
National Technical University of Athens

School of Mechanical Engineering

Computationally E�cient Harmonic-based
Reactive Exploration

Author:

Panagiotis Grontas

Supervisor:

Prof. Kostas J. Kyriakopoulos

A thesis submitted for the degree of

Diploma in Mechanical Engineering

Abstract

Although Harmonic Potential Fields constitute a powerful tool for tackling the autonomous
robot exploration problem, yet their applicability is limited in practice by the heavy com-
putational load involved in solving the Laplace equation in real time. In this work, we
propose a computationally e�cient exploration scheme employing a Fast Multipole accel-
erated Boundary Element Method scheme, that enjoys both linear complexity w.r.t. the
boundary's size as well as linear memory requirements. Furthermore, we devise an adap-
tive control law for the speci�ed boundary conditions that allows us to tune the robot's
behavior without a�ecting the inherent safety and convergence properties of the underlying
potential �eld. Finally, we validate the performance of the proposed exploration scheme
through extensive simulations in realistic environments.

i

Περίληψη

Παρά το γεγονός ότι τα αρμονικά δυναμικά πεδία συνιστούν ένα ισχύρο εργαλείο για την αν-

τιμετώπιση του προβλήματος της αυτόνομης ρομποτικής εξερεύνησης, η εφαρμοσιμότητα τους

περιορίζεται στην πράξη από το υψηλό υπολογιστικό κόστος που απαιτείται για την επίλυση

της εξίσωσης Laplace σε πραγματικό χρόνο. Στην παρούσα εργασία, προτείνουμε μια υπ-
ολογιστικά αποδοτική μέθοδο εξερεύνησης η οποία βασίζεται στην Fast Multipole acceler-
ated Boundary Element Method, η οποια χαίρει γραμμικής πολυπλοκότητας αναφορικά με το
μέγεθος του συνόρου καθώς και γραμμικές απαιτήσεις μνήμης. Επιπροσθέτως, σχεδιάζουμε

έναν προσαρμοστικό νόμο ελέγχου για τις επιβαλλόμενες συνοριακές συνθήκες ο οποίος μας

επιτρέπει να ρυθμίσουμε την συμπεριφορά του ρομπότ χωρίς να επηρεάζονται οι εγγενείς

ιδιότητες ασφάλειας και σύγκλισης του υποκείμενου δυναμικού πεδίου. Τέλος, επιβεβαιώνουμε

τις επιδόσεις του προτεινόμενου αλγορίθμου μέσω εκτενών προσομοιώσεων σε ρεαλιστικά

περιβάλλοντα.

ii

Acknowledgements

Firstly, I would like to thank Prof. Kostas Kyriakopoulos for giving me the opportunity to
pursue my diploma thesis at the Control Systems Lab. His commitment to detail and math-
ematical rigor throughout this thesis, and delivered courses, has inspired me to embrace
such a mindset myself. Further, I would like to thank him for many insightful conversations
and advice regarding career and future choices.

I want to acknowledge my collaborators and lab-mates Panagiotis Vlantis, Charalampos
Bechlioulis and Constantinos Vrohidis for the long hours spent in the lab. Speci�cally, I
want to thank Panagiotis Vlantis for his invaluable support, ideas, directions, for helping
me identify mistakes and providing ample guidance. Next, I want to thank Charalampos
Bechlioulis for his technical advice and encouragement. Last but not least, I want to thank
Constantinos Vrohidis for assisting in a number of issues regarding this thesis, and for the
fruitful, and fruitless, mathematical and philosophical conversations.

Finally, I want to thank my family and friends for their motivation and wholehearted
support throughout my studies.

iii

Contents

1 Introduction 1

1.1 Problem Statement . 1
1.2 Motivation . 2
1.3 Literature Review . 3
1.4 Our Approach . 4
1.5 Thesis Structure . 5

2 Problem Formulation 7

2.1 Mathematical Notation . 7
2.2 Exploration Model . 7
2.3 Evolution of the Boundary . 9
2.4 Occupancy Grid Mapping . 10

3 Technical Solution 12

3.1 Control Design . 12
3.1.1 Fast Multipole Boundary Element Method 13
3.1.2 Velocity Control Law . 14
3.1.3 Adaptive Law . 14

3.2 Stability Analysis . 17
3.2.1 Complementary Proofs . 21

3.3 Analytical Comparison with Related Literature 22

4 Implementation 26

4.1 Mobile Robot Simulation in VREP . 26
4.2 Preprocessing of Sensor Measurements . 27
4.3 Occupancy Grid Mapping . 28
4.4 Boundary Extraction . 32
4.5 Boundary Value Projection . 35
4.6 Fast Multipole Boundary Element Method 38

4.6.1 Algorithm . 39
4.6.2 Numerical Results . 41

iv

CONTENTS

5 Results 45

5.1 Hardware Setup . 45
5.2 Simulation Results . 46

5.2.1 Controller Parameters . 46
5.2.2 Environments . 46
5.2.3 Generated Trajectories and Maps . 48

5.3 Computational Comparison with Related Literature 52

6 Discussion 55

6.1 Assessment . 55
6.2 Di�culties . 55
6.3 Future Directions . 56

Bibliography 57

v

List of Figures

1.1 The robot's position is shown as a red circle while, the yellow shaded area
corresponds to the robot's sensing region. 2

1.2 Candidate future robot positions and their anticipated utility, as computed
by the algorithm described in [1]. 3

1.3 A snapshot of the generated occupancy grid map and the vector �eld navi-
gating the robot, on top of the actual workspace. 5

2.1 This �gure illustrates the di�erent components of the exploration process.
The blue and gray regions correspond to E and S respectively, while the
yellow lines represent ∂E , and the di�erent parts comprising the boundary
are annotated appropriately. The unexplored parts of the workspace are
shown in white. 8

2.2 The expansion of the boundary and the correspondence of boundary regions
before and after the expansion. The robot's motion, and the consequent
motion of the sensors, induces the inclusion of the yellow area in the explored
region (blue) and, also, causes the region ∂EE to end up in ∂E ′E 9

2.3 The actual and the contracted explored region for a disk robot, with radius
r, shown in blue and red respectively. 10

3.1 The discretization of boundary values using the control points k̂i on the
boundary points qi. The blue line and dots represent ∂E and the boundary
points qi, respectively. The green line illustrates k, and the control points k̂i
are shown as green circles. 13

3.2 The plot of Sa(x) for di�erent parameters a. Note that, for a > 9/8 the
function's value is smaller than its argument. 15

3.3 The negated gradient vector �eld induced by the mixed boundary conditions
employed in [2]. Unexplored and occupied space is shown in red and gray,
respectively. Notice that the vector �eld tends to drive the robot near obstacles. 23

vi

LIST OF FIGURES

3.4 The negated gradient vector �eld induced by our control law. Unexplored
and occupied space is shown in gray and black, respectively. We observe
that neither the gradient, nor the normal derivative on obstacles vanish in
the robot's vicinity. Note: The reason some vectors are pointed towards
obstacles is that φ is not safe (but will become eventually, as proven previously). 24

4.1 A subset of the workspaces used in the simulations. 27
4.2 The "Dummy" robot represented as a sphere with the proximity sensor rays

attached on it. Yellow-colored rays indicate the presence of an obstacle within
the range of a particular ray. 28

4.3 Transformation of sensor measurements from the ray's coordinate frame to
the absolute coordinate frame. 29

4.4 A representative trajectory of the robot and the sensor readings collected
along it. 30

4.5 The grid approximation of a sensor ray using Bresenham's algorithm. Cells
of yellow color are identi�ed as free, while the red-colored cell is indicated as
occupied. 31

4.6 Four instances of the generated occupancy grid map along a robot's trajec-
tory. White, black and gray cells represented free, occupied and unknown
space respectively. The robot's trajectory is shown as a continuous blue line. 32

4.7 The yellow cirle indicates free cells that do not belong to to connected region
of the robot's workspace. 34

4.8 The occupancy grid map and the resulting boundary of the explored region
∂E , depicted as a green line. 35

4.9 The expansion of the explored region with the subsequent change in the
boundary. The previous explored region is shown in blue while the area
added in the current time step in yellow. The dashed line illustrates the new
boundary region. 36

4.10 An example of a boundary arc that disappears after being expanded. The
elliptical inner boundary will altogether cease to exist once the yellow region
is incorporated in the explored region (blue). 37

4.11 Identi�cation of the correspondence between previous and new changed re-
gions. The former is depicted with white and the latter with black dashed
lines. The endpoints used to perform the matching are represented as yellow
circles. 37

4.12 The piece-wise linear approximation of the boundary values distribution on
the previous boundary (blue continuous), as well as the sampled points of
the new boundary (red asterisks). 38

4.13 Applying the boundary value projection algorithm to determine the bound-
ary values as the geometry of the boundary changes. The previous boundary
is shown in red while the new one in blue. 39

vii

LIST OF FIGURES

4.14 The elliptic domain test case. 42
4.15 The rectangular domain test case. 43
4.16 The annular region domain test case. 44

5.1 The VREP environments used for the simulation results. 47
5.2 Generated occupancy grid map and the corresponding robot trajectory for

the AP hill environment. The initial and �nal position of the robot are shown
as a square and circle respectively. The yellow shaded area corresponds to
the sensing region in the �nal position. (Dimensions: 35m× 18m) 48

5.3 Augmentation of the obstacles to achieve robustness of boundary extraction. 49
5.4 Generated occupancy grid map and the corresponding robot trajectory for

the Claxton CS Building. (Dimensions: 34m× 43m) 50
5.5 Generated occupancy grid map and the corresponding robot trajectory for

the synthetic o�ce environments. (Dimensions: 16m× 11m) 50
5.6 Simulation results without the inclusion of k′2 in (3.7). 51
5.7 Comparison between our control law and the BayOpt algorithm, in the syn-

thetic maze map presented in [3]. 54

viii

Chapter 1

Introduction

1.1 Problem Statement

The autonomous robotic exploration problem constitutes the main topic of this thesis. The
exploration problem consists of a mobile robot, equipped with range sensors allowing it to
perceive a subset of its surroundings, that navigates an initially unknown environment with
the purpose of incrementally mapping it.

Although the motion of mobile robots is usually subjected to kinematic constraints, this
nonholonomic aspect of the exploration problem is typically neglected. Thus, it is assumed
that we are capable of directly controlling the velocity of the robot. Moreover, in this
work we consider that the robot can localize itself perfectly inside its environment. This
assumption is not unrealistic as, in general, the utilization of appropriate simultaneous
localization and mapping (SLAM) algorithms provides reliable estimates of the robot's
con�guration.

A variety of range sensors can be employed for the exploration task, such as laser, ultra-
sonic or infrared, each with its corresponding advantages and shortcomings. Nevertheless,
all types of proximity sensors allow the robot to determine the position of obstacles within
the range of the sensor. The robot's sensing region is typically a disk, for a 360o angle
of view, or a circular sector, corresponding to a limited angle of view. We note that the
robot's perceived space is subject to line-of-sight constraints or occlusions, i.e., the sensors
cannot observe areas behind obstacles (see Figure 1.1). Overall, as the robot traverses its
environment, the onboard range sensors enable it to determine which regions are occupied
by obstacles and which ones are free.

The ultimate goal of autonomous exploration is to devise an algorithm capable of nav-
igating a robot in order to map the entirety of its environment, without any human input.
The partial map constructed by the robot while exploring can be employed to identify unex-
plored frontiers, i.e., free regions adjacent to unobserved areas, that will allow acquisition of
new information. Furthermore, obstacle avoidance should be maintained in order to ensure

1

CHAPTER 1. INTRODUCTION

Figure 1.1: The robot's position is shown as a red circle while, the yellow shaded area
corresponds to the robot's sensing region.

that the robot remains safe throughout its trajectory. Due to the inherent reactive nature
of this problem, arising from the partial knowledge of the environment, it is imperative for
exploration schemes to allow for rapid integration of accumulated information, to satisfy
the aforementioned safety requirements, as well as to achieve e�cient navigation. Hence,
computational e�ciency is a critical component of any decent exploration algorithm.

1.2 Motivation

The availability of accurate representations of the environment constitutes a necessity for
the robust and safe execution of a variety of robotic tasks. In particular, path and motion
planning algorithms require that a map of the robot's workspace is provided. Although,
in some cases, such information can be found in the architectural blueprints of a building,
the latter tend to be inaccurate, as they do not account for human-induced changes of the
�oorplans, such as furniture or o�ces. Besides, even if these features were incorporated in
preexisting maps, they would still remain unreliable because any environment populated
by humans is highly dynamic, thus, necessitating frequent updates and re�nements of its
map.

The aforementioned requirements can be satis�ed by employing autonomous robotic
exploration schemes to generate faithful maps, without relying on a human operator to
manually navigate the robot. The autonomy involved is bene�cial, since providing human
input may be costly, tedious and, in certain instances, unavailable. In particular, explo-
ration algorithms are well-suited for environments that are unreachable by humans, such as

2

CHAPTER 1. INTRODUCTION

areas which are hazardous or deprived of adequate wireless communication coverage, hence,
restricting the use of teleoperation.

