
“© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.” 

 



IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020 1

Broadcast your weaknesses: cooperative active
pose-graph SLAM for multiple robots

Yongbo Chen1, Liang Zhao1, Ki Myung Brian Lee1, Chanyeol Yoo1, Shoudong Huang1 and Robert Fitch1

Abstract—In this paper, we propose a low-cost, high-efficiency
framework for cooperative active pose-graph simultaneous lo-
calization and mapping (SLAM) for multiple robots in three-
dimensional (3D) environments based on graph topology. Based
on the selection of weak connections in pose graphs, this method
aims to find the best trajectories for optimal information ex-
change to repair these weaknesses opportunistically when robots
move near them. Based on tree-connectivity, which is greatly
related to the D-optimality metric of the Fisher information
matrix (FIM), we explore the relationship between measurement
(edge) selection and pose-measurement (node-edge) selection,
which often occurs in active SLAM, in terms of information
increment. The measurement selection problem is formulated as
a submodular optimization problem and solved by an exhaustive
method using rank-1 updates. We decide which robot takes
the selected measurements through a bidding framework where
each robot computes its predicted cost. Finally, based on a
novel continuous trajectory optimization method, these additional
measurements collected by the winning robot are sent to the
requesting robot to strengthen its pose graph. In simulations
and experiments, we validate our approach by comparing against
existing methods. Further, we demonstrate online communication
based on offline planning results using two unmanned aerial
vehicles (UAVs).

Index Terms—Cooperative Active SLAM, Path Planning for
Multiple Mobile Robots or Agents, Multi-Robot Systems.

I. INTRODUCTION

MULTI-ROBOT systems can overcome the resource and
performance limitation of a single robot, which is

useful for applications such as environmental monitoring [1],
exploration [2], perception [3], and active SLAM [4]. In many
such applications, the environment is unknown and the robots
must both collaboratively localize themselves and map the
environment through SLAM. For most tasks, it is desirable, if
not necessary, to maintain low localization uncertainty.

We are interested in cooperative active SLAM, where the
aim is to choose multi-robot trajectories such that the mea-
surements obtained can optimally reduce the uncertainty of
the SLAM results. In our view, a practical active SLAM
framework must also allow for performing other tasks, which
has been overlooked so far in previous work (see, e.g. [5], [6]).
In addition, existing communication systems are subject to
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many challenges, including energy constraints, bandwidth, and
range limitations [7]. To this end, we propose a cooperative
active SLAM framework that requires only a small amount
of information exchange in improving the pose-graph SLAM
result.

A. Related work

Popular frameworks in this area include model predictive
control (MPC) [6], which can only reach a locally optimal
solution, and the partially observably Markov decision pro-
cess (POMDP) [8], which is known to be computationally
intractable. These frameworks aim to choose the best future
trajectory using A-, D-, or T-optimality metrics from optimal
experiment design theory [9]. Two main categories of such
strategies are sampling-based and dynamic-based methods.

Sampling-based approaches [10], [11], [12] discretize the
belief space with randomized waypoints to realize a finite
problem space with acceptable performance bounds. In [13],
a probabilistic roadmap (PRM) is used to generate candidate
paths with multi-robot constraints in both obstacle-free and
obstacle-unknown environments. In [14], the authors intro-
duce topological belief space planning (BSP), which uses the
topological properties of the underlying factor graph over the
future posterior beliefs to direct the search for an optimal
multi-robot active SLAM solution. The main advantages of
sampling-based methods are computational efficiency and the
decoupling of path planning and information metric compu-
tation. Due to dynamic constraints, however, it is challenging
to apply these methods to real robots directly.

In dynamic-based methods, cooperative active SLAM is
usually formulated as a stochastic constrained optimal con-
trol problem that is commonly solved over a constant time-
horizon [15], [16]. One example is extended Kalman filter
(EKF)-based active SLAM for multiple robots using the
A-optimality metric for trajectory selection [6], minimizing
both the localization error and the corresponding uncertainty
bounds. Its main limitation is that it is centralized and com-
putationally expensive. To reduce running-time, [5] presents a
multi-sensor active SLAM method to decentralize the entire
control task to achieve linear computational complexity and
provide sub-optimality guarantees. The main idea is that each
robot receives the planning results of other robots with higher
priority and combines them in solving its own problem. To
improve practicality from the computation and communication
perspectives, the authors of [17] propose a method for anytime
distributed information gathering that provides sub-optimality
guarantees. Even though dynamic-based methods consider



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

motion models, the scenarios considered are usually very
simple. Typical problem settings involve a 2D obstacle-free en-
vironment with high-performance multi-hop communication,
or all-to-all communication. These settings limit practicality
for real multi-robot systems.

