,QgV ) (23)

where ωmV , bgV , and ngV are the measurement, bias vector,
and noise for the virtual IMU respectively, given by:

ωmV,N+

[
ωmA
ωmB

]
, bgV,N+

[
bgA
bgB

]
, ngV,N+

[
ngA
ngB

]
.

(24)

We also note that, taking expectation on both sides of Eq. 23
results Eq. 21, and further calculating the error terms results
in Eq. 22. The noise covariance matrix QgV in Eq. 23 can be
computed as:

QgV=σ2
gAN+N+T=σ2

gA

([
ARV
BRV

]T [ARV
BRV

])−1

=
σ2
gA

2
I3.

(25)

Eq. 25 clearly indicates that, by using multiple IMUs, the
overall IMU measurement noises can be reduced, and the
localization accuracy should be improved. When σgA 6= σgB ,
the expression in Eq. 25 becomes slightly different, but the
conclusion on noise reduction still holds.

Additionally, based on Eq. 24, the continuous time dynamics
of bgV can be described by:

ḃgV (t) = nwgV (t), nwgV ∼ N (0,QwgV ) (26)

and the above noises are modeled as

QwgV , N+

[
σ2
wgAI3 0

0 σ2
wgBI3

] (
N+
)ᵀ
, (27)

Similar to Eq. 25, Eq. 27 also indicates that by generating the
virtual measurements, the corresponding gyroscope bias drifts
slower.

B. Virtual Accelerometer Model

Similar to the virtual gyroscope, to derive the model for
virtual accelerometer, we start with the identity:

GpA = GpV + GRV
V pA. (28)

Taking the first and second derivative of Eq. 28 leads to:
GvA=GvV +GRV bV ωcV pA,
GaA=GaV +GRV bV ωc

2V pA+GRV bV φcV pA (29)

where V ω, V φ ∈ R3 are the angular velocity and the angular
acceleration of virtual IMU frame in global frame.

Substituting Eq. 2 into Eq. 29 leads to

amA − baA − naA = ARV

(
sV +bV ωc2V pA−bV pAcV φ

)
(30)

where the identity abbc = −bbac is applied, and

sV , V RG(GaV − Gg) (31)

represents the specific force vector [22].
Similar to computing the optimal estimate of ω in Eq. 20,

stacking accelerometer measurements from both IMUs via
Eq. 30 leads to:

ŝV=arg min
sV

∣∣∣∣∣
∣∣∣∣∣
[
amA
amB

]
−
[
ARV
BRV

]
sV+YV φ−S(V ω)−

[
baA
baB

]∣∣∣∣∣
∣∣∣∣∣
2

2
(32)

where matrix Y and operator S(·) are defined in Eq. 15
and 16 respectively. In Eq. 32, the rotational acceleration
V φ is unknown, and also not directly measured by the IMU
sensor. If V φ is not properly handled, sV can not be accu-
rately represented. In this work, we adopt a method inspired
by [7], in which unknown visual features are probabilistically
marginalized. By denoting ZT the left nullspace projection 1

of the matrix Y, Eq. 32 is equivalent to:

ŝV=arg min
sV

∣∣∣∣∣
∣∣∣∣∣ZT

([
amA
amB

]
−
[
ARV
BRV

]
sV−S(Vω)−

[
baA
baB

])∣∣∣∣∣
∣∣∣∣∣
2

2
(33)

Solving Eq. 33, it follows that

ŝV = T

([
amA
amB

]
− S(V ω)−

[
baA
baB

])
, (34)

1ZT can be computed through QR decomposition [7].
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with T also defined in Eq. 15. Eq. 34 allows us to define
the virtual accelerometer measurement as Eq. 14. Combining
Eq. 14, 30 and 34, we are able to write:

amV = sV + baV + naV −T · Sa (35)

with

baV , T

[
baA
baB

]
, naV , T

[
naA
naB

]
(36)

and

Sa = S(ωmV−V ω) =

[
ARV ζ

V pA
BRV ζ

V pB

]
, ζ=bωmV c2−bV ωc

2

(37)

where ζ can be expanded as

ζ = bωmV c2 − bωmV − bgV − ngV c2 (38)

'−bbgV c2+bωmV cbbgV c+bngV cbωmV c−bbgV cb ngV c
+ bbgV cbωmV c+bωmV cbngV c−b ngV cbbgV c. (39)

In Eq. 39, we have used the quadratic error approximation
bngV c2 ' 03.

Eq. 35 - 39 clearly demonstrate that, the virtual accelerome-
ter measurements are affected by gyroscope biases, accelerom-
eter biases, gyroscope noises, and accelerometer noises from
original IMUs. This is unlike the original IMU measurement
equations, i.e., Eq. 1 and 2, in which measurement noises are
not correlated and biases are independent.