Apart from map construction, robotic exploration can also be applied to di�erent oc-
casions. For example, exploring an initially unknown environment is equivalent to the task
of reaching a goal con�guration without any prior knowledge or any real-time indication,
e.g. by sensors, regarding its location. A particular instance of the previous problem are
search-and-rescue operations.

1.3 Literature Review

Several methodologies have been proposed in the related literature to address the explo-
ration problem. Speci�cally, a well-studied approach focuses on determining future robot
con�gurations, and corresponding paths to reach them, that potentially maximize informa-
tion gain. To that end, a number of candidate points are generated, in a manner similar to
frontier-based methods [4], and the predicted information gain associated with each point
is approximated by means of an information-theoretic utility function. Typically, utility
functions incorporate three measures to evaluate candidate vantage points:

� Map entropy, which is associated with uncertainty in the map, thus driving the robot
to explore,

� Localization, that captures the uncertainty regarding the position of the robot, as a
consequence of odometric errors, and

� Cost, described by the distance from the robot to each goal con�guration.

In [1] a utility function based on entropy reduction of a Rao Blackwellized Particle Filter
is used to balance between exploration and loop-closing. The generated candidate con-
�gurations using the previous approach, as well as their expected utility are shown in
Figure 1.2. Charrow et al. [5] employ the Cauchy-Schwarz quadratic mutual information to

Figure 1.2: Candidate future robot positions and their anticipated utility, as computed by
the algorithm described in [1].

3

CHAPTER 1. INTRODUCTION

approximate the information gain and, also, they develop an approach that accounts for the
dependence between distinct sensor readings and apply their algorithm to both ground and
aerial vehicles. In a recent work [3], the authors trained a Gaussian Process using Bayesian
Optimization to estimate the Mutual Information of candidate vantage points. An in-depth
comparison of such methodologies can be found in [6], [7].

Another popular class of algorithms utilizes arti�cial potential �elds to safely guide the
robot towards the unexplored regions of the workspace. Generally, arti�cial potential �elds
su�er from the existence of spurious local minima that may lead the robot in undesired con-
�gurations. On the other hand, harmonic potential �elds (HPFs) are free of local unwanted
attractors in their domain's interior by design. In [8], the authors use HPFs with Dirich-
let boundary conditions calculated through relaxation methods to explore 2D workspaces.
The imposed boundary conditions maintain a uniform high (resp. low) value on obstacles
(resp. unexplored frontier), thus inducing an orthogonal gradient on the boundary. How-
ever, this approach generally exhibits large �at areas of the potential, thus, resulting in
very small gradients. Shade et al. [2] employ HPFs to navigate a mobile robot equipped
with a stereo camera to explore a 3D environment, represented as an octree. Nevertheless,
the construction of the underlying harmonic potential scales poorly w.r.t. the domain's size.
Finally, in [9], the computational cost is mitigated by computing the HPF only on a local
window around the robot, whereas the Full Multigrid Method was exploited in [10] for path
planning.

It should be noted though, that in all aforementioned HPF-based works the potential
was calculated using �nite di�erence schemes, which su�er from the need to discretize an
entire 2D domain. Moreover, as stated in [6], only one type of sources and sinks can be
utilized, thus preventing the prescription of relative strength among boundaries.

1.4 Our Approach

In this work, we propose a controller based on HPFs for navigating a mobile robot, to
explore an initially unknown, compact workspace, employing the Fast Multipole accelerated
Boundary Element Method (FMBEM) [11], for the construction and online update of the
HPF used for navigation, that yields linear complexity in terms of computational e�ort
and required memory. We remark that, to the best of the authors' knowledge, this is
the �rst time that FMBEM is employed in a motion planning scheme and provides a
substantial improvement in the scalability of HPF-based approaches. Furthermore, we
impose Neumann boundary conditions for the solution of the Laplace equation, for which
we design suitable adaptive laws, similarly to [12], thus enabling us to improve the robot's
behavior, up to a certain degree, without compromising the inherent safety and convergence
properties of the underlying HPF.

Next, we present the main contributions of the proposed control scheme:

1. We leverage a number of appealing properties associated with FMBEM. Firstly, the

4

CHAPTER 1. INTRODUCTION

linear complexity and memory requirements allow us to handle large domains without
degradation of the algorithm's performance. Secondly, the use of the Boundary Ele-
ment Method requires only a discretization of the domain's boundary which, generally,
is more sparse and straightforward than discretizing the entire workspace. Finally,
the potential and gradient of the HPF can be readily evaluated at any interior point
of the domain employing the FMBEM, as opposed to �nite di�erences approaches
that obtain these values solely on nodal points.

2. The adaptive law for the boundary conditions enables us to prescribe, up to a certain
degree, a speci�c robot behavior. In the related literature, the common choice of
uniform Dirichlet boundary conditions along obstacles and frontiers is restrictive, as
it is unable to impose preferences among boundary regions.

3. We provide a rigorous analysis and proofs of our controller's safety and convergence
properties, that guarantee the solution of the exploration problem.

The basic idea of using HPFs to guide robotic exploration is shown in Figure 1.3. A vector
�eld is generated on the explored part of the workspace (shown in white), leading the robot
towards the unexplored environment (gray) while avoiding obstacles (black).

Figure 1.3: A snapshot of the generated occupancy grid map and the vector �eld navigating
the robot, on top of the actual workspace.

1.5 Thesis Structure

The remainder of this thesis is organized as follows. In Chapter 2 we formulate the ex-
ploration problem in formal mathematical terminology. In Chapter 3 we brie�y introduce
the Fast Multipole Method, we describe our proposed controller and analyze its stability

5

CHAPTER 1. INTRODUCTION

properties, while in Chapter 4 we discuss the implementation of our control scheme. In
Chapter 5 we demonstrate the performance of our controller through extensive simulation
studies and compare the obtained results with the existing literature. Finally, in Chapter 6
we conclude by discussing the degree up to which the set goals were attained, the problems
and di�culties that arose in the design process and propose future research directions.

6

Chapter 2

Problem Formulation

In this chapter we formally state the exploration problem. Particularly, in Section 2.1 we
introduce the used mathematical notation, and in Section 2.2 we de�ne the fundamental
notions and components of the problem and discuss the constraints imposed on the robot's
motion and sensing capabilities. In Section 2.3, we describe how the accumulated knowledge
about the environment evolves during the execution of the task and, also, we explicitly
state the requirements and goals of exploration. Finally, the method employed for the
representation of the incrementally constructed map is presented in Section 2.4.

2.1 Mathematical Notation

We use ‖v‖ =
√
v2

1 + v2
2 + . . .+ v2

n to denote the euclidean norm of the vector v ∈ Rn. We,
also, de�ne the disk centered at p ∈ R2 with radius r > 0 as B(p, r) = {q ∈ R2 : ‖p−q‖ ≤ r}.
Given two sets A,B we denote the interior, boundary, and the di�erence of B from A as
intA, ∂A,B \ A, respectively. We use ∇pφ,∇2

pφ to denote the gradient and the Laplace
operator of the scalar φ w.r.t. the vector p.

2.2 Exploration Model

Let W be a compact and connected subset of R2, referred herein as the workspace, and let
Wf , intW. We consider a point robot which is allowed to move inside Wf , whose motion
obeys the single integrator kinematic model:

ṗ = u (2.1)

where p = [x, y]T ∈ R2 denotes the robot's position and u ∈ R2 denotes the corresponding
control input vector. We assume that the robot is equipped with sensors that allow it to
perceive a subset of its surroundings given by:

S(p) = {q ∈ W : q ∈ B(p, r) ∧ L(p, q) ⊆ W} (2.2)

7

CHAPTER 2. PROBLEM FORMULATION

with B(p, r) denoting the disk centered at p with radius r > 0 (modeling sensor range
constraints) and L(p, q) denoting the line segment connecting the two points p and q in-
clusively (corresponding to line-of-sight sensor constraints). Also, we de�ne P(ti, tf) as the
path traversed by the robot during the time interval [ti, tf]; for brevity, when ti = 0 and
tf > 0, we will write P(tf) instead of P(0, tf). Given a continuous robot path P ⊂ Wf , we
de�ne the explored region of W as follows:

E(P) = ∪p∈PS(p) (2.3)

Considering the boundary of the explored region at some time instance, we note that
∂E = ∂EF ∪ ∂EO, with ∂EF and ∂EO belonging to the robot's free space and workspace
boundaries, i.e., ∂EF ⊂ Wf and ∂EO ⊆ ∂W, respectively. In general, each of ∂EF and ∂EO
consists of zero or more disjoint arcs, i.e.: ∂EF = ∪i∈IF ∂EF i and ∂EO = ∪i∈IO∂EOi with
IF = {1, 2, . . . , NF } and IO = {1, 2, . . . , NO} being an indexing of the respective set. We
additionally de�ne a parametrization σ : [0, 1] 7→ ∂E of the explored region's boundary.
To clarify the notions introduced in this section, we provide an intuitive demonstration in
Figure 2.1.

Figure 2.1: This �gure illustrates the di�erent components of the exploration process. The
blue and gray regions correspond to E and S respectively, while the yellow lines represent
∂E , and the di�erent parts comprising the boundary are annotated appropriately. The
unexplored parts of the workspace are shown in white.

8

CHAPTER 2. PROBLEM FORMULATION

2.3 Evolution of the Boundary

We provide an insight on the evolution of ∂E , along the robot's trajectory. Firstly, we note
that any point q ∈ ∂EF that enters the robot's sensing region becomes instantly part of
intE . In this manner, as the robot approaches ∂EF , the latter expands, i.e., the area of
E increases. On the other hand, occupied boundary points will remain on the boundary,
since it holds that if q ∈ ∂W∩S then q ∈ ∂S (assuming that the sensors provide consistent
measurements and the workspace is static). In this context, we will also elaborate on some
properties of σ. Speci�cally, we de�ne σ in such a way that points q ∈ ∂EO, are associated
with a constant parametrization index iσ ∈ [0, 1]. Conversely, assume that ∂EE ⊆ ∂EF is
a set that undergoes expansion under which ∂EE ends up in ∂E ′E . Our parametrization
ensures that the two aforementioned sets are mapped in the same part of the domain of σ,
i.e., the sets σ−1(∂EE), σ−1(∂E ′E) are identical. This procedure, as well as the expansion of
the boundary are visualized in Figure 2.2.

Figure 2.2: The expansion of the boundary and the correspondence of boundary regions
before and after the expansion. The robot's motion, and the consequent motion of the
sensors, induces the inclusion of the yellow area in the explored region (blue) and, also,
causes the region ∂EE to end up in ∂E ′E .

In this work, our goal is to design a control law u = fp(p, t, E) such that there exists a
�nite time instant T > 0 for which:

E(P(t)) =W, ∀t ≥ T . (2.4)

In addition, ensuring the safety of the robot's trajectory throughout the exploration is of

9

CHAPTER 2. PROBLEM FORMULATION

paramount importance. The exploration scheme is safe if the following condition is satis�ed:

p(t) ∈ Wf , ∀t ≥ 0 . (2.5)

Remark 1. The proposed algorithm can be readily applied for a disk robot through contrac-
tion, in the Minkowski di�erence sense, of E by the robot's radius (see Figure 2.3). The
actual, non-contracted map can be retrieved by simply storing the sensor readings and the
robot's trajectory; but, it might di�er fromW because some of its regions may be unreachable
by the disk robot, e.g. due to narrow doorways.

Figure 2.3: The actual and the contracted explored region for a disk robot, with radius r,
shown in blue and red respectively.

2.4 Occupancy Grid Mapping

The classi�cation of boundary points as occupied or free is achieved using an occupancy
grid map representation [13]. Particularly, a grid is embedded in the explored region E ,
consisting of cells mi centered at ci = [cx,i, cy,i]

T , i ∈ IG with IG = {1, 2, . . . , NG}. Every
grid cell is assigned a probability of occupancy, denoted Pr(mi), which is inherited by any
boundary points lying inside the cell, i.e. for some q ∈ E , Pr(q) = Pr(m(q)) where

m(q) = mi, i ∈ IG : ‖cx,i − qx‖ ≤
mr

2
∧ ‖cy,i − qy‖ ≤

mr

2
(2.6)

10

CHAPTER 2. PROBLEM FORMULATION

with mr denoting the grid resolution. Given Pr(q), q ∈ ∂E we can formally de�ne the
occupied boundary as follows:

∂EO = {q ∈ ∂E : Pr(q) > α} (2.7)

where the constant α ∈ (0.5, 1) de�nes a threshold for classifying a point as occupied.
Obviously, it holds that ∂EF = ∂E \ ∂EO.