B. Overview of the approach

The aim of our cooperative active pose-graph SLAM frame-
work is to collaboratively plan trajectories that reduce pose
uncertainty in order to assist the completion of initial tasks.
We mostly retain the designed path of the original task, while
executing additional trajectories as needed to resolve weak
connection points in the pose graph. Compared to the MPC
framework [5], our framework is suitable for various tasks
because the robot trajectory is modified minimally and only a
small amount of communication data is required.

As shown in Fig. 1, suppose that a group of robots are
initially tasked with visiting several pre-defined waypoints in
an unknown indoor environment. Throughout operation, when
the pose uncertainties are large, the weak connections in their
pose graphs are quickly identified and sent as potential targets
to the common communication network. When several robots
are available in the vicinity of the potential targets, these
robots compute the cost of obtaining the measurement that
correspond to the potential targets. The most suitable robot
is found using a bidding framework based on the computed
costs, and a dynamically feasible trajectory is found between
the current pose of the winning robot and the target while
considering the resource limitation. Then, the winning robot
visits the target by following the planned trajectory. The target
measurements are obtained and sent to the requesting robot to
build a stronger pose graph. The winning robot then resumes
its original task.

C. Paper organization and contributions

This paper presents an active pose-graph SLAM framework
for multi-robot systems using graph topology and submodular
optimization. The problem formulation and the graph topology
analysis are presented and discussed in Sec. II and Sec. III
respectively. In Sec. IV, a bidding-based cooperative active
SLAM method using continuous refinement trajectory plan-
ning is presented. Finally, in Sec. V, simulations and experi-
ments are presented to verify the practicality of the proposed
framework and its communication efficiency, running time,
and estimation accuracy. Compared with our previous work
on single robot active SLAM based on a combination of tree-
connectivity and node degree [18], and other frameworks [6],
[5], the main contributions of this paper are:
� Exploration of the informational relationship between

measurement selection and pose-measurement selection,
which leads to the application of the 1-ESP problem.

� Novel efficient bidding framework for finding optimal
cooperative targets to visit and communication policies
with respect to low data transmission.

� Providing an applied trajectory optimization mechanism
using support vector machine (SVM) and continuous-
time refinement in cooperative active SLAM.

� Application of multiple speed-up techniques in the pro-
posed framework, including fast covariance recovery, the
branch and bound method, and rank-1 updates.

Fig. 1. Structure of our cooperative active SLAM method

II. PROBLEM FORMULATION

A. Graph preliminaries

Let G = (V, E , w) be a weighted, weakly-connected
directed graph over np nodes, V = {1, · · · , np}, and mp

edges, E ⊆ V × V, |E| = mp. In the pose-graph SLAM
problem, every node i ∈ V of the graph corresponds to a robot
pose Pi, and every edge ek = (ik, jk) ∈ E denotes the k-th
relative measurement between two robot poses Pik and Pjk .
We assign positive weights w : E → R > 0 to each edge, such
that the weight matrix Σ = diag{ω(e1), ω(e2), · · · , ω(emp

)}
represents the covariance matrix of the measurements.

We denote the set of successor poses of pose i by V +
i . In

other words, j ∈ V +
i iff (i, j) ∈ E . Let Ã ∈ {−1, 0, 1}np×mp

be the incidence matrix of G, defined by Ãik = −1 (resp.
1) if ek = (i, j) (resp. (j, i)) for some j ∈ V , and
Ãik = 0 otherwise. For an arbitrary choice of i ∈ V , let
A ∈ {−1, 0, 1}(np−1)×mp be the matrix obtained by removing
i-th row from Ã. The reduced weighted Laplacian matrix of
G is then given by LGw = AΣA>.

B. Synchronization on Rn × SO(n) and robot models

Pose-graph SLAM is an instance of a synchronization
problem on Rn×SO(n), n = 2, 3. The aim is to estimate the
values of np unknown poses P = {P1, · · · , Pnp

}, Pi ∈ Rn×
SO(n), given mp noisy measurements of relative rotations
Dij and relative translations pij . These measurements are
modelled as [19]:

pij = R>i (xj − xi) + yij , yij ∼ N (0,Σij)

Dij = ZijRjR
>
i , Zij ∼ Lang(In×n, κij),

(1)

where N (0,Σij), Σij = δ2ijIn×n is the multivariate isotropic
Gaussian distribution, and Lang(In×n, κij) is the isotropic
Langevin distribution with mean In×n and concentration
κij ≥ 0.
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Given a set of noisy measurements pij and Dij , the aim
of the pose-graph SLAM problem is to obtain a maximum-
likelihood estimate of the poses Pi = (xi,Ri), i = 1 · · ·np:

max
P1···Pnp

∑
(i,j)∈E

κijtr(DijRiR
>
j )−

δ−2ij
2
‖pij−R>i (xj−xi)‖22.