V. VIRTUAL IMU PROPAGATION

In this section, a method is presented to integrate virtual
IMU measurements, i.e. Eq. 13 and 14, for both the IMU
state and error state. Similar to the case of single IMU, i.e.
Eq. 3 and 9, we define the state and error state of the virtual
IMU as:

xV =
[
G
V q̄

ᵀ
, bᵀgV ,

GvV
ᵀ
, bᵀaV ,

GpV
ᵀ
]ᵀ
∈ R16 (40)

x̃V =
[
V θ̃

ᵀ
, b̃ᵀgV ,

GṽV
ᵀ
, b̃ᵀaV ,

Gp̃V
ᵀ
]ᵀ
∈ R15. (41)

whose continuous-time propagation equations are given by

˙̂xV = f (x̂, ωmV ,amV ) (42)
˙̃xV = FV x̃V + GV nV (43)

with

nV = [ngV
ᵀ, nwgV

ᵀ, naV
ᵀ, nwaV

ᵀ ]
ᵀ ∈ R12. (44)

Eq. 42 and 43 provide core equations for performing state
and error state propagation based on the virtual IMU. This
propagation can be straightforwardly integrated into different
types of tightly-coupled localization algorithms, identical to
the process of using a single IMU. To implement Eq. 42, we
first generate the virtual IMU measurements from all IMUs
via Eq. 13 and 14, and the remaining step of pose integration
is identical to that of Eq. 11. By denoting

ω̂ = ωVm − b̂gV , âV = aVm − b̂aV + TŜa (45)

the state-transition matrix and noise Jacobian matrix in Eq. 43
can be computed, and the detailed expression is given by

Eq. 46. Compared to the single IMU case, FV and GV contain
the following additional non-zero terms:

∂G ˙̃vV

∂b̃gV
= −V R̂ᵀ

GTΨ,
∂G ˙̃vV
∂ngV

= −V R̂ᵀ
GTΞ (47)

where

Ψ = Ξ =

[
ARV

(
−bV ω̂cbV pAc − bbV ω̂cV pAc

)
BRV

(
−bV ω̂cbV pBc − bbV ω̂cV pBc

)] . (48)

The detailed derivations of Ψ and Ξ are shown in Appendix.
In addition to those two terms, the expressions of all other
components of FV and GV are identical to those in the single
IMU case. Once detailed expression of both matrices in Eq. 43
is given, a computer programmable discrete-time estimator
can be derived accordingly, similar to existing work on IMU
integration [6], [8], [12].

It is also important to note that compared to processing
measurements of a single IMU, the additional computation
introduced by the proposed algorithm can be neglected. The
major additional computational operations include i) comput-
ing nullspace projection of matrix Y and obtaining T in
Eq. 15 and ii) computing discrete time error state propagation
by handling extra fill-in in FV and GV . Note that the
computational complexity of the first task is linear in the
number of IMUs while can be done offline given the IMUs
extrinsics. The added computational cost of the second task
is constant. By contrast, the computational cost of the method
in [20] is cubic in the total number of camera poses and IMUs,
and thus adding IMUs incurs significant extra computing time.
This is not the case in our proposed method.

VI. EXPERIMENTS

A. Methodology

To demonstrate the performance of our proposed localiza-
tion algorithm with multiple IMUs, we integrate it into a
visual-inertial odometry (VIO) approach [14]2. The perfor-
mance of VIO is tested against different number of IMUs.
When there is only one IMU used, the VIO algorithm is
identical to [14]. When more IMUs are used, the proposed
method of generating virtual IMU measurements and perform-
ing virtual IMU propagation replaces the single-IMU pipeline.
In addition, the method of [20] is implemented in our tests,
as a competing algorithm to compare against.

B. Simulation Tests

We first show results from simulation tests. To minimize
the reality gap of simulation, we generated synthetic poses
and sensor measurements based on real-world data, similar
to [35]. In the tests, we used 9 IMUs and a monocular camera,
with perfectly known sensor intrinsic and extrinsic parameters.
During data generation, each IMU was sampled at 200Hz
and the camera captured measurements at 10Hz. During the
simulation, the layout of the multiple IMU array is identical
to that of Fig. 1, and all IMUs were synchronized.

2In our implementation of [14], only measurements from the IMUs and
cameras are used.
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FV =


−bω̂c −I3 03 03 03

03 03 03 03 03

−V R̂ᵀ
GbâV c −V R̂ᵀ

GTΨ 03 −V R̂ᵀ
G 03

03 03 03 03 03

03 03 I3 03 03

 ,GV =


−I3 03 03 03

03 I3 03 03

03 −V R̂ᵀ
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Fig. 2. IMU integration errors when different number of IMUs used for varying time durations. Left: Errors in predicted position; Middle: Errors in predicted
orientation; Right: Errors in predicted velocity.