We denote Pr = [Pr(m1),Pr(m2), . . . ,Pr(mNG
)]T the vector containing the probability

of each cell in the grid. Furthermore, Pr(mi) is updated through the following equation

Ṗr(mi) = fPr(p, ci) (2.8)

where fPr is the inverse sensor model. We omit an explicit de�nition of fPr, as it is beyond
the scope of this thesis, but we note that for a variety of reasonable choices (see Chapter 9
in [14]), fPr is a piece-wise continuous function.

11

Chapter 3

Technical Solution

This chapter elaborates on the proposed control scheme and constitutes the main contri-
bution of this thesis. Speci�cally, in Section 3.1 we describe our controller and its 3 major
components, i.e., the Fast Multipole accelerated Boundary Element Method, the Velocity
Control Law, and the Adaptive Law for the imposed boundary conditions. The safety, con-
vergence and stability properties of our control scheme are analyzed in Section 3.2. Finally,
in Section 3.3 an analytical comparison between our methodology and prior approaches in
the related literature is provided.

3.1 Control Design

The main idea is to address the exploration problem by designing a control law u =
fp(p, t, E), based on a HPF φ(p, t) de�ned within the explored region E , such that ∂EF
is rendered attractive and ∂EO is rendered repulsive. Such a potential �eld φ(p, t) can be
constructed by solving the Laplace's equation

∇2
pφ(p) = 0, ∀p ∈ E (3.1)

subject to Neumann boundary conditions

∂φ

∂n
= k

(
σ−1(q), t

)
, ∀q ∈ ∂E (3.2)

where ∇2 denotes the Laplace operator, and n denotes the exterior normal at the corre-
sponding boundary position. E�ectively, k

(
σ−1(q), t

)
speci�es how attractive (k < 0) or

repulsive (k > 0) a point q ∈ ∂E should be. In order for the Neumann problem to admit a
solution, the boundary conditions should satisfy the constraint

∫
∂E kds = 0. Thus, we refer

to a set of boundary conditions satisfying the previous constraint as compatible. Notice that
solutions of the Laplace equation, i.e., HPFs, bear properties that render them appealing
for navigation. Particularly, the Maximum-Minimum Principle dictates that local extrema

12

CHAPTER 3. TECHNICAL SOLUTION

can only be found in the domain's boundary, e�ectively rendering all critical points of φ in
intE saddles.

To overcome the implications following the fact that the aforementioned dynamical
system is in�nite-dimensional, we design boundary conditions such that k = k(σ−1(q), t; k̂)
where k̂ is a �nite-dimensional vector of parameters, referred to as control points, that
are used for adjusting k. Particularly, the i-th component of k̂, denoted k̂i, corresponds
to the value of the distribution k at a point qi on the boundary of E , with i ∈ ICP =
{1, 2, . . . , NCP }. For any boundary point q, with q 6= qi, we choose k

(
σ−1(q), t

)
as a

linear combination of nearby control point values. The discretization scheme is illustrated
in Figure 3.1. In order to maintain a �ne discretization of the boundary, the number of
control points NCP varies proportionally to the length of ∂E . In addition, we equip the
speci�ed boundary conditions k̂ with appropriately designed adaptive laws, such that the
attractiveness of the explored boundary is as speci�ed above and no additional (locally)
stable equilibria appear in intE .

Figure 3.1: The discretization of boundary values using the control points k̂i on the bound-
ary points qi. The blue line and dots represent ∂E and the boundary points qi, respectively.
The green line illustrates k, and the control points k̂i are shown as green circles.

3.1.1 Fast Multipole Boundary Element Method

In this subsection, we brie�y describe the FMBEM and its properties (for more details
refer to [11], [15]). The main idea of FMBEM is to reduce the computational cost of the
conventional BEM, which is O(n2) where n is the number of boundary elements used for

13

CHAPTER 3. TECHNICAL SOLUTION

approximating the domain's boundary, by computing approximate solutions of the corre-
sponding BVP with a speci�ed error. Hence, a hierarchical subdivision of the domain into
cells is derived via quadtree decomposition and the interaction between elements residing
in "distant" cells is approximated using multipole expansion. This approach enables us
to avoid the analytical computation of every pairwise element interaction at the expense
of a bounded approximation error, thus, reducing the computational complexity to O(n).
Furthermore, the need to store the dense and non-symmetric matrix involved in the con-
ventional BEM is circumvented in FMBEM by employing an iterative solver, e.g., GMRES
[16], consequently achieving O(n) memory requirements.

3.1.2 Velocity Control Law

We equip our robot with the following control law for its velocity:

u = fp(p, k̂) = −Kus(p) ∇pφ(p, k̂) , (3.3)

where Ku is a scaling constant and s(p) is a function that reduces the velocity magnitude
as the robot approaches the boundary. Concretely, we de�ne

s(p) = SR1 (d(p, E)) (3.4)

where d(p, E) = minq∈∂E ‖p − q‖ is the minimum distance between the robot and the
boundary, and Sa is a C

1 bump function:

Sa(x) =


1, x > a

3(xa)2 − 2(xa)3, 0 ≤ x ≤ a
0, x < 0

. (3.5)

Plots of Sa(x) for a selection of parameters are shown in Figure 3.2. The positive constant
R1 serves as a distance threshold, slowing down the robot when it is located within distance
R1 of the boundary.

3.1.3 Adaptive Law

We now present the adaptive laws for the prescribed boundary values k̂ which are given by:

˙̂
k = fb(p, k̂,Pr) = cµ(k̂t − k̂) + be(k̂t − k̂) , (3.6)

where c, µ, k̂t, be are functions to be de�ned later. Essentially, the function k̂t acts as a
reference value for the corresponding control parameter whereas µ is used for adjusting the
convergence rate. Finally, c renders the �rst term of (3.6) null when the robot is near a
critical point of φ and be ensures that the trajectories of the robot remain safe at all time.

14

CHAPTER 3. TECHNICAL SOLUTION

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 3.2: The plot of Sa(x) for di�erent parameters a. Note that, for a > 9/8 the
function's value is smaller than its argument.

The desired values k̂t are de�ned in terms of the auxiliary function k′ which is given by:

k′ = k′1 · k′2 (3.7)

where

k′1(q) =

{
S1−α(Pr(m(q))− α), Pr(m(q)) ≥ α
−Sα(α− Pr(m(q)), Pr(m(q)) < α

(3.8)

k′2(q) = e−
4·‖p−q‖

r (3.9)

The purpose of k′1 is to increase (resp. decrease) the "attractiveness" of the corresponding
boundary point proportionally to the probability of it being part of the free boundary (resp.
being occupied by an obstacle). Boundary points that are close to the robot are favored
through k′2. The purpose of k′2 is to render small areas in the vicinity of the robot more
attractive than larger areas far away, e.g. an unexplored corner of the room the robot is
currently in, thus sparing the robot from returning back at a later time.

Moreover, to ensure that the desired boundary conditions are compatible, we �rst de�ne
the sets ∂Ep = {q ∈ ∂E : k′(q) ≥ 0}, ∂En = {q ∈ ∂E : k′(q) < 0} and the integral of
boundary values on each set Ii =

∫
∂Ei k

′(s)ds, i ∈ {p, n}. Then, the desired boundary
conditions are chosen as follows:

k̂t,i =
k̄

k′m · I(qi)
· k′(qi), ∀i ∈ ICP (3.10)

15

CHAPTER 3. TECHNICAL SOLUTION

where k̄ are constant absolute upper bounds for k̂t,

I(q) =

{
Ip, q ∈ ∂Ep
−In, q ∈ ∂En

(3.11)

scales k′ according to which set each point belongs to, and �nally, k′m = maxq∈∂E

(
‖k
′(q)
I(q) ‖

)
.

At this point, we stress out that we deploy our algorithm after the robot has observed
a region of ∂W, which can be achieved for instance by instructing the robot initially to
move with a constant �xed velocity until the robot has encountered an obstacle, in order
to guarantee that Ip 6= 0. Similarly, our control law terminates once Pr(q) > α′, ∀q ∈ ∂E
where α′ ∈ (0.5, α), which ensures that In 6= 0 and that ∂E coincides with ∂W with a
probability of at least α′.

Next, we de�ne c appropriately as follows to ensure that the �rst term of fb vanishes in
the neighborhood of critical points of φ:

c = Sεw(‖∇pφ‖ − ε1) (3.12)

where ε1, εw are small positive constants. Also, we control the rate of the adaptive law
through the function µ, which is given by:

µ = Sµ1

(
Kus‖∇pφ‖2

‖∂φ
∂k̂
· (k̂t − k̂)‖+ ε2

)
, (3.13)

where µ1 >
9
8 ensures that the function's value is smaller than its argument (the proof is

provided in Subsection 3.2.1 and is intuitively illustrated in Figure 3.2), and ε2 > 0 renders
the above expression's denominator strictly non-zero. Notice that the term ∂φ

∂k̂
· (k̂t − k̂)

is proportional to ∂φ

∂k̂
dk̂
dt , which in turn corresponds to the change of the HPF's values,

at p, induced by the change of boundary conditions. In order to devise a practical way
for calculating the aforementioned derivatives, we recall that the solution of the Laplace
equation is obtained by H · φ̂ = G · k̂ [17], and the potential at a point in the domain's
interior is approximated by

φ(p) = Hp · φ̂−Gp · k̂
= (Hp ·H−1 ·G−Gp) · k̂

, (3.14)

where φ̂ corresponds to the HPF values at the control points, and H,Hp, G,Gp are matri-
ces/vectors of appropriate dimensions, whose details we omit for the sake of brevity. From

the previous equation it becomes apparent that, ∂φ

∂k̂
dk̂
dt can be computed by solving the

Laplace equation with boundary conditions ∂φ
∂n = dk̂

dt ∝ k̂t− k̂. As we can see, the potential
depends linearly on the imposed boundary conditions.

16

CHAPTER 3. TECHNICAL SOLUTION

Finally, we elaborate more on the term be after introducing the following de�nition. We
say that φ is safe at some time instant, when no point belonging to an obstacle's boundary
is attractive, i.e., k̂i ≥ 0, ∀i ∈ ICP such that qi ∈ ∂EO (assuming that a su�ciently �ne
discretization of the boundary has been used). Generally, φ will not always be safe under
the proposed control scheme because regions of the free boundary will be replaced by newly
discovered obstacles during exploration. Hence, to render the potential �eld safe in �nite
time and avoid potential collisions between the robot and newly discovered obstacles, we
de�ne be as follows:

be(E , k̂,Pr) =

{
0, k̂i ≥ 0, ∀i ∈ ICP : qi ∈ ∂EO
1, otherwise

, (3.15)

for reasons that will become apparent in the following section.

3.2 Stability Analysis

In this section, we elaborate on the safety and convergence properties of the proposed
control scheme. We recall that, the overall dynamical system, whose state is denoted z and
consists of p, k̂, and Pr is described by the following di�erential equations

ż =

 ṗ˙̂k
Ṗr

 =

 fp(p, k̂,Pr)

fb(p, k̂,Pr)

fPr(p, k̂,Pr)

 = fz(z) . (3.16)

First, we shall state some useful properties regarding k and be that will be used in the
subsequent analysis.

Proposition 1. Assuming that k is compatible for t = 0, and under the adaptive law (3.6),
it is guaranteed that k will remain compatible for all time.

Proof. We de�ne Ic ,
∫
∂E k(s)ds. Notice that the following holds:

Ic =

∫
∂E

∑
i∈ICP

NSF,i(s)k̂ids

=
∑
i∈ICP

(∫
∂E
NSF,i(s)ds

)
k̂i = l

∑
i∈ICP

k̂i

(3.17)

where NSF,i is a typical linear shape function, applied to each control point, that integrates
to l, denoting the length of boundary elements. Then, we compute the time derivative of

Ic, substituting
˙̂
ki from (3.6):

İc = l̇
∑
i∈ICP

k̂i + l(cµ+ be)

 ∑
i∈ICP

k̂t,i −
∑
i∈ICP

k̂i

 . (3.18)

17

CHAPTER 3. TECHNICAL SOLUTION

The compatibility of k̂t implies that the �rst sum of the second term vanishes, hence,

İc =
(
l̇/l − (cµ+ be)

)
Ic. Consequently, if Ic = 0 at t = 0 then this holds for all time, thus

concluding the proof.

Proposition 2. If the potential φ(p, k̂) is unsafe, the adaptive law (3.6) guarantees it will
become safe in �nite time.

Proof. We stress that the de�nition of ∂EO, as stated in (2.7), implies that k̂t,i > 0, for
all qi ∈ ∂EO with i ∈ ICP , by virtue of (3.8). Furthermore, assuming that be is triggered
at some time t it holds that k̂ → k̂t asymptotically. This means that the boundary value
of all occupied control points monotonically approaches the corresponding strictly positive
reference value, hence, there must exist some �nite time T > 0 for which be(t + T) = 0,
implying that φ is safe.

Proposition 3. For any two time instants 0 ≤ t1 < t2, for which E(P(t1)) = E(P(t2)), the
set {τ ∈ [t1, t2] : be(τ) = 1} is connected.