(2)
In this paper, we use the SE-sync algorithm [19] to solve

(2). It is a state-of-the-art algorithm, with outstanding compu-
tational efficiency and certifiable global optimality. With the
computational enhancements featured in its latest version, it
exhibits comparable speed to other highly optimized libraries,
like GTSAM [20] and g2o [21].

The dynamic model of the robot corresponding to the
measurement model (1) is defined as:

xi+1 = xi + Ri4xi(i+1) + ỹi(i+1), ỹi(i+1) ∼ N (0, Σ̃ij)

Ri+1 = Z̃i(i+1)4Ri(i+1)Ri, Z̃i(i+1) ∼ Lang(In×n, κ̃ij),
(3)

where Σ̃ij = δ̃2ijIn×n, 4xi(i+1) = (vr∆t, 01×2)> and
4Ri(i+1) are the control inputs, vr is the robot velocity, and
∆t is the time step. Many unknown features will be observed,
which can be used to compute the relative pose measurements
when they are within the sensor range Rs.

Assumption 1: All SLAM results are in a common frame of
reference. This can be achieved if, e.g., the first poses of all
robots are known to each other, or the robots measure common
landmarks during the SLAM process.

C. Cooperative active pose-graph SLAM based on D-
optimality metric

We are interested in finding a D-optimal solution to the
active SLAM problem, where the log-determinant of the
covariance matrix C is minimized. It is, however, challenging
to compute log(det(C)) directly, because it is a large, dense
matrix. An efficient alternative is to use the sparse FIM I via
a Cramer-Rao lower bound (CRLB)1 [22]:

log(det(C)) ≈ log(det(I−1)) = − log(det(I)). (4)

For 3D pose-graph SLAM (1), the FIM is of the form [26]:

I3D =

[
LR3

w 43D
w
>

43D
w L

SO(3)
w + diag{Ψ1, · · · ,Ψnp}

]
. (5)

Here, L
SO(3)
w = LSO(3)

w ⊗ I3×3 and LR3

w = LR3

w ⊗ I3×3,
LSO(3)
w and LR3

w are the weighted Laplacian matrices of the
rotation and translation graphs prior to the Kronecker product.
It is important to note that Ψi and 43D

w depend on the
solution of (2), while the others depend on the graph topology
only. The full expressions are presented in [26], [27]. The
weights w(ek) : (i, j) ∈ E for rotation (resp. translation)
graph is ω

SO(3)
ij =

κ2
ij(2I0(2κij)−I1(2κij)−2I2(2κij)+I3(2κij))

2I0(2κij)−2I1(2κij)

(resp. ωR3

ij = δ−2ij ), where Ip(·) is the p-th modified Bessel
functions [22].

1Because of the non-flatness of Rn×SO(n), the exact CRLB is of the form
C � I−1 + curvature terms, where curvature terms are caused by higher
order terms. As an asymptotic bound, these curvature terms are negligible for
small errors.

We now define the cooperative active pose-graph SLAM
problem. Suppose we are given g robots, and the dynamic
model (3). The aim of cooperative active SLAM is to select
actions for each robot such that the D-optimality criterion of
the predicted FIM is maximized:

max
uv,v=1,··· ,g

g∑
v=1

log(det(Iv)),

s.t. Iv = fpre(uv), Collision-free,

(6)

where uv, v = 1, · · · , g are the candidate actions of the v−th
robot, Iv is the predicted FIM after performing action uv , and
fpre(?) is the FIM prediction function with zero-innovation.
Zero-innovation means that the FIM is updated using the
predicted robot poses based on the motion equation (3) without
the effect of the noise [23]. Collision-free constraints ensure
that the solution trajectory is collision free.

III. GRAPH TOPOLOGY

In this section, we present links between graph-topology
and the D-optimality metric which allow an approximate
formulation of (6). We then present new results that relate the
edge selection problem to the node-edge selection problems.