TABLE I
POSE RMS ERRORS AS A FUNCTION OF NUMBER OF IMUS.

Num. of IMUs 1 2 4 6 9

Environment 1
Pos. err. (m) 0.1985 0.1853 0.1572 0.1524 0.1455
Rot. err. (rad.) 0.0041 0.0040 0.0036 0.0035 0.0031

Environment 2
Pos. err. (m) 0.3917 0.3721 0.3117 0.3105 0.2955
Rot. err. (rad.) 0.0054 0.0052 0.0048 0.0048 0.0041

1) Pose Prediction Error: The first test is to demonstrate
the pose integration accuracy by using different number of
IMUs for varying time durations. Specifically, we started this
test with perfectly known IMU pose, i.e., position, orientation,
velocity, biases, and used sensor measurements to predict
poses in future timestamps. For all methods, we computed
the root-mean-square (RMS) errors for 3D position, rotation
and velocity over 50000 simulation tests. Specifically, we
generated 50 data sequences, and sampled 1000 different IMU
poses from each sequence for performing prediction. We also
note that [20] is identical to the single IMU case in this test,
since the formulation in [20] is not able to improve the IMU
prediction accuracy.

The testing results are shown in Fig. 2, which clearly
demonstrate that by using more IMUs for pose integration
the accuracy can be largely improved. This validates our
theoretical analysis, and our design motivation of using more
IMUs. In addition, we emphasize that, in all cases, using
multiple IMUs for pose prediction is consistently better than
the original method of using a single IMU and that of [20].

2) VIO Localization Error: The second test is to demon-
strate the localization accuracy when the proposed method is

integrated into VIO. Similar to the previous tests, we con-
ducted statistical comparison between the cases when different
number of IMUs were involved. For all methods, we computed
the RMS errors for both 3D position and rotation, under two
sets of representative simulation environments.

Table I shows the results when 1, 2, 4, 6, and 9 IMUs
are used. The most important conclusion from Table I is
that when multiple IMUs are used via the proposed method
the localization accuracy is consistently higher than that of
the single-IMU based method. In addition, we also observe
that when more IMUs are used, the accuracy can be further
improved, in terms of both rotational and positional estimates.

C. Real World Experiments

1) Testing Platforms and Localization Environment: To
evaluate the performance of the proposed method, we also
conducted experiments by using data sets from our customized
sensor platform. Fig. 4 shows that our sensor platform consists
of a stereo camera system with ON AR0144 imaging sensors,
an array of 9 ST LSM6DSOX IMUs (see Fig. 1) and a RTK-
GPS system. In our experiment, we chose the virtual IMU
frame identical to the central IMU in the IMU array.

In our experiment, the multiple IMUs are synchronized
by hardware design using IMUs’ interrupt signals [36], and
performed extrinsic calibration between IMUs offline via [4].
The camera intrinsics and camera to IMU extrinsics were also
calibrated offline via [4]. Note that although both temporal
and spatial parameters between sensors can be estimated
online [37], [38], reducing these uncertainties beforehand is
beneficial for the overall performance.

To test the proposed method in different environments, we
collected three datasets in indoor environments and three data
sets on urban streets. During the data collection, images were
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Fig. 3. Localization errors in real-world experiments. Three methods are tested: The original VIO algorithm using a single IMU, the modified VIO algorithm
using the proposed method with 9 IMUs (method V, V = Virtual), and [20] with 9 IMUs (method C, C = Centralized). The left plot represents the final drifts
in indoor tests, and the right plot denotes the positional RMS errors in urban street tests.

Fig. 4. Sensor platform in our tests. GPS antenna is marked by a blue
rectangle, the stereo camera system by a green one and the IMU array board
by a red one. Left figure: The front view. Right figure: The side view.

recorded at 10Hz with 640 × 400 and 1280 × 800 pixel
resolutions in indoor and outdoor environments respectively.
Measurements from all IMUs were at 200Hz. For indoor data
sets, the trajectory lengths are around 50 to 100 meters. For
the urban street data sets, the lengths are about 3.5km. For
the tests on urban streets, we also recorded the poses from
the RTK-GPS, which are used as ground truth for computing
RMS errors for different algorithms. In indoor environments,
due to lack of precise ground truth, we started and stopped the
motion of our sensor platform at exactly the same location, to
enable computing the final drift as the error metric. Similar to
the simulation tests, we here also implemented VIO algorithms
by using different number of IMUs as well as the competing
algorithm [20].