Proof. First, if be(t) = 1 for some time instant t ∈ [t1, t2], Proposition 2 dictates that
be(t+T) = 0 for some �nite T > 0. In addition, for every 0 ≤ t < t′ such that be(t) = 0 and
E(P(t)) = E(P(t′)) it holds that be(t

′) = 0 by construction of the adaptive law. As a result,
while E remains unchanged, be will equal 1 until the potential �eld is rendered safe.

Proposition 4. Throughout the robot's trajectory, be will be triggered �nitely many times.

Proof. By construction, any transition of be from 0 to 1 corresponds to a sign change of k̂t,i
for some i ∈ ICP . These sign changes are precisely what may render φ unsafe, and occur
when a boundary point, which was initially thought as free, ends up in ∂EO during the ex-
ploration. Assuming consistent measurements, any boundary point can experience �nitely
many such sign changes, and in the case of perfect measurements exactly one. Moreover,
the number of boundary points NCP is bounded by compactness of the workspace. Thus,
be will be triggered a �nite number of times.

Next, we present some useful propositions about the boundedness of k̂t, k̂, φ.

Proposition 5. The functions k̂t and k̂ are bounded for all time.

Proof. By the de�nition of k̂t we see that ‖k̂t,i‖, ∀i ∈ ICP is bounded by k̄ as long as I 6= 0,

which is guaranteed. Next, we will show that ‖k̂i‖ ≤ k̄, given that this holds for t = 0.

Assume that k̂i(t) = k̄ for some i ∈ ICP , t ≥ 0. Then,
˙̂
ki must be non-positive because

fb ∝ (k̂t,i − k̂i) and k̂t,i ≤ k̄; thus, k̂i cannot exceed k̄. Similarly, it holds that −k̄ ≤ k̂i and
consequently k̂ is bounded.

Proposition 6. The function φ(p, k̂) is lower bounded.

18

CHAPTER 3. TECHNICAL SOLUTION

Proof. First, we note that the solution of the Neumann BVP is only unique up to an
additive constant. To overcome this ambiguity we impose the constraint

∫
∂E φ(s)ds = 0,

which renders the solution unique. Moreover, the well-posedness of the Neumann BVP
implies that φ(p, k̂) depends continuously on k̂, ∀p ∈ E . Further, k̂ ∈ [−k̄, k̄]NCP which is
a compact set. Thus, invoking the extreme value theorem, φ(p, k̂) is lower bounded on the
set E × [−k̄, k̄]NCP .

In the following, we will show that there are no stable equilibria in the workspace's
interior that could potentially trap the robot in undesired con�gurations.

Proposition 7. All equilibria of (3.16) located in intE are unstable.

Proof. First, note that by construction no equilibria can exist while be = 1 thus we consider
only cases where the second term of (3.6) is null in the subsequent analysis. The term c,
that appears in fb, ensures that for any equilibrium state z? = [p?, k̂?,Pr?]T for which
p? ∈ intE , there exists a disk such that fb(p, k̂) = 0, ∀p ∈ B(p?, ε) for some su�ciently
small ε > 0. Thus, inside this ball the system executes gradient descent on a �xed potential
�eld. Given that φ is harmonic, any critical points in intE are strict saddles. Consequently,
all equilibria of fz located in intE are unstable.

Lemma 1. The function fp is locally Lipschitz continuous.

Proof. The function s(p, E) is locally Lipschitz ∀p ∈ E . Moreover, ∇pφ is analytic and
hence locally Lipschitz, ∀p ∈ intE . Thus, within intE fp is locally Lipschitz as the product
of two such functions. Moreover, let f(p) = g(p)h(p) where g(p) = s(p) and h(p) = ∇pφ(p).
Then, for any x, y ∈ E we note that the following holds:

‖f(x)− f(y)‖ = ‖g(x)h(x)− g(y)h(y)‖
= ‖g(x)h(x) + g(x)h(y)− g(x)h(y)− g(y)h(y)‖
= ‖g(x)(h(x)− h(y)) + h(y)(g(x)− g(y))‖
≤ ‖g(x)‖‖h(x)− h(y)‖+ ‖h(y)‖‖g(x)− g(y)‖

(3.19)

We observe that as x→ ∂E the �rst term vanishes because g(x) vanishes and h(x)− h(y)
is bounded by construction. Also, note that h(y) is bounded because in intE the function
∇pφ is analytic and in ∂E its norm is bounded from above by maxi∈ICP

‖k̂i‖. As such, fp
is locally Lipschitz on ∂E and consequently everywhere in E .

Proposition 8. The robot's trajectory under control law (3.16) is safe, i.e., collision avoid-
ance is ensured.

Proof. If the potential is safe, then the robot obviously cannot collide with the workspace's
boundary. We now consider the case when φ is not safe, which implies that be = 1, and
we assume that p → ∂EO. Consequently, ṗ → 0 and according to Lemma 1, fp is locally

19

CHAPTER 3. TECHNICAL SOLUTION

Lipschitz; thus, the robot converges to the boundary asymptotically. By construction of Ṗr
it holds that k̂t(σ

−1(q)) becomes strictly positive as p→ q, for any q ∈ ∂W. But, according
to Proposition 3, φ will become safe in �nite time rendering all obstacles non-attractive,
which contradicts our initial assumption.

Proposition 9. The set ∂EF has a non-trivial region of attraction.

Proof. As a consequence of the Maximum Value Theorem of harmonic functions, all local
extrema of φ must reside on the boundary of E . Additionally, s(p, k̂) vanishes on ∂E , ren-
dering the extrema of φ equilibria of (3.16). Since by construction, ∂EF is made attractive,
all equilibria on it must have a non-trivial region of attraction.

The completeness of our approach is equivalent to proving that the proposed control
scheme drives the robot towards the free boundary, whenever any exists. In this context, the
following theorem states that the robot neither can reach ∂EF nor needs to, as a concequence
of perfect sensing assumption and the non-zero sensing range of the robot.

Theorem 1. Assuming that be = 0, the robot equipped with the control law (3.16) and
starting from almost any initial con�guration, will move towards and expand ∂EF . Thus,
any compact and connected workspace W will be explored in �nite time.

Proof. Consider the Lyapunov function candidate V = φ(p, k̂). Di�erentiating w.r.t. time
and substituting the control scheme (3.3), as well as the adaptive law (3.6) with be = 0, we
obtain:

V̇ = (∇pφ)T · dp
dt

+
∂φ

∂k̂
· dk̂
dt

= −Kus‖∇pφ‖2 +
∂φ

∂k̂
· (k̂t − k̂)cµ

≤ −Kus‖∇pφ‖2 + ‖∂φ
∂k̂
· (k̂t − k̂)‖cµ .

(3.20)

We recall that choosing µ1 > 9/8 implies:

Kus‖∇pφ‖2

‖∂φ
∂k̂
· (k̂t − k̂)‖+ ε2

≥ Sµ1

(
Kus‖∇pφ‖2

‖∂φ
∂k̂
· (k̂t − k̂)‖+ ε2

)
=⇒

Kus‖∇pφ‖2 ≥
(
‖∂φ
∂k̂
· (k̂t − k̂)‖+ ε2

)
µ

≥ ‖∂φ
∂k̂

(k̂t − k̂)‖cµ

(3.21)

which in turn implies that V̇ ≤ 0, with the equality holding only for critical points of φ
or boundary points. According to Proposition 6, V is lower bounded and we also showed
that it is a non-increasing function of time. As such, V has a �nite limit as t → ∞.

20

CHAPTER 3. TECHNICAL SOLUTION

Additionally, V̇ is Lipschitz w.r.t. time (the proof is provided in Subsection 3.2.1) and
therefore uniformly continuous. Hence, invoking Barbalat's Lemma we deduce that V̇ will
vanish, which can happen i� either s(p) = 0 or ∇pφ = 0. The former case means that
p ∈ ∂E and since p /∈ ∂EO, as shown in Proposition 8, this implies that the robot will
move towards ∂EF . The latter case corresponds to the robot converging to a critical point
of φ. But, these critical points have been proven to be unstable saddles and, therefore,
this can happen only for a set of initial con�gurations that has zero Lebesgue measure.
As such, the robot will navigate towards the minimizers of its potential �eld, which lie on
the free boundary. Therefore, it obviously holds that for all q ∈ ∂EF , there exists a �nite
time instant T ∈ [0,∞) such that q ∈ S(p(T)), since W is bounded. Thus, any point that
belongs to ∂EF will eventually be explored in �nite time.

3.2.1 Complementary Proofs

Lemma 2. For any a > 9
8 it holds that Sa(x) < x, x ∈ (0,+∞).

Proof. First, note that if Sa(x) < x for x ∈ (0, a], then the inequality holds for all x ∈
(0,∞). We de�ne the function

g(x) = x− Sa(x)

= x · (2 · x
2

a3
− 3 · x

a2
+ 1)

(3.22)

and we will show that g(x) > 0, ∀x > 0. Note that the sign of g is determined by the
second degree polynomial

h(x) = 2 · x
2

a3
− 3 · x

a2
+ 1 , (3.23)

whose minimum is obtained at x? = 3
4 · a and is equal to h(x?) = 1 − 9

8a . Thus, choosing
a > 9

8 ensures h(x) > 0 =⇒ g(x) > 0.

Lemma 3. The function V̇ is locally Lipschitz w.r.t. time.

Proof. The �rst term of V̇ is clearly locally Lipschitz in intE , because s(p) is Lipschitz and
so is ‖∇pφ‖2 being the composition of two such functions. Following arguments similar to
Lemma 1 we can show that this term is Lipschitz on ∂E . Moreover, since ‖∇pφ‖ is bounded
in E , the same applies for ‖∇pφ‖2 and therefore the whole term is bounded.

We proceed in the analysis of the properties of the second term of V̇ . The function k̂t
will be shown to be continuous and piece-wise C1. First, we note that fPr is a piece-wise
continuous function that exhibits jump discontinuities when ci ∈ ∂S for some i ∈ NG.
Hence, Pr is continuous and piece-wise C1 and, obviously, the same holds for k′1. Also, k

′
2

is continuous and piece-wise C1 being the composition of e−x, which is C∞, and ‖p − q‖,
which is piece-wise C∞. Thus, k′ is continuous and piece-wise C1 as the product of two

21

CHAPTER 3. TECHNICAL SOLUTION

such functions. The function I is also continuous and piece-wise C1 as the integral of such
a function. Lastly, by construction k′m is continuous and piece-wise C1 w.r.t. time since
max is a continuous function and its argument is a fraction of such functions, given that
it is guaranteed that I > 0. Thus, k̂t is continuous and piece-wise C1 being a composition
of k′, I and k′m. Clearly, Sεw(‖∇pφ‖ − ε1) is also continuous and piece-wise C1 because

it is a composition of two such functions. Further, ∂φ

∂k̂
is a vector whose elements are C1

w.r.t. p, k̂ in intE and, by construction, bounded in E . Finally, the argument of Sµ1(·) is
clearly continuous, piece-wise C1 and bounded while Sµ1 is C

1. Hence, µ is continuous and
piece-wise C1.

Overall, both terms of V̇ were shown to be continuous and piece-wise C1. Therefore, V̇
is continuous and piece-wise C1, and as such locally Lipschitz w.r.t. time.

3.3 Analytical Comparison with Related Literature

Next, we discuss the advantages, as well as the shortcomings, of the proposed control scheme
compared to the existing literature. Initially, we focus on methodologies that are similar to
ours, i.e., based on HPFs.

As previously stated, an integral disadvantage associated with HPFs is the need to solve
Laplace's equation in real-time, in order to obtain the necessary harmonic vector �eld em-
ployed for navigation. In particular, the construction of the underlying HPF is costly, even
prohibitively so for large domains, and scales poorly. As a result, implementations of such
approaches [8],[18], rely on relaxation methods to retrieve a partially-converged numeri-
cal solution, thus, sparing the computation time required for full convergence. Moreover,
the computational complexity involved in the aforementioned numerical techniques scales
poorly w.r.t. the domain's size. These shortcomings are alleviated in [19],[9], by computing
the HPF only on a local window around the robot, and in [10] by employing the Full Multi-
grid Method. In addition, the �nite di�erences schemes employed by the aforementioned
works su�er the following di�culties:

� Discretization of an entire 2D domain is necessary,

� The HPF value is only available on nodal points, and

� The derivatives of the HPF need to be approximated.

The previous shortcomings are circumvented in our control scheme by employing the
FMBEM. Speci�cally, the FMBEM enjoys linear complexity in terms of computational
e�ort and required memory, which comes at the expense of obtaining approximate solutions
of the corresponding BVP with a speci�ed error. The boundedness of the approximation
error enables us to exempt our methodology from the utilization of heuristic approaches
to reduce the computational cost. Furthermore, the Boundary Element Method involves
discretizing solely the boundary of the domain, which, in general, is more straightforward.

22

CHAPTER 3. TECHNICAL SOLUTION

Finally, direct evaluation of the HPF value and its derivatives is possible at any interior
point, owing to the boundary integral representation of the solution.