A. Graph topology analysis for the D-optimality metric

Interestingly, there is a strong link between the FIM and
the topology of the pose graph. Specifically, the FIM can be
calculated based on evaluating the spanning trees of the pose
graph. A spanning tree of a graph G is a subgraph that is a
tree and covers all nodes of G. First, we need the following
definitions of weighted spanning trees:

Definition 3.1: (Weighted value of a spanning tree [24]) Let
TG be the set of all spanning trees of G. The value V : TG →
R+ of a spanning tree T ∈ TG is defined by:

V(T ) =
∏

e∈E(T )

w(e). (7)

where E(T ) represents the set of edges in T .
The weighted number of spanning trees, also called tree-

connectivity [24], is defined as:

tw(G) ,
∑
T ∈TG

V(T ). (8)

A classical result in graph theory is that tree-connectivity is
related to the reduced weighted Laplacian matrix as follows:

Theorem 3.1: (Weighted Matrix-Tree Theorem [25]). For a
simple weighted graph G = (V, E , w) with w : E → R+, we
have tw(G) = det

(
AΣA>

)
= det(LGw).

Further, the determinant of the reduced weighted Laplacian
matrix (equivalently, the tree-connectivity), is a close approx-
imation of the D-optimality metric. The precise statement is
as follows.

Theorem 3.2 ([26]): Consider the nD (n = 2, 3) pose-
graph SLAM problem with isotropic Gaussian translation
noise and isotropic Langevin rotation noise. Define ξ ,

max
i=1,2,··· ,np

1
n−1

∑
j∈V +

i
δ−2ij ‖xj−xi‖22, and let λmin(L

SO(n)
w )

be the minimal eigenvalue of L
SO(n)
w . Then, we have
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Fig. 2. Original pose graph, measurement-selection problem (1-ESP) and
corresponding pose-measurement selection prblem (1-NESP, m-NESP and
multi-NESP) with the same connected nodes

the following bound on the approximation error ε =

log(det(InD))− log(det(LRn

w ))− log(det(L
SO(n)
w )):

0 ≤ ε ≤ npn(n− 1) log(1 + ξ/λmin(LSO(n)
w ))/2. (9)

In practical applications, ε is relatively small. We have:

log(det(InD)) ≈ log(det(LRn

w )) + log(det(LSO(n)
w ))

⇒ log(det(InD)) ≈ n log(tw(GR
n

)) + d log(tw(GSO(n))).
(10)

where d = n(n−1)
2 . So we can solve (6) approximately, by

maximizing the weighted tree-connectivity of the pose graph.

B. Relationship between measurement selection and pose-
measurement selection

A key idea behind our framework is that each robot selects
its own weak connection point as a potential target measure-
ment for the other robots. In this section, we discuss the
relationship between the measurement selection problem [24],
and the pose-measurement selection problem (Fig. 2), which is
the case for the active SLAM problem, from an information-
theoretic perspective.

In the k measurement selection problem, or, equivalently,
the k edge selection problem (k−ESP) [24], the aim is to
find k additional edges to a given base graph that leads to the
highest increase in tree connectivity of the new pose graph.

In this paper, we only consider 1-ESP, the simplest instance
of k−ESP. The 1-ESP problem is defined as:

max
e∈Ec

n log(tw(GeRn)) + d log(tw(GeSO(n))), (11)

where GeRn = GRn∪ eRn

, GeSO(n) = GSO(n)∪ eSO(n) and e is
the new edge in G with eR

n

(resp. eSO(n)) the corresponding
new edge in translation (resp. rotation) graph.

While active SLAM belongs to the multiple node-edge
section problem (multi-NESP), it is not a k-ESP, because we
are selecting both nodes and incident edges, rather than only
edges. This raises the following questions:

Problem 1: Suppose we add an edge to a base pose graph
G0, as in 1-ESP. Can we find an equivalent addition of a node
with two edges, as in 1-NESP, or approximate the difference
in terms of tree-connectivity?

Problem 2: Can we find m nodes and m+ 1 or more than
m edges, as in m-NESP or multi-NESP, such that the increase
in tree-connectivity is approximately equal to the one of the
case adding a single edge?

Solving Problems 1 and 2 implies that we can pose the
active SLAM problem as a 1-ESP problem, which is easier
to formulate and solve. The following theorems answer Prob-
lems 1 and 2.

Theorem 3.3: Let Ge, GeRn and GeSO(n) be the pose, transla-
tion and rotation graphs after adding a new edge with weight
ω1 to G0, and let Gn, GnRn and GnSO(n) be the ones obtained by
adding a new node and two edges to G0, whose weights both
equal to ω2. If 2ω1 ≥ ω2 ≥ ω1 > 1, we have the following
upper and lower bounds on tw(Gn):

lb ≤ n log(tw(GnRn)) + d log(tw(GnSO(n))) ≤ ub,
lb = n log(tw(GeRn)) + d log(tw(GeSO(n))),

ub = (n+ d) log(ω2) + (n+ d) log(2) + lb.