2) Qualitative Results: We here report the qualitative re-
sults of all methods tested in both indoor and urban street
tests, which are shown in Fig. 3. For all datasets, the proposed
method consistently outperforms the original VIO algorithm
with a single IMU. In fact, the average error reduction is about
31%, which is significant and can be used as guidance when
designing hardware sensor platform and software package
for performing high-precision localization. In addition, when
compared against [20], the proposed method yields similar
localization accuracy, since both methods utilize measurement
information from multiple IMUs without non-probabilistic
approximations.

TABLE II
AVERAGE ACCURACY IMPROVEMENT PER COMPUTATIONAL COST,

COMPUTED BY EQ. 49.

Num. Seq 1 2 3

Eckenhoff et al. [20] 0.2545 0.1186 0.2865
Proposed 0.6894 0.3795 0.8198

Moreover, the computational efficiency of the proposed
method and [20] is evaluated with the following metric:

κ=
Err. in one-IMU method− Err. in testing method

Time used per update cycle in testing method
(49)

In fact, κ represents the gain in localization accuracy per
computational cost, and the results are shown in Table II. The
results demonstrate that, the proposed method is significantly
more efficient when seeking for accuracy gain. In addition,
the average time per update for tested algorithms is also given
by Table III, which shows that the computational cost of the
proposed method is almost identical to that of the single-IMU
method and that of [20] is noticeably higher. This verifies our
theoretical analysis that since [20] models all IMUs’ poses in
the state vector of an estimator, the computational cost grows
significantly along with the number of IMU. By contrast,
in our method, since we generate data for a virtual IMU
before performing update (with linear computational cost in
the number of IMU, and constant cost in the number of VIO
keyframes), the computational cost almost keeps unchanged.

It is also interesting to point out that the accuracy gain
achieved in our test is similar to that of [21], which uses an 11-
cm baseline stereo vision system. Compared to stereo solution,
our method is of lower sensor cost and computational cost.
Moreover, the performance of stereo based algorithms will de-
grade once stereo baseline becomes shorter [16]. The feasible
baseline for various applications, e.g., mobile devices, will be
shorter than 11cm, and the proposed method will become even
more preferred in those cases. Moreover, compared to using
a single IMU with higher precision, the proposed method has
comparable localization accuracy yet lower sensor cost.

VII. CONCLUSIONS
In this paper, we present a lightweight and accurate local-

ization algorithm by using multiple inertial measurement units
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TABLE III
TIME (MSEC) PER UPDATE FOR COMPETING ALGORITHMS

Num. Seq 1 2 3

Single-IMU (msec) 9.9380 9.4280 10.6717
Eckenhoff et al. [20] (msec) 39.5155 40.9543 42.0586
Proposed (msec) 10.0381 9.8014 11.6740

and exteroceptive sensors. Specifically, we propose a method
of optimally generating a virtual IMU from the measurements
of multiple IMUs, which is followed by closed-form derivation
of virtual IMU propagation equations for sensor fusion. By
integrating the proposed method into a VIO algorithm, we
show that it significantly improves the localization accuracy
and outperforms competing algorithms by wide margins.

APPENDIX

We here provide detailed derivation for Ψ and Ξ:

Ψ=
∂S(ωmV−V ω)

∂bgV
, Ξ=

∂S(ωmV−V ω)

∂ngV
(50)

To start with, we write ζ̂ from Eq. 39 as:

ζ̂ '−bb̂gV c
2
+bωmV cbb̂gV c+bb̂gV cbωmV c (51)

Subtracting Eq. 39 from Eq. 51 leads to

ζ̃ = ζ − ζ̂ '−bb̂gV cbb̃gV c−bb̃gV cbb̂gV c+bωmV cbb̃gV c
+bngV cbωmV c−bb̂gV cb ngV c+ bb̃gV cbωmV c
+bωmV cbngV c−b ngV cbb̂gV c
= bV ω̂cbb̃gV c+bb̃gV cbV ω̂c+bV ω̂cbngV c+bngV cbV ω̂c

Therefore, for any vector y, we have

ζ̃y=−
(
bV ω̂cbyc+bbV ω̂cyc

)
b̃gV−

(
bV ω̂cbyc+bbV ω̂cyc

)
ngV .

As a result,

S(ωmV − V ω) =

[
ARV ζ

V pA
BRV ζ

V pB

]
=

[
ARV (ζ̂ + ζ̃)V pA
BRV (ζ̂ + ζ̃)V pB

]
=

[
ARV ζ̂

V pA
BRV ζ̂

V pB

]
+ Ψb̃gV + ΞngV (52)

where

Ψ = Ξ =

[
ARV

(
−bV ω̂cbV pAc − bbV ω̂cV pAc

)
BRV

(
−bV ω̂cbV pBc − bbV ω̂cV pBc

)
.

]
(53)

This completes our derivation.
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