Figure 3.3: The negated gradient vector �eld induced by the mixed boundary conditions
employed in [2]. Unexplored and occupied space is shown in red and gray, respectively.
Notice that the vector �eld tends to drive the robot near obstacles.

Another point in favor of our controller is the utilization of Neumann boundary con-
ditions, as opposed to the Dirichlet or mixed boundary conditions adopted in the existing
literature. Notably, in [8],[18] the authors impose a uniform high (resp. low) value on obsta-
cles (resp. unexplored frontiers) which induces an orthogonal gradient on the boundary. As
a downside, this approach generally exhibits large �ats areas of the potential, thus, resulting
in very small gradients. Shade et al. alleviate this by employing mixed boundary conditions.
Speci�cally, a constant low value is enforced on boundaries between known and unknown
space, a high value is prescribed on the position of the robot, while the normal derivative
on occupied boundaries is �xed to zero. Nonetheless, the vanishing normal derivative on
obstacles causes robot's trajectory to pass near them (see Figure 3.3). Finally, the afore-
mentioned approaches assign uniform attractiveness/repulsiveness on frontiers/obstacles,
hence, preventing the prescription of a relative importance between boundary regions. On
the contrary, the proposed control law maintains a signi�cant gradient in the robot's vicinity
and, also, the non-vanishing normal derivative in nearby obstacles imposes a considerable
repulsion on the robot (see Figure 3.4). Additionally, we can designate preferences among

23

CHAPTER 3. TECHNICAL SOLUTION

boundary regions by utilizing non-constant Neumann boundary conditions. This issue is,
also, tackled in [19], [20] through the use of a modi�ed version of Laplace's equation.

Figure 3.4: The negated gradient vector �eld induced by our control law. Unexplored
and occupied space is shown in gray and black, respectively. We observe that neither the
gradient, nor the normal derivative on obstacles vanish in the robot's vicinity. Note: The
reason some vectors are pointed towards obstacles is that φ is not safe (but will become
eventually, as proven previously).

The algorithms that do not utilize HPFs, e.g. [3], [5], [21] focus on generating a number of
candidate goal con�gurations, and associated paths to reach them, which are subsequently
evaluated using an information-theoretic utility function. An inherent shortcoming of this
approach is its non-reactive nature. Particularly, once a goal con�guration has been selected
the robot is blindly driven towards it. Although some methodologies [22] are capable of
reacting to dynamic obstacles that may occur along the way, the information accumulated
is only utilized in the next planning operation, i.e., when the goal is reached. In contrast,

24

CHAPTER 3. TECHNICAL SOLUTION

changes in the constructed map are constantly incorporated in our control scheme. In
addition, our controller solves both the path and motion planning problem as opposed to
competing algorithms. Nevertheless, it should be noted that approaches in the related
literature actively focus on the integrated exploration problem, i.e., they take into account
the uncertainty in the robot's position. The proposed controller cannot readily solve the
aforementioned problem and requires modi�cations towards that direction.

25

Chapter 4

Implementation

A crucial part of the current thesis consists in the creation of an appropriate simulation
environment, as well as the implementation of the proposed control law. This chapter
elaborates on the di�erent necessary modules used in the presented exploration scheme.
Speci�cally, Section 4.1 demonstrates the simulation environment in VREP involving the
workspace, sensors and a simplistic robot representation, Section 4.2 describes the basic
preprocessing of sensor measurements, while Section 4.3 elaborates on the Occupancy Grid
Mapping algorithm. The methodology devised for extracting the boundary of a given
occupancy map is described in Section Section 4.4, followed by Section Section 4.5 where
an algorithm for determining the correspondence between points of consecutive extracted
boundaries is established. Finally, in Section 4.6 we outline the basics of the FMBEM
algorithm and demonstrate several computational results.

4.1 Mobile Robot Simulation in VREP

The simulation of the mobile robot exploration was performed using the Virtual Robot
Experimentation Platform [23], abbreviated VREP. The robot simulator VREP, is ideal
for fast algorithm development, prototyping and veri�cation as it features an integrated
development environment and easy-to-use API frameworks for a number of programming
languages, namely Matlab and C++. In the following, the main components of the simu-
lation environment implemented in VREP are described.

Initially, a simulated workspace is created using cuboid and cylindrical shapes that
make up the walls of the environment. More realistic details can be included by adding
furniture, e.g. chairs and tables. Two of the workspaces recreated in VREP and used for
the subsequent simulations are demonstrated in Figure 4.1.

The robot is represented using a "Dummy" (see Figure 4.2), which is the simplest object
o�ered in the simulator. A more intricate representation, e.g. a robot with wheels, would
be unnecessary since the robot is treated as a point, with single integrator dynamics, in the

26

CHAPTER 4. IMPLEMENTATION

(a) First sample workspace. (b) Second sample workspace.

Figure 4.1: A subset of the workspaces used in the simulations.

preceding analysis.
The robot/dummy is equipped with "Proximity Sensors" that allow it to perceive obsta-

cles within the sensor's range and line-of-sight. Proximity sensors are implemented as rays
(see Figure 4.2), spread evenly around the robot. The number of rays used is equivalent to
the sensor's angular resolution. Each ray provides appropriate readings about whether it
hits an obstacle and at what distance it is located. These measurements are transferred to
Matlab, using the remote API, to be further processed.

For any sensible angular resolution, adding the appropriate number of rays manually in
the simulation environment is both tedious and impractical. In particular, a resolution of
1 ray/o would require 360 rays. Moreover, altering the properties of the rays, e.g. changing
the maximum range, would be a prohibitively time-consuming task. To that end, a script,
written in the Lua programming language, was developed and embedded on the dummy
object, which generates rays attached on the dummy at the beginning of the simulation; the
number and properties of the rays are de�ned programmatically by the user. This approach
allows for �exible adjustment of the simulation parameters, and straightforward simulation
in any new workspace by simply copying and pasting the dummy along with the embedded
script.

4.2 Preprocessing of Sensor Measurements

Before incorporating sensor measurements in the mapping algorithm an appropriate prepro-
cessing is necessary. Speci�cally, proximity sensor measurements, i.e. distance of an obstacle
along a particular ray, are expressed in each ray's coordinate frame and, thus, need to be
appropriately transformed in the absolute coordinate frame before being integrated in the
mapping algorithm. Knowing the robot's position p, the distance measurements z and the
ray's angle θ, w.r.t. the absolute coordinate frame (see Figure 4.3), the absolute position of

27

CHAPTER 4. IMPLEMENTATION

Figure 4.2: The "Dummy" robot represented as a sphere with the proximity sensor rays
attached on it. Yellow-colored rays indicate the presence of an obstacle within the range of
a particular ray.

the obstacle pobs can be easily computed as follows:

pobs = p+

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
·
[
z
0

]
. (4.1)

This computation is performed for all the rays. Figure 4.4 illustrates a trajectory executed
by the robot, along with the corresponding sensor readings.

4.3 Occupancy Grid Mapping

Any robot operating autonomously in a particular environment requires a map in order
to navigate and plan successfully. Moreover, in many cases the central goal of exploration
algorithms is to generate accurate maps of a given workspace. In the current work, we
employ the well-studied Occupancy Grid Mapping (OGM) algorithm [13] to represent the
explored regions of the workspace. The reason for choosing OGM among other mapping
algorithms is both the simplicity and e�ciency it provides, as well as being a very common
choice in the exploration literature. Also, OGM is capable of accounting for possible errors
in sensor readings, but requires that the robot pose is known or estimated, e.g. by a SLAM
algorithm. Next, we will elaborate on the details and implementation of OGM. The theo-
retical part of the algorithm is a brief summary of the corresponding chapter in [14]; the
reader is directed there for a more detailed analysis.

28

CHAPTER 4. IMPLEMENTATION

x

y

Sensor Ray

p

pobs

Figure 4.3: Transformation of sensor measurements from the ray's coordinate frame to the
absolute coordinate frame.

As described in Section 3.1 a grid is embedded in the workspace, and the OGM algorithm
is used to update the probability of occupancy of grid cells observed by the robot. For the
following analysis, the notation used in [14] is adopted; in particular, time is represented
as discrete steps, the robot's position at time step t is denoted xt, while the measurements
obtained at that time are denoted zt. The probability that the cellmi is occupied, given the
trajectory x1:t and sensor readings z1:t is denoted Pr(mi;x1:t, z1:t). We de�ne the log-odds
probability at time step t as

lt,i = log

(
Pr(mi;x1:t, z1:t)

1− Pr(mi;x1:t, z1:t)

)
, ∀i ∈ IG . (4.2)

Thus, the update law for l is

lt,i =

{
lt−1,i + fl(mi, xt, zt)− l0, ci ∈ St
lt−1,i, otherwise

, ∀i ∈ IG (4.3)

where fl is the inverse sensor model, l0 is the prior of occupancy, and St is the sensing region
of the robot at t. We recall that ci denotes the center of mi. We choose l0 = 0, which
prescribes that an unforeseen grid cell may be occupied or free with equal probability.

29

CHAPTER 4. IMPLEMENTATION

Sensor Readings

Robot Trajectory

Initial Position

Current Position

Figure 4.4: A representative trajectory of the robot and the sensor readings collected along
it.

Regarding the choice of fl, it is noted that a wide range of approaches are proposed in
literature. For instance, in [14] the use of supervised learning algorithms, such as logistic
regression or neural networks, to approximate fl is discussed. In the current work, we adopt
the simple, yet commonly-utilized, de�nition of fl that follows:

fl =

{
locc, mi measured as occupied

lfree, mi measured as free
, (4.4)

where locc > 0, lfree < 0 are constants. As such, the log odds probability of cells that are
indicated by the sensor readings to be free (resp. occupied) is increased by lfree (resp. locc).

From a practical standpoint, it is necessary to determine which cells in St are measured
as free and which ones as occupied. Apparently, the cell in which the robot is included
should be indicated as free, while the cell containing the end point of the ray should be
labeled as either free or occupied depending on the reading; any cells in between should be
considered as free, since the ray passes through them unobstructed. Hence, it remains to
identify the cells a�ected by each ray. To that end, we employ Bresenham's line algorithm
[24] which selects cells in a n-dimensional grid, that form a close approximation of the
line segment connecting two points. This procedure is demonstrated in Figure 4.5. Colored
cells represent the grid approximation of the ray, generated through Bresenham's algorithm.
Yellow colored cells are identi�ed as free, while the red colored one is identi�ed as occupied

30

CHAPTER 4. IMPLEMENTATION

by the particular ray.

Figure 4.5: The grid approximation of a sensor ray using Bresenham's algorithm. Cells of
yellow color are identi�ed as free, while the red-colored cell is indicated as occupied.

Through the aforementioned procedure, the probability of all observed cells in the grid
is appropriately updated in each time step. As the robot navigates the unknown workspace,
new information is incrementally incorporated in the map. Four consecutive instances of
the occupancy grip are presented in Figure 4.6.

Finally, it is noted that the occupancy grid map is stored in matrix format; each matrix
element is associated with a grid cell, based on its position (row and column), and holds its
probability of occupancy. In addition to being a straightforward implementation, this rep-
resentation allows for e�ortless manipulation of the map using image processing techniques,
e.g. dilation and convolution, as will be shown in Section 4.4.

31

CHAPTER 4. IMPLEMENTATION

(a) (b)

(c) (d)

Figure 4.6: Four instances of the generated occupancy grid map along a robot's trajectory.
White, black and gray cells represented free, occupied and unknown space respectively. The
robot's trajectory is shown as a continuous blue line.

4.4 Boundary Extraction

Given the map generated by the OGM algorithm, it is necessary for its boundary to be
extracted as required by the FMBEM solver. This boundary is composed of two disjoint
regions, as explained in Section 3.1. In particular, the frontier ∂EF consists of the free
grid cells that are adjacent to cells of unknown occupancy, i.e. cells whose probability of
occupancy is equal to 0.5, whereas the occupied boundary ∂EO comprises the occupied grid
cells neighboring with free cells. Upon identifying the cells that make up ∂E , their centers
are used as a point-wise approximation of ∂E . The algorithm employed for extracting the
boundary of the occupancy map is outlined in Algorithm 1.

Step 1 amounts to performing morphological dilation of obstacle cells using a square
structuring element, i.e. a matrix Rn×n composed of ones, with size n = 2. This oper-

32

CHAPTER 4. IMPLEMENTATION

Algorithm 1 Boundary Extraction

1: Dilation of obstacles.
2: Isolation of the free connected region.
3: Identi�cation of boundary components.
4: Grouping and ordering of the center points of cells.

ation bears a dual purpose. First, and most importantly, we note that small features of
the workspace may not contribute enough grid cells/points to construct a closed arc repre-
sentation. For instance, a small table leg may occupy only one grid cell, thus limiting its
description to a single isolated point. But, in order for the Laplace equation to admit a so-
lution the boundary must be composed of closed arcs, which can be ensured by dilating the
occupied cells. Secondly, augmenting the size of obstacles through dilation can be applied
to account for the actual dimensions of a disk robot, choosing the size of the structuring
element appropriately.