(12)

Proof: Based on Definition 3.1, there are two kinds of
spanning trees T of the graph Ge: either the new edge e
is in E(T ), or not. If e /∈ E(T ), V(T ) remains unchanged.
Otherwise, we have

∑
T :e∈E(T ) V(T ) = ω1tw(G1), where G1

is the the pose graph after adding the same edge, but with
unit-weight. Proceeding similarly, it can be shown that:

lb = n log(tw(G0Rn) + ω1tw(G1Rn))

+ d log(tw(G0SO(n)) + ω1tw(G1SO(n)))

≤ n log(tw(GnRn)) + d log(tw(GnSO(n)))

= n log(2ω2tw(G0Rn) + ω2
2tw(G1Rn))

+ d log(2ω2tw(G0SO(n)) + ω2
2tw(G1SO(n)))

≤ n log(2ω2) + n log(tw(G0Rn) + ω1tw(G1Rn))+

d log(2ω2) + d log(tw(G0SO(n)) + ω1tw(G1SO(n)))

= (n+ d) log(ω2) + (n+ d) log(2) + lb = ub

(13)

where G0SO(n) (resp. G0Rn ) is the rotation (resp. translation)
graph of G0, and G1SO(n) (resp. G1Rn ) is the rotation (resp.
translation) graph of G1.

Theorem 3.4: Let Gm, GmRn and GmSO(n) be the pose, trans-
lation and rotation graphs after adding a chain graph with m
new nodes and m + 1 edges to G0, whose weights all equal
to ω3. If (m + 1)ω1 ≥ ω3 ≥ ω1 ≥ 1, we have the following
upper and lower bounds on tw(Gm):

lb1 ≤ n log(tw(GmRn)) + d log(tw(GmSO(n))) ≤ ub1,
lb1 = n log(tw(GeRn)) + d log(tw(GeSO(n))),

ub1 = m(n+ d) log(ω3) + (n+ d) log(m+ 1) + lb1.

(14)

Theorem 3.5: Let Gm∗, Gm∗Rn and Gm∗SO(n) be the pose,
translation and rotation graphs obtained by adding a general
graph with m new nodes and more than m+ 1 edges, whose
weights all equal ω3. If Gm is a sub-graph of Gm∗, tw(Gm∗)
has the following lower bound:

n log(tw(GmRn)) + d log(tw(GmSO(n))) ≤
n log(tw(Gm∗Rn )) + d log(tw(Gm∗SO(n))).

(15)

The proofs are given in the supplementary material [27].
Theorems 3.3, 3.4 and 3.5 imply that solving the 1-ESP

problem gives a performance bound on the solutions of the
corresponding 1-NESP, m-NESP and multi-NESP problems.
This is further discussed in [27]. An important observation is
that, in Theorems 3.3 and 3.4, the upper bounds ub and ub1
are better approximations of the tree-connectivity in 1-NESP
and m-NESP than lb and lb1 in most real-world datasets.
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IV. WEAKNESS BIDDING FRAMEWORK

A. Bidding framework and communication

Our weakness bidding framework consists of the following
steps. Throughout operation, each robot checks the trace of the
covariance of its pose, which is calculated in a computationally
efficient manner (Sec. IV-B). If the trace of covariance of the
last pose is greater than a threshold, we generate candidate
edge sets (i.e. the weak connection points) by solving 1-ESP
discussed in Sec. IV-C. The weak connection points, which
are located on the selected edges, are communicated to other
robots in a multi-hop manner.

Upon receiving the weak connection points, other robots
generate potential paths to these targets efficiently with RRT-
connect [18] if they are within a set distance. The costs of
these potential paths are communicated as a ‘quoted price’ in
the bidding framework. The robot with the lowest quoted price
wins the bid, plans a safe trajectory (Sec. IV-D), and takes the
target measurement.

For the communication network2, suppose for example that
only one robot publishes its weakness. All robots in the
broadcast range will receive the weak connection points and
also broadcast this target in its own broadcast range. Being
such a multi-hop network, the week connection points will be
transferred to all robots in a chained manner.

B. Fast covariance recovery to trigger weak edge selection

To limit the deviation from the robots’ original task, active
SLAM is activated only when the uncertainty of a robot’s posi-
tion is larger than a set threshold (trace(Cii) ≥ Threshold1).3

We measure the uncertainty in terms of the trace of the
position covariance of i-th pose Cii, which is a block diagonal
element of the overall covariance matrix C. The CRLB
implies we may approximate the covariance matrix C by
inverting the FIM InD. Fortunately, we only need the block
diagonal elements corresponding to the last pose, which can
be calculated efficiently using a recursive formula [28] given
the square root information matrix H with InD = H>H .
The specific operations, which are similar to [28], are shown
in the supplementary material [27].