As a consequence of erroneous measurements, it is possible for grid cells outside the
actual workspace to be labeled as free (see Figure 4.7). Such cells need to be identi�ed and
removed, as they would cause the extracted boundary to be inconsistent; this is tackled in
Step 2. To that end, the connected region of free cells containing the robot needs to be
isolated. Apparently, any cells labelled as free that do not belong to this region cannot
have been observed and, hence, correspond to faulty measurements. Implementation-wise,
we create a binary matrix, with the same size as the occupancy grid, whose value at free
cells is 0, and everywhere else is 1. Then, a �ood �ll algorithm is applied, placing its seed
at the robot's position in the grid, thus rendering the value of all cells in the connected free
region true. Consequently, any cells whose value remains false must correspond to invalid
measurements.

Following these preprocessing steps, we are ready to extract the boundary of the map.
The regions ∂EO, ∂EF will be identi�ed separately, before being merged to construct ∂E .
To �nd ∂EO, we �rst create the matrix Mfree, with dimensions identical to the occupancy
grid, whose entries are 0 everywhere except on elements which correspond to free grid cells,
whose value is set to 1. Then, the edge detection kernel

Mconv =

0 1 0
1 −4 1
0 1 0

 (4.5)

is convolved withMfree to produceMo. Note that occupied and unknown cells adjacent (in
the 4-connected pixel connectivity sense) to free cells will receive a positive value in Mo, as
can be easily veri�ed. Therefore, any matrix elements with positive value in Mo make up
the outline of the free region. Out of these elements, the ones associated with occupied cells
apparently constitute ∂EO. We remark that, not all occupied cells belong to ∂EO because

33

CHAPTER 4. IMPLEMENTATION

Figure 4.7: The yellow cirle indicates free cells that do not belong to to connected region
of the robot's workspace.

due to the incremental construction of the occupancy grid, or due to dilation, it is possible
for an occupied cell to have only occupied or unknown neighbors.

A similar procedure is followed for the extraction of ∂EF . We, initially, create the
matrix Mu and set the value of unknown cells to 1, while the remaining cells are set to 0.
Afterwards, the new matrixMf is generated through the convolution ofMu withMconv. By
the same reasoning as previously, elements that correspond to free cells and have a positive
value in Mf make up ∂EF . Consequently, both components of ∂E have been identi�ed in
the occupancy grid map.

Finally, having tracked the individual cells that form ∂E , it is imperative to group them
appropriately in order to trace the boundary correctly. We recall that ∂E is composed
of multiple arcs and, thus, boundary cells have to be divided depending on which arc
they belong. Moreover, the cells, and the corresponding center points, that make up a
particular arc need to be arranged in a speci�c order, i.e. clockwise for inner boundaries and
counterclockwise for the outer boundary, so as to properly describe it. The aforementioned
tasks are performed using the Matlab function bwboundaries [25].

An e�cient and robust derivation of ∂E is of paramount importance in the proposed con-
trol scheme, since it forms the basis for solving the Laplace's equation using the FMBEM.
Hence, the boundary extraction methodology was rigorously tested in a multitude of dif-
ferent workspaces. The occupancy grid map and the corresponding extracted boundary is
illustrated in Figure 4.8, in 4 di�erent occasions.

34

CHAPTER 4. IMPLEMENTATION

(a) (b)

(c) (d)

Figure 4.8: The occupancy grid map and the resulting boundary of the explored region ∂E ,
depicted as a green line.

4.5 Boundary Value Projection

In this section, we describe the di�culty arising when updating the boundary values k̂
while ∂E is changing, as well as how this implication is overcome. Given two boundaries
extracted in consecutive time steps, it is clear that some regions will be identical while
others will di�er, due to the expansion of the boundary, as shown in Figure 4.9. Assigning
k̂i to points that overlap with the previous boundary is straightforward; we simply copy the
previous value. On the contrary, non-overlapping points need to have their value inferred
according to their position on the boundary. Speci�cally, each new boundary arc (i.e. a set
of connected points that does not overlap with the previous boundary) is associated with an
arc on the past boundary, which resulted in the new one through expansion (as indicated
by the arrows in Figure 4.9).

There are two types of boundary regions which no longer exist in the subsequent bound-

35

CHAPTER 4. IMPLEMENTATION

Figure 4.9: The expansion of the explored region with the subsequent change in the bound-
ary. The previous explored region is shown in blue while the area added in the current time
step in yellow. The dashed line illustrates the new boundary region.

ary. Firstly, an arc undergoing expansion may completely disappear in the subsequent
boundary, if it encloses only free space which is explored (see Figure 4.10). In this occasion
no action needs to be taken, as the previous boundary points involved are no more part of
the new boundary.

Secondly, an expanding arc will, in most cases, remain on the new boundary and we
need to match it to the original arc. If there exists a single changed boundary region,
determining the aforementioned association would be unambiguous; but, since multiple
changed regions may arise, a more elaborate method is required. In particular, we note
that the two endpoints of an expanded arc belong to the unchanged boundary and hence,
they can be used to identify the correspondence between previous and new changed regions.
Any two changed regions in the previous and new boundary whose endpoints are shared,
correspond to the same boundary arc before and after expansion, respectively. This concept
is demonstrated in Figure 4.11.

Having established a way of matching altered boundary regions, we devise a method
to project the boundary values from the previous boundary to the new. Initially, for a
particular changed region we label one endpoint as the start and the other as the end of the
arc, based on the arc's positive direction (i.e. clockwise/counterclockwise for inner/outer

boundaries). Consequently, points are parameterized based on the ratio rp =
`p
`T
, where

`p denotes the length of the arc between the starting endpoint and the particular interior
point, while `T denotes the total arc length. We approximate the boundary value in the
parametrized space using linear interpolation between the values of previous boundary
points. Then, the value of new boundary points is derived by sampling the piece-wise
approximation at the corresponding parametrization value (see Figure 4.12).

36

CHAPTER 4. IMPLEMENTATION

Figure 4.10: An example of a boundary arc that disappears after being expanded. The
elliptical inner boundary will altogether cease to exist once the yellow region is incorporated
in the explored region (blue).

Figure 4.11: Identi�cation of the correspondence between previous and new changed regions.
The former is depicted with white and the latter with black dashed lines. The endpoints
used to perform the matching are represented as yellow circles.

Overall, given a point in the new changed boundary, we determine its boundary value
through the following steps:

� We establish the changed boundary region it belongs,

� We calculate its parametrization,

� We match the new changed region to the corresponding one in the previous boundary,

37

CHAPTER 4. IMPLEMENTATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Parametrization

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

B
o
u
n
d
a
ry

 V
a
lu

e
Previous Boundary Values

Current Boundary Values

Figure 4.12: The piece-wise linear approximation of the boundary values distribution on the
previous boundary (blue continuous), as well as the sampled points of the new boundary
(red asterisks).

� We sample the approximate boundary value function of the previous boundary on the
new point's parametrization.

The �nal results of boundary value projection are shown in Figure 4.13. We note that the
adaptive law has not been applied yet; the �gure solely illustrates how k̂ is mapped on the
changing boundary.

Although this algorithm is straightforward, a practical implementation requires consid-
erable e�ort, especially taking into account the implications associated with the represen-
tation of the boundary.

4.6 Fast Multipole Boundary Element Method

In this section, we elaborate more on the application of the Fast Multipole Method in
potential problems described by the Boundary Element Method (BEM). We present the
main idea of FMBEM along with useful and intuitive computational results. This discussion
serves as an outline meant to provide insight on the method, and the interested reader can
refer to [15], [11] for an in-depth analysis regarding the analytical derivation, the precise
details of the algorithm as well as implementation notes.

38

CHAPTER 4. IMPLEMENTATION

14 15 16 17 18 19 20 21

17.6

17.8

18

18.2

18.4

18.6

18.8

19

19.2

19.4

(a) The boundaries extracted in two subsequent
time steps.

19
-1

14
15 18.5

16

-0.5

17

B
o

u
n

d
a

ry
 V

a
lu

e

18 18

0

19
20

0.5

21

(b) The projection of boundary values from the
previous boundary to the new one.

Figure 4.13: Applying the boundary value projection algorithm to determine the boundary
values as the geometry of the boundary changes. The previous boundary is shown in red
while the new one in blue.

4.6.1 Algorithm

The conventional BEM consists in recasting the Laplace equation

∇2
pφ = 0, p ∈ Ω (4.6)

as a boundary integral equation

φ(q) = −
∫
∂Ω

[
v(q, p)

∂φ(q)

∂nq
− φ(q)

∂v(q, p)

∂nq

]
dsq (4.7)

using Green's identity. We note that Ω, ∂Ω is the solution domain and its boundary, while
v(p, q) denotes the fundamental solution of Laplace's equation given by:

v(p, q) =
1

2π
ln(‖p− q‖) . (4.8)

Next, ∂Ω is discretized into a �nite number of boundary elements that are used to approxi-
mate the boundary's geometry and the distribution of boundary quantities, i.e. φ, ∂φ∂n , upon
it. A common choice is the constant element which comprises of a line segment connecting
two endpoints upon which boundary quantities are assumed constant. Thus, discretizing
∂Ω with N elements, denoted ∂Ωi, i = 1, . . . , N , we express (4.7) in the form

−1

2
φi +

N∑
j=1

(∫
∂Ωj

∂v

∂n
ds

)
φj =

N∑
j=1

(∫
∂Ωj

vds

)
φn,j , i = 1, . . . , N (4.9)

where we write φn = ∂φ
∂n for the sake of brevity, and denote φi, φn,i the corresponding

boundary quantity on the i-th element. The integrals that appear on the previous equation

39

CHAPTER 4. IMPLEMENTATION

can be computed analytical or numerically for each element. Moreover, we note that one of
the boundary quantities is prescribed on each element while the other is unknown. Hence,
by appropriately rearranging the previous equations we can express (4.9) as a system of
linear equations:

A · x = b (4.10)

where x ∈ RN is the vector of unknown boundary quantities, A ∈ RN×N is the matrix of
coe�cients, and b ∈ RN is a constant known vector. Unfortunately, forming A requires N2

operations to compute the integrals in (4.7) for every pair-wise element combination and,
also, N2 memory requirements to store it, being dense and non-symmetric. These facts
hinder the use of the conventional BEM in large domains. (A more rigorous analysis and
derivation of the BEM can be found in [17].)

The main idea of FMBEM is to reduce the aforementioned computational cost by ex-
ploiting analytical results, to avoid the need to evaluate all the coe�cients of the matrix A,
devise an e�cient method to directly compute the matrix-vector product A · x and employ
an iterative method to derive the system's solution. Without delving in the mathematical
details, which can be found in [11], we note that the integrals∫

∂Ωj

∂v(p, q)

∂n
φ(q)dsq (4.11)∫

∂Ωj

v(p, q)
∂φ

∂n
(q)dsq (4.12)

can be approximated with a speci�ed error using a complex polynomial expansion with
an appropriate number of terms. Thus, the in�uence of the element centered at p on
the element ∂Ωj can be computed by evaluating the corresponding polynomial, termed
multipole expansion, given that the two elements are su�ciently "far" apart. The crucial
advantage o�ered by this approach is that the derived polynomial coe�cients depend solely
on the element that acts as source, i.e. the one centered at p. Hence, we can group elements
that are located in close proximity and derive a joint expression for their in�uence on far
away elements simply by adding their respective polynomial coe�cients. To formally de�ne
the concepts of "far away" and "close proximity", a hierarchical subdivision of the domain
is derived using quadtree decomposition and we consider elements residing on the same
cell to be close, and elements residing on non-adjacent cells to be far away. This reasoning
allows an FMBEM algorithm with O(N logN) computational complexity to be devised.

The previous method suggests that in order to compute (4.11), (4.12) for a particular
element ∂Ωi it is necessary to identify all far away cells and evaluate their corresponding
polynomials and, also, incorporate the in�uence of nearby elements through direct evalu-
ation of the integrals (analytical or numerical). A further improvement can be achieved
through the following approach. We can derive a polynomial approximation, for each cell,
termed local expansions that incorporates the in�uence of all far away cells with a bounded
error speci�ed by number of polynomial terms included. Thus, computation of the integrals

40

CHAPTER 4. IMPLEMENTATION

boils down to a single evaluation of the local expansion and direct evaluation of nearby el-
ements. This is the core of the FMBEM that enables linear computational complexity and
memory requirements.

Overall, the steps of the FMBEM algorithm, described from a high-level perspective,
are the following:

1. Discretize ∂Ω using boundary elements and imposing appropriate boundary condi-
tions.

2. Derive a quadtree decomposition of the boundary elements.

3. Compute the multipole expansion coe�cients for each populated cell in the tree struc-
ture. In this step further analytical considerations are employed to minimize the
number of required operations. In particular, the coe�cients on coarser levels of the
tree can be determined with minimal computational burden, given the coe�cients on
�ner levels. Thus, this step is performed on a �ne to coarse level basis.