C. Measurement selection based on submodular optimization,
branch and bound method and rank-1 update

When the uncertainty of a robot is large, we solve 1-ESP
to find a weak connection in its pose graph which is then
sent to the communication network. Note that the k-ESP is
a monotone submodular maximization problem subject to a
cardinality constraint (Theorem 4, [24]).

As the simplest instance of the k-ESP problem, 1-ESP can
be solved by an exhaustive search over all candidate edges
in Ec. We limit the lengths of candidate edges, which are
considered to be straight line paths for simplicity, to be less
than a threshold. This limits the number of communicated

2A demonstration of this broadcast communication is shown in https://
github.com/cyb1212/SM-RAL.git.

3Threshold1 and Threshold2 are user-defined constants. We discuss
why we set Threshold2 = 2Rs + 3vr4t in [27].

additional active SLAM paths and is defined as Threshold2 =
2Rs+ 3vr4t.3 It constrains the trajectory length, and reduces
the approximation loss of converting active SLAM to 1-ESP
in Theorem 3.5.

Given a pose graph, the natural way of selecting the
candidate set Ec is to limit the distance between each pair
of poses. Specifically, we obtain the candidate edge set Ec by
incrementally testing whether the distances between the last
pose and the previous old poses is lower than Threshold2.
To do so more efficiently, we use a bounding box method to
separate the old poses into several parts, which is similar to
the idea of the branch and bound method. We incrementally
update the bounding box of the poses, when a bounding box
has more than Nb robot poses4. This allows us to compare the
distance between a new robot pose Pnew and 8 vertices of the
box instead of every old pose.

Based on this exhaustive method, the optimal edge for
1-ESP (11) can be found by exhaustively computing the
objective function (11) for every candidate edge ec ∈ Ec,
leading to a new pose graph with nodes V and edges E ∪{ec}.
For computational efficiency, the 1-ESP (11) is re-written in
a matrix form as:

max
ec∈Ec

f(ec) = n log(det(LRn

w + acσca
>
c ))

+ d log(det(LSO(n)
w + acκca

>
c )),

(16)

where ac is a column in the incidence matrix corresponding to
new added edge, and σc and κc are edge wegihts in translation
and rotation graphs respectively. f(ec) can be calculated by a
rank-1 update to the reduced weighted Laplacian matrix setting
āc = acσ

1
2
c , âc = acκ

1
2
c , LRn

w = HRn

HRn>
and L

SO(n)
w =

HSO(n)HSO(n)>.5 Overall, our 1-ESP method is summarized
in Algorithm 1.

D. Trajectory optimization

In our bidding framework, each robot generates a ‘quoted
price’ of taking a measurement in terms of trajectory length
required. We perform trajectory optimization to not only
predict trajectory length, but also to use it for navigation
if the bid is successful. In this section, we briefly present
the trajectory optimization component. Additional details are
provided in the supplementary material [27].

1) Initial Trajectory Generation: We use RRT-connect to
generate several initial connected paths from the current pose
xs to the target xm. The shortest one is then used in the
bidding step. Fig. 3 shows an example of a shortest path
generated by RRT-connect (black line). We select several
waypoints {xr,ik } = {xr,ix,k, x

r,i
y,k, x

r,i
z,k}, k = 1, · · · , Nw of

each robot from the paths to generate a safe corridor (colored
regions) for the continuous refinement stage.

2) SVM-based corridor generation: We use ‘safe corridors’
to represent the free space during the continuous refinement
stage. We divide the corridor generation into two stages for
horizontal and vertical directions.

4Nb is a user-defined constant, which should nominally satisfy Nb � 8.
5The ‘SuiteSparse’ library [29] provides efficient subroutines for sparse

rank-1 Cholesky update including cs etree and CholeskyUpdate in Algo-
rithm 1.
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Algorithm 1: 1-ESP
Input: The candidate edge set Ec and the edges in base pose

graph E
Output: The optimal edge e∗c

1 porder = AMDP (LRn

w ); //Column approximate minimum
degree permutation

2 HRn

= Cholesky(LRn

w (porder,porder));
3 HSO(n) = Cholesky(L

SO(n)
w (porder,porder));

4 v ← cs etree(HRn

,′ col′); //Return the elimination tree of
HRn>

HRn

for rank-1 update CholeskyUpdate
5 f∗ ← 0
6 for all ec in Ec do
7 Generate ac based on ec;

8 āc ← σ
1
2
c ac and âc = κ

1
2
c ac;

9 H̄Rn

← CholeskyUpdate(HRn

, āc,v),
H̄SO(n) ← CholeskyUpdate(HSO(n), āc,v);

10 f ← d · 2
∑

i log(H̄Rn

)i,i+ n · 2
∑

i log(H̄SO(n))i,i;
11 if f > f∗ then
12 f∗ = f , e∗c = ec;
13 end
14 end
15 return e∗c

Fig. 3. An example showing safe corridors (every colored corridor is obtained
by one selected waypoint) generated by the RRT-connect method (black line)
and the modified hard-margin SVM quadratic program.

For the horizontal direction, corridor generation becomes
a 2D problem of finding several hyperplanes that divide the
waypoints and the features on the obstacles. The fundamental
idea is to firstly use the SVM formulation to get the slopes
of the hyperplanes. Then, we choose the y-intercept such that
the hyperplane intersects the nearest feature point, or a point
between the waypoint and the nearest feature point.

For the vertical direction, we first limit the z-axis of the
corridor to [xr,iz,k − hlim, x

r,i
z,k + hlim] in order to minimize

change in altitude, and then test for safety. If some parts of
the obstacles are located in the corridor, the range will be
reduced by a constant value hr and tested again until the
corridor becomes safe. For example, if we use an occupancy
grid map, hr can be set as the grid size.

A large safe corridor P is generated. An example is shown
in Fig. 3. Compared with the method in [31], our novel two
stages method can generate a robust and larger corridor.

3) Bezier curve-based continuous refinement: Given the
safe corridors generated as per the previous section, it remains
to plan a smooth trajectory for the robot. Each µ = (x, y, z)
component of the robot trajectory x(t) is represented as a
Bezier polynomial with N control points as in [32]. We
minimize snap J =

∫ tN
t0
‖....x (t)‖22 dt to ensure a smooth tra-

jectory. Rewriting in a matrix form, the trajectory optimization

Fig. 4. Active SLAM trajectory (top, colored curves), resulting pose graphs
and relative measurements (bottom) in a simulated environment. Blue lines
show relative measurements, and the red circles show the estimated robot
poses at last step. (an enlarged version of this figure is shown in the
supplementary material [27])

problem including safe corridor and start and goal constraints
can be solved using quadratic programming, similar to [31].
The problem is convex, and we use the interior point method
to solve it.

V. SIMULATIONS AND EXPERIMENTS

A. Simulation

In this section, we present a simulation study of the entire
cooperative active SLAM framwork in various scenarios. We
use MATLAB on a Dell E5570 laptop.

1) Simulations using 5 robots: We consider a 30m×20m×
1m environment with many obstacles (Fig. 4). The original
tasks of the robots are to visit several waypoints (blue pen-
tagrams) with velocity vr = 0.1m/s. Each robot is equipped
with an omnidirectional sensor with range Rs =1.5m. We set
∆t = 1s, and the noise parameters to δ̃−2ij = 106, κ̃ij = 105,
δ−2ij = 105Nv and κij = 500Nv , where Nv is the number of
common features visible in both Pi and Pj , similar to [18],
[33]. The length of additional active SLAM trajectory is
limited to be below 8m. To avoid excessive planning iterations,
each robot is allowed to respond to other robots’ requests
twice only. The maximum number of active SLAM processes
and maximum additional trajectory length constraint are user-
defined parameters.

The trajectories and estimation results with 5 robots using
our method is shown in Fig. 4. It can be seen that the 5, 3,
2 and 1-st robots move to get the measurements to repair the
weaknesses of the 1, 2, 3 and 4-th robots respectively. These
new measurements help the requesting robots to build stronger
pose graphs. Results show that, using our method, 5 robots can
cooperatively perform SLAM with good accuracy. Meanwhile,
only the measurements along the colored additional trajecto-
ries are communicated, which leads to low communication
cost.

2) Comparison with two existing methods: We compare our
method with two previous methods, RE [6] and DAIA [5],
and the baseline case of performing the original task only,
referred to as the non-active method (Non). For all cases, we
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Fig. 5. CDF of position covariance for one trajectory based on 5 simulations.
Greater position covariance means worse performance. I.e., better performance
corresponds to a CDF approaches 1 in the y-axis as quickly as possible. Blue
line (our method) shows good performance.