4. Compute the local expansion coe�cients starting from coarse decomposition levels.

5. Evaluate integrals using local expansions to account for far away cells and direct
evaluation for nearby elements.

6. Perform the matrix-vector product A · x and the respective iteration of the iterative
solver.

7. Repeat until convergence.

4.6.2 Numerical Results

In this subsection we present computational results acquired by applying the FMBEM in
several di�erent domains. Particularly, we compute the harmonic potential and vector �eld
in domains with speci�c boundary conditions, that admit analytical solutions in order to
test the correctness of the implementation. The �rst two case studies are based on examples
from [17], while the third one is derived from [11].

The �rst domain we study is an ellipse, whose dimensions are shown in Figure 4.14a,
with appropriate Neumann boundary conditions. Speci�cally, the prescribed value of the
normal derivative along the boundary is given by

φ̄n =
2(b2x2 − a2y2)√
b4x2 + a4y2

(4.13)

and the corresponding analytical solution is

φ = x2 − y2 + C . (4.14)

41

CHAPTER 4. IMPLEMENTATION

(a) Elliptic Domain.

3
2

1

Y

0-10

-5

0

5

-1-5

10

P
o

t
e

n
t
ia

l

-4

15

-3

20

25

X

-2

30

-1 -20 1 2 3 -34 5

(b) Harmonic Potential.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

0

0.5

1

1.5

2

2.5

10
-4

(c) Absolute error.

-6 -4 -2 0 2 4 6

-3

-2

-1

0

1

2

3

(d) Harmonic gradient.

Figure 4.14: The elliptic domain test case.

Also, the gradient of φ can be easily computed:

∇(x,y)φ =

[
2x
−2y

]
. (4.15)

The numerical solution is obtained through the FMBEM and Figure 4.14 illustrates the
numerically computed potential, the respective error w.r.t. the analytical solution, as well
as the harmonic gradient �eld. The number of boundary elements employed to discretize
the boundary is 500 and the computation time is 0.1362s.

The next domain to be considered is rectangular, including a rectangular hole in its
center. The domain's geometry and the imposed boundary conditions are illustrated in
Figure 4.15a. The exact solution of the aforementioned problem is:

φ = 100(1 + x) (4.16)

42

CHAPTER 4. IMPLEMENTATION

(a) The rectangular domain and the imposed
boundary conditions.

1

X

0.5
0

20

40

60

1.2

80

100

1

P
o
t
e
n

t
ia

l 120

140

0.8

160

Y

180

0.6

200

00.4 0.2 0 -0.2

(b) Harmonic Potential.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.5

1

1.5

2

2.5

3

3.5

10
-3

(c) Absolute error.

0 0.2 0.4 0.6 0.8 1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Harmonic gradient.

Figure 4.15: The rectangular domain test case.

and the gradient obviously is:

∇(x,y)φ =

[
100
0

]
. (4.17)

Similarly, we provide a graph of the potential, the error and the harmonic vector �eld
in Figure 4.15, where the FMBEM computation employed 2000 boundary elements and
required 0.9752s of computation time.

The �nal case study constitutes the annular region depicted in Figure 4.16a. We impose
the boundary conditions φ = φa on the inner boundary Sa, and φn = φn,b on the boundary
Sb. In this setting, the analytical solution is given by:

φ(r) = φa + φn,bb ln

(
‖r‖
a

)
(4.18)

43

CHAPTER 4. IMPLEMENTATION

where r is the radial coordinate in polar coordinate-system center at [0, 0]T . The gradient
of the potential �eld is calculated as follows:

∇(x,y)φ = φn,bb
r

‖r‖2
(4.19)

Discretizing the boundary with 5000 boundary elements, we provide the same graphs as
previously in Figure 4.16. The solution time for this case was 3.3401s.

(a) Annular region domain.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

50

100

150

200

250

300

350

(b) Harmonic Potential.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

0.5

1

1.5

2

2.5

3

3.5

4

10
-4

(c) Absolute error.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(d) Harmonic gradient.

Figure 4.16: The annular region domain test case.

44

Chapter 5

Results

This chapter provides an extensive demonstration of our algorithm's performance through
simulation studies in realistic environments. Initially, in Section 5.1, we discuss the setup
utilized to perform the simulations as well as some practical implementation aspects. The
main results are presented in Section 5.2, where we specify the chosen parameters of our
control law, we illustrate the ground truth maps employed in the subsequent simulations
and demonstrate the robot's trajectory, as well as the generated occupancy map. Moreover,
we discuss and demonstrate the usefulness of the term k′2 in (3.7). Finally, we compare our
methodology with a competing one from the related literature in Section 5.3.

5.1 Hardware Setup

Simulations were executed on an Asus laptop with an Intel i5 processor operating at 1.6GHz,
6GB RAM on a Windows operating system. The simulation environment, i.e. maps,
sensors, and robot, was realized in VREP; the speci�c version being VREP PRO EDU
3.6.1. The control law was implemented in MATLAB 2018a, as well as the visualization
of the results. Finally, the FMBEM solver was implemented in the C++ programming
language.

At this point, we note that some functions of the FMBEM solver were initially coded
in MATLAB and translated in C++ using the Coder toolbox o�ered by MATLAB. Specif-
ically, certain parts of the code can be conveniently modi�ed to run in parallel using the
latter programming language. The parallelized C++ code generated by MATLAB was
considerably faster than its serial counterpart.

45

CHAPTER 5. RESULTS

5.2 Simulation Results

5.2.1 Controller Parameters

Although the design of our control scheme ensures safety and full exploration, yet an ap-
propriate choice of parameters can lead to improved performance. The parameters were
heuristically tuned by performing multiple simulations in di�erent environments and com-
paring the obtained results with respect to:

� Exploration time,

� Path length,

� Map quality, and

� Average computation time.

In particular, the parameter Ku that is used to scale the robot's velocity, directly a�ects
the exploration time. While increasing Ku generally results in reduced time requirements,
very large values occasionally lead the robot to rush in the direction of obstacles, before
the in�uence of s takes e�ect to guarantee appropriate deceleration. Map quality is directly
determined by mr, which de�nes the �neness of the occupancy map and, consequently, its
accuracy. Nonetheless, given that the boundary of the explored region is obtained as a
point-wise approximation using the centers of grid cells, increasing mr would result in an
increased number of boundary elements and, thus, heavier computational load. Finally, the
parameters associated with probabilities, i.e. α, α′, played a minor role because in practice
Pr(mi) quickly converges to its true value. The selected values for the parameters are shown
in Table 5.1.

r mr α α′ Ku

6m 13 cells/m 0.8 0.7 1.2

R1 k̄ ε1, εw ε2 µ1

0.2 1.0 0.01 0.01 10/8

Table 5.1: The values speci�ed for our control scheme's parameters.

5.2.2 Environments

In order to verify and demonstrate the e�cacy of our control law, we deploy it in three
di�erent environments. These environments were selected so as to provide a realistic rep-
resentation of actual exploration conditions. Particularly, the �rst two environments are
adapted from the Radish Repository and correspond to the Fort AP Hill [26] and Claxton

46

CHAPTER 5. RESULTS

CS building [27] datasets. The third map is a synthetic structured map similar to an o�ce
environment. The VREP implementation of each workspace is shown in Figure 5.1.

(a) Fort AP Hill VREP map.

(b) Claxton CS Building VREP map.

(c) Synthetic o�ce map.

Figure 5.1: The VREP environments used for the simulation results.

47

CHAPTER 5. RESULTS

5.2.3 Generated Trajectories and Maps

Next, we validate and discuss our controller's performance by considering the maps and
trajectories generated and evaluating the path length and total exploration time for each
one of the three scenarios. Additionally, to demonstrate the usefulness of k′2 we also include
simulation results without employing it in (3.7).

A representative trajectory in the Fort AP hill environment and the resulting occupancy
map is shown in Figure 5.2.

Figure 5.2: Generated occupancy grid map and the corresponding robot trajectory for the
AP hill environment. The initial and �nal position of the robot are shown as a square and
circle respectively. The yellow shaded area corresponds to the sensing region in the �nal
position. (Dimensions: 35m× 18m)

Also, the robot's sensing region in the �nal position is included to establish a comparison
between the range of the sensors and the size of the workspace. The �gure indicates that
complete exploration is achieved since the entirety of the environment is explored, verifying
our theoretical conclusions. It can be noted that a small number of isolated cells on the
boundary remain free, which is a consequence of the way the boundary is extracted. In
particular, as discussed previously, the obstacle cells are augmented (in the dilation sense)
to ensure the robustness of the boundary extraction algorithm. The augmented occupancy
grid map and the extracted boundary are illustrated in Figure 5.3. Clearly, the di�erence
between the two maps is trivial and, also, in practice such an augmentation of the obstacles
would be necessary, so as to account for the robot's non-zero dimensions.

48

CHAPTER 5. RESULTS

(a) Augmented Fort AP Hill occupancy grid
map.

0 5 10 15 20 25 30 35

0

2

4

6

8

10

12

14

16

18

(b) Extracted boundary (dimensions in meters).

Figure 5.3: Augmentation of the obstacles to achieve robustness of boundary extraction.

Similar graphs are included for the remaining two environments in Figure 5.4 and Fig-
ure 5.5. Observing the occupancy grid maps and comparing them to the ground truth
models in VREP, we deduce that the proposed controller generates accurate representa-
tions of the environment. Moreover, we stress out that the robot maintains, in general, a
considerable distance from nearby obstacles. Indeed, in partially known environments, such
as the ones studied, it is unsafe for the robot to be in close proximity to obstacles since un-
expected map changes may occur, as a consequence of possible errors in past measurements
and the unpredictability of future ones.

49

CHAPTER 5. RESULTS

Figure 5.4: Generated occupancy grid map and the corresponding robot trajectory for the
Claxton CS Building. (Dimensions: 34m× 43m)

Figure 5.5: Generated occupancy grid map and the corresponding robot trajectory for the
synthetic o�ce environments. (Dimensions: 16m× 11m)

Additionally, to demonstrate the usefulness of k′2 we also include simulation results
without employing it in (3.7), as shown in Figure 5.6.

50

CHAPTER 5. RESULTS

(a) Fort AP Hill.

(b) Claxton CS Building.

(c) Synthetic o�ce environment.

Figure 5.6: Simulation results without the inclusion of k′2 in (3.7).

51

CHAPTER 5. RESULTS

As can be clearly observed, in the absence of k′2 the robot tends to visit certain regions
ofW multiple times, resulting in longer and more complicated paths. This is a consequence
of the fact that the normal derivative is practically uniform along each of ∂EF and ∂EO,
since k̂t depends solely on the probability of occupancy of the corresponding boundary
point. Hence, the robot is attracted to the larger regions ∂EF i, i ∈ IF leaving small
unexplored patches in the areas it currently explores, which require the robot to return
at a later time. Furthermore, comparing the responses with and without k′2, we note
that in the latter case the generated trajectories tend to pass closer to obstacles, which
can be explained by the following reasoning. Generally, the length of ∂EO is signi�cantly
larger than that of ∂EF , especially near the end of the exploration task and, also, the
imposed boundary conditions are mostly uniform. But, to ensure the compatibility of k,
it is obvious that the normal derivative on ∂EO will be considerably smaller (in absolute
terms) than on ∂EF , to account for their disproportionate lengths. Thus, the repulsiveness
of obstacles is signi�cantly reduced, leading the robot to navigate in their close proximity.
This problem is circumvented by the inclusion of k′2 because obstacles located far away
have negligible in�uence on the compatibility integral, allowing nearby obstacles to exert
substantial repulsiveness.

Finally, in Table 5.2 we report the path length of the generated trajectory as well as the
exploration time, averaged over 10 runs starting from randomly chosen initial con�gurations
for each environment. The numbers in parentheses correspond to the results derived without
employing k′2 in (3.7).

Table 5.2: Evaluation of the proposed controller. Numbers in parentheses correspond to
simulations without k′2 in (3.7).

Environment Path Length (m) Time (s)

Fort AP Hill 202.7 (207.1) 1336.1 (1543.4)

Claxton CS 165.2 (259.2) 519.8 (1194.4)

Synthetic 74.3 (114.1) 199.5 (526.1)

5.3 Computational Comparison with Related Literature

In this section we compare our control scheme to an algorithm from the related literature.
In particular, the algorithm proposed in [3], which will be abbreviated BayOpt, employs
Bayesian optimization to train a Gaussian Process that predicts the Mutual Information of
candidate vantage points. This approach can be considered state-of-the-art as it belongs to
the top 4% of papers of its �eld (96th percentile in Scopus).

To contrast the two approaches, we recreate an environment presented in [3] and an-
alyze the resulting trajectories and the average computation time required per iteration.
Unfortunately, a comparison of path lengths cannot be established because these results are

52

CHAPTER 5. RESULTS

expressed as the number of exploration steps in the aforementioned work, without explicitly
stating the length of each step. Moreover, we use the same parameters, wherever relevant,
as the ones presented in BayOpt to maintain an unbiased comparison. Speci�cally, the
sensing radius is set to r = 1m and the grid resolution to mr = 10 cells/m.

The examined environment is shown in Figure 5.7a, along with the path followed by the
competing approach. The path generated by our controller is demonstrated in Figure 5.7b,
and it can easily be perceived to be longer, as the robot traverses the map twice. Nonethe-
less, observing the path in Figure 5.7a and given that r = 1m, it can be deduced that
certain parts of the environment are left unexplored, for instance, but not limited to, the
bottom left corner which is clearly more than 1m from any point along the robot's trajec-
tory. Hence, the greater length of our path is a consequence of the more accurate mapping
of the environment. Additionally, increasing the sensing radius to 1.5m signi�cantly reduces
the path length of our approach (see Figure 5.7c). On the contrary, such a modi�cation may
not bene�t the competing methodology, as it relies heavily on the candidate con�gurations
to be generated within the sensing region but in considerable close proximity to the robot.
Lastly, our approach exceeds BayOpt in terms of the resulting path's smoothness, which
determines, up to a certain degree, how feasible is its execution by an actual robot.

The average and standard deviation of the computation time per step are reported in
Table 5.3. Our control scheme's and BayOpt's data are sampled over 20 and 100 trials,
respectively, starting from random initial con�gurations. The computational cost of the
proposed control law is substantially lower, outperforming BayOpt by a factor of 2.

Table 5.3: Comparison between our control scheme and the one proposed in [3].

Computation Time Per Step (s) BayOpt Harmonic

Average 3.71 1.21

Standard Deviation 0.15 0.41

Overall, our control scheme compares favorably to BayOpt in a number of aspects,
with the most prevalent being computational e�ciency. This is further supported by the
considerably smaller domain's studied in [3], compared to the ones presented in this work.

53

CHAPTER 5. RESULTS

(a) The path followed by the BayOpt algorithm.

(b) The path followed by our algorithm with r = 1m.

(c) The path followed by our algorithm with r = 1.5m.

Figure 5.7: Comparison between our control law and the BayOpt algorithm, in the synthetic
maze map presented in [3].

54

Chapter 6

Discussion

The current chapter serves as a conclusion for this thesis. In Section 6.1 we assess the
overall results and consider whether the de�ned goals were attained. Section 6.2 elaborates
on the di�culties that arose both on a theoretical, as well as on an implementation level.
Finally, we conclude by proposing future research directions in Section 6.3.

6.1 Assessment

Contemplating on the analytical and computational results demonstrated in this work, we
can conclude that the goals described in Chapter 2 have been accomplished. In particular,
we developed a rigorous model of the exploration process and devised a controller, based on
harmonic potential �elds, which under the realistic assumption of consistent sensor mea-
surements, can provably achieve full exploration of any compact and connected workspace
in �nite time, from almost any initial con�guration. We devised an adaptive control law
that adjusts the imposed boundary conditions in real-time, hence, ensuring obstacle avoid-
ance and prescribing the robot's behavior up to a certain degree. Furthermore, we employed
a FMBEM scheme for solving the Laplace equation e�ciently, which allowed us to signi�-
cantly reduce the computational and memory requirements of our navigation scheme. The
e�cacy of our control law was demonstrated through extensive simulation studies in real-
istic environments. Finally, comparisons were made with state-of-the-art algorithms drawn
from the related literature, and it was shown that our approach compares favorably in a
number of aspects.

6.2 Di�culties

The main source of di�culties in developing the proposed control law originated in the
theoretical part of this work. A recurring issue was establishing the absence of stable
equilibria in the interior of the workspace. For instance, an initial approach, inspired by the

55

CHAPTER 6. DISCUSSION

work in [12], consisted in deriving the system's Jacobian on equilibrium points and using
properties of the Hessian matrix of harmonic potential �elds to prove instability using
Lyapunov's indirect method. Nevertheless, discontinuities arising during the exploration
process hindered this approach. Multiple ideas were considered before arriving at the
solution presented in the corresponding chapter.

Ensuring the safety of the control law constituted another signi�cant analytical di�culty.
Initially, we pursued the design of a continuous adaptive law which proved to be futile when
faced with rendering newly-observed obstacles repulsive. To see the complications arising
in this setting, replace the discontinuous term be with a continuous one, whose magnitude
increases as the robot approaches obstacles but vanishes away from them. This reasonable
choice su�ers from the existence of a boundary, between the regions where the safety term
is operating or not, upon which equilibria cannot be characterized as unstable, using the
previously presented approach, since the adaptive laws will operate arbitrarily close to them.
Hence, the use of a discontinuous term was unavoidable but not without its own di�culties,
such proving that this term switches a �nite number of times and that it operates for �nite
time intervals.

As far as the implementation of the controller is concerned, a number of di�erent mod-
ules had to be realized, with the FMBEM being undoubtedly the most demanding one.
Although its analytical derivation is considerably involved, drawing heavily from complex
analysis and calculus, the algorithmic part of the method is its most complicated com-
ponent, incorporating multiple interconnected functionalities based on the corresponding
analytical results. Fortunately, free and open-source code is provided by the author of [11],
as a complement to the book, which can serve as a useful guideline.

Last but not least, the boundary extraction algorithm was crucial for the overall control
scheme and, hence, necessitated careful implementation. Deriving the boundary of the
occupancy grid map required both robustness, being necessary for the Laplace equation
numerical solver, as well as accuracy. Thus, the implemented algorithm was tested in two
di�erent settings. Initially, it was deployed "o�ine" on manually generated maps to test its
e�ectiveness, followed by online deployment on multiple maps to identify possible errors.

6.3 Future Directions

The autonomous exploration problem constitutes a well-studied research topic associated
with a number of extensions that enjoy considerable interest from the robotics commu-
nity. Future research directions include considering 3D workspaces since the Fast Multipole
Boundary Element Method remains applicable in three dimensions and, also, implementing
our algorithm on an actual robot in order to evaluate its performance in real world condi-
tions. Finally, a signi�cant future research direction is extending the proposed methodology
to address the integrated exploration problem, thus, actively taking into account the un-
certainty in the robot's con�guration in the planning process.

56

Bibliography

[1] C. Stachniss, G. Grisetti, and W. Burgard, �Information gain-based exploration using
rao-blackwellized particle �lters,� in Robotics: Science and Systems, 2005.

[2] R. Shade and P. Newman, �Choosing where to go: Complete 3d exploration with
stereo,� in 2011 IEEE International Conference on Robotics and Automation, May
2011, pp. 2806�2811.

[3] S. Bai, J. Wang, F. Chen, and B. Englot, �Information-theoretic exploration with
bayesian optimization,� in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct 2016, pp. 1816�1822.

[4] B. Yamauchi, �A frontier-based approach for autonomous exploration,� in Proceed-
ings 1997 IEEE International Symposium on Computational Intelligence in Robotics
and Automation CIRA'97. 'Towards New Computational Principles for Robotics and
Automation', July 1997, pp. 146�151.

[5] B. Charrow, S. Liu, V. Kumar, and N. Michael, �Information-theoretic mapping us-
ing cauchy-schwarz quadratic mutual information,� Proceedings - IEEE International
Conference on Robotics and Automation, vol. 2015, pp. 4791�4798, 06 2015.

[6] M. Juliá, A. Gil, and s. Reinoso, �A comparison of path planning strategies for au-
tonomous exploration and mapping of unknown environments,� Autonomous Robots,
vol. 33, 05 2012.

[7] F. Amigoni, �Experimental evaluation of some exploration strategies for mobile robots,�
in 2008 IEEE International Conference on Robotics and Automation, May 2008, pp.
2818�2823.

[8] E. Prestes, M. A. P. Idiart, P. M. Engel, and M. Trevisan, �Exploration technique using
potential �elds calculated from relaxation methods,� in Proceedings 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Expanding the Societal
Role of Robotics in the the Next Millennium (Cat. No.01CH37180), vol. 4, Oct 2001,
pp. 2012�2017 vol.4.

57

BIBLIOGRAPHY

[9] V. A. M. Jorge, R. Ma�ei, G. S. Franco, J. Daltrozo, M. Giambastiani, M. Kolberg, and
E. Prestes, �Ouroboros: Using potential �eld in unexplored regions to close loops,� in
2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015,
pp. 2125�2131.

[10] R. Silveira, E. Prestes, and L. Nedel, �Fast path planning using multi-resolution bound-
ary value problems,� in 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Oct 2010, pp. 4710�4715.

[11] Y. Liu, Fast Multipole Boundary Element Method: Theory and Applications in Engi-
neering. Cambridge University Press, 2009.

[12] P. Vlantis, C. Vrohidis, C. P. Bechlioulis, and K. J. Kyriakopoulos, �Robot navigation
in complex workspaces using harmonic maps,� in 2018 IEEE International Conference
on Robotics and Automation, May 2018, pp. 1726�1731.

[13] H. Moravec and A. E. Elfes, �High resolution maps from wide angle sonar,� in Proceed-
ings of the 1985 IEEE International Conference on Robotics and Automation, March
1985, pp. 116 � 121.

[14] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). The MIT Press, 2005.

[15] R. Beatson and L. Greengard, �A short course on fast multipole methods,� inWavelets,
Multilevel Methods and Elliptic PDEs. Oxford University Press, 1997, pp. 1�37.

[16] Y. Saad and M. H. Schultz, �Gmres: A generalized minimal residual algorithm for
solving nonsymmetric linear systems,� SIAM J. Sci. Stat. Comput., vol. 7, no. 3, pp.
856�869, July 1986.

[17] J. T. Katsikadelis, �Chapter four - numerical implementation of the bem,� in
The Boundary Element Method for Engineers and Scientists (Second Edition),
second edition ed., J. T. Katsikadelis, Ed. Oxford: Academic Press, 2016,
pp. 59 � 112. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
B9780128044933000047

[18] E. P. e Silva, M. Trevisan, M. A. P. Idiart, and P. M. Engel, �Bvp-exploration: further
improvements,� in Proceedings 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2003) (Cat. No.03CH37453), vol. 4, Oct 2003, pp. 3239�
3244 vol.3.

[19] R. Ma�ei, V. A. M. Jorge, E. Prestes, and M. Kolberg, �Integrated exploration using
time-based potential rails,� in 2014 IEEE International Conference on Robotics and
Automation (ICRA), May 2014, pp. 3694�3699.

58

http://www.sciencedirect.com/science/article/pii/B9780128044933000047
http://www.sciencedirect.com/science/article/pii/B9780128044933000047

BIBLIOGRAPHY

[20] E. Prestes and P. M. Engel, �Exploration driven by local potential distortions,� in 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 2011, pp.
1122�1127.

[21] R. Sim and N. Roy, �Global a-optimal robot exploration in slam,� in Proceedings of
the 2005 IEEE International Conference on Robotics and Automation, April 2005, pp.
661�666.

[22] H. Carrillo, P. Dames, V. Kumar, and J. A. Castellanos, �Autonomous robotic explo-
ration using occupancy grid maps and graph slam based on shannon and rényi en-
tropy,� in 2015 IEEE International Conference on Robotics and Automation (ICRA),
May 2015, pp. 487�494.

[23] E. Rohmer, S. P. N. Singh, and M. Freese, �V-rep: a versatile and scalable robot
simulation framework,� in Proc. of The International Conference on Intelligent Robots
and Systems (IROS), 2013.

[24] J. E. Bresenham, �Algorithm for computer control of a digital plotter,� IBM Systems
Journal, vol. 4, no. 1, pp. 25�30, 1965.

[25] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MAT-
LAB. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2003.

[26] A. Howard, �Fort ap hill,� 2010, Accessed: 2019-07-15. [Online]. Available:
https://dspace.mit.edu/handle/1721.1/62267

[27] M. Bailey, �Claxton cs building, university of tennessee,� 2010, Accessed: 2019-07-21.
[Online]. Available: https://dspace.mit.edu/handle/1721.1/62283

59

https://dspace.mit.edu/handle/1721.1/62267
https://dspace.mit.edu/handle/1721.1/62283

	Introduction
	Problem Statement
	Motivation
	Literature Review
	Our Approach
	Thesis Structure

	Problem Formulation
	Mathematical Notation
	Exploration Model
	Evolution of the Boundary
	Occupancy Grid Mapping

	Technical Solution
	Control Design
	Fast Multipole Boundary Element Method
	Velocity Control Law
	Adaptive Law

	Stability Analysis
	Complementary Proofs

	Analytical Comparison with Related Literature

	Implementation
	Mobile Robot Simulation in VREP
	Preprocessing of Sensor Measurements
	Occupancy Grid Mapping
	Boundary Extraction
	Boundary Value Projection
	Fast Multipole Boundary Element Method
	Algorithm
	Numerical Results

	Results
	Hardware Setup
	Simulation Results
	Controller Parameters
	Environments
	Generated Trajectories and Maps

	Computational Comparison with Related Literature

	Discussion
	Assessment
	Difficulties
	Future Directions

	Bibliography