TABLE I
COMPARISON OF TRAJECTORY LENGTH AND COMMUNICATION DATA

Communicated data6 Trajectory lengths
Algorithm Mean (MB) STD (MB) Mean (m) STD (m)

Non - - - -
Ours 0.855 0.078 35.6 4.46
RE 25.203 0.7312 39.63 1.34

DAIA 12.543 0.5334 40.72 1.31

consider the same task as in Sec. V-A1. Because the compared
methods do not consider other tasks or maintaining the original
trajectory, we limit the comparison to periods when active
SLAM is being performed. Meanwhile, because these methods
do not have a triggering mechanism similar to ours, we trigger
these methods at randomly selected times. We also modified
these methods to use an optimization framework instead of the
original filter framework. We use identical parameters for all
cases.

Similar to [18], we examine the performance of each method
in terms of robot position covariance using a cumulative
distribution function (CDF) over 5 simulations to account for
randomness, as shown in Fig. 5. Table I shows a statistical
summary of the total additional trajectory lengths and the
communicated data for all robots.

Fig. 5 and Table I show that our method has the best perfor-
mance in terms of uncertainty reduction and average trajectory
length. We also verified that the position covariance reduction
is consistent for other tasks. Further, our framework uses
communication efficiently because it only communicates weak
connection points for bidding, and the measurements in the
additional trajectory. In comparison, other methods are more
communication intensive because they must communicate the
entire previous pose graphs. One shortcoming we observed is
that the additional trajectory length can exceed the threshold,
because our trajectory optimization method (Sec. IV-D) cannot
limit the length of the final generated trajectory. Addressing
this limitation is an important future research direction.

Table II shows a comparison of our method and previous
methods [6], [5] in terms of planning environment, trajectory
type, dimensionality, communication architecture and suitabil-
ity for other tasks such exploration and search. We find that

6Because we assume that the features are already detected and matched
by a data association method, the communicated data seems to be small.
However, a real system will require transmitting a series of images, leading
to a proportional increase in data usage: 25.203O(1) � 12.543O(1) �
0.855O(1) (from first column of Table I). This shows our method can lead
to a significant advantage.

TABLE II
COMPARISON OF CHARACTERISTICS

Characteristics Ours RE [6] DAIA [5]
Environment Obstacle Obstacle-free Obstacle-free

Trajectory Smooth Smooth Smooth
Dimension 3D 2D 2D

Suitable Yes No Nofor other tasks

Communication Multi-hop All-to-all Multi-hop
Highly distributed Distributed

(a) (b)
Fig. 6. Comparison of computation time. (a) Rank-1 update (dashed) vs.
full log determinant (solid). (b) Fast covariance recovery (dashed) vs. full
inversion (solid).

our method is robust, widely applicable and communication-
efficient, which are desirable properties for practical robotic
systems.

3) Effect of efficient linear-algebraic operations: We ex-
amine the improvement in computation time from using the
proposed linear-algebraic operations, namely the rank-1 update
technique for log determinant computation, and fast covariance
recovery. Fig. 6a shows the computation time of optimal edge
selection using our rank-1 update method and a naive log-
determinant calculation of the full FIM. It can be seen that the
rank-1 update method can select the optimal edge with less
computational time. Moreover, there is a greater improvement
with increasing number of poses. Fig. 6b shows a comparison
of the computation time of our fast covariance recovery with
full inversion of the FIM. It can be seen that fast covariance
recovery incurs less computation cost than full inversion.
Again, the speed-up is more significant with increasing number
of poses. This allows fast examination of the uncertainty of
robot poses.

B. Experiments using two robots

In this section, we present an experimental demonstration
in a 4m × 4m × 2m environment with two quad-rotor UAV
platforms and an online communication system implemented
in C++. We run our framework in MATLAB in an offline
manner with predictive simulation, on a desktop PC with an
Intel(R) Core(TM) i7-4790K CPU @ 4.0GHz. The resulting
trajectory is then followed by the two UAVs, which commu-
nicate through the desktop computer in real time. The final
executed trajectories are shown in Fig. 7, and data usage is
shown in Fig. 8. The time required for simulation during the
planning process is less than 0.45s (2.2Hz), which indicates



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

Fig. 7. Offline active SLAM result (The red and blue points respectively
mean estimated result and detected features. The planning parts are shown by
the green and blue lines.) and following trajectory (composited)

Fig. 8. Theoretical sizes of the received data using launcher and receiver

the possibility of online operation through integration with a
SLAM system front-end.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a cooperative active pose-graph SLAM
framework for multiple robots with low communication cost,
high computational efficiency and high estimation accuracy
in an unknown 3D environment. Using convex quadratic
programming, our framework generates smooth trajectories
instead of rough and simple tree-shape paths. Simulations
and experiments show that our method has good performance
in terms of computation and communication efficiency and
accuracy. In the future, we would like to conduct real-time
experiments to further evaluate our method’s practicality, using
a combination of our previous work [18] and mature SLAM
frameworks [33].
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