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Online Simultaneous Semi-Parametric Dynamics
Model Learning
Joshua Smith1 and Michael Mistry1

Abstract—Accurate models of robots’ dynamics are critical
for control, stability, motion optimization, and interaction. Semi-
Parametric approaches to dynamics learning combine physics-
based Parametric models with unstructured Non-Parametric
regression with the hope to achieve both accuracy and general-
izability. In this paper, we highlight the non-stationary problem
created when attempting to adapt both Parametric and Non-
Parametric components simultaneously. We present a consis-
tency transform designed to compensate for this non-stationary
effect, such that the contributions of both models can adapt
simultaneously without adversely affecting the performance of
the platform. Thus, we are able to apply the Semi-Parametric
learning approach for continuous iterative online adaptation,
without relying on batch or offline updates. We validate the
transform via a perfect virtual model as well as by applying the
overall system on a Kuka LWR IV manipulator. We demonstrate
improved tracking performance during online learning and show
a clear transference of contribution between the two components
with a learning bias towards the Parametric component.

Index Terms—Dynamics, Calibration and Identification, Model
Learning for Control, Robust/Adaptive Control of Robotic Sys-
tems

I. INTRODUCTION

ROBOT platforms are becoming more capable with major
advancements in actuator/robot mechanical design. These

advancements are evident in the slew of new robotic platforms.
However, one of the limitations present is the inaccuracy of
their dynamics models. This inaccuracy may affect many as-
pects of robots such as; control, stability, motion optimization,
and interaction. Any task which is dependent on accurate force
control or prediction is subject to issues such as; falling over,
crashing into the environment, instability, or other dangerous
behaviours. As such, there has been a drive to improve the
dynamics models through better measurements and data-driven
learning.

Current dynamics models can be split into three major
model types: Parametric [1], [2], [3], Non-Parametric [4], [5],
[6], and Semi-Parametric [7], [8], [9], [10], [11]. Whether
the models are Parametric or not depends on the use, or
not, of parameters based on known physics. In particular,
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Parametric models typically use the classical rigid body dy-
namics equation to model the forces of the robot and heavily
rely on reformulations, known as regressors [1], [12], to
isolate the inertial dynamic parameters. Parametric models
tend to demonstrate strong ability in generalizing over the
state space of the robot, with a small enough parameter error
and state feedback control. Some examples also benefit from
rigorous mathematical proofs of stability [2]. The Parametric
models do suffer when non-modelled forces are present when
implemented on real platforms which may negatively affect
performance and learning.

Non-Parametric models fall under the context of machine
learning, viewing the problem as a mapping function from the
input state to the output torque. These models typically do
not enforce any strict structure based on physics, allowing the
model to learn any non-linear function which can encapsulate
all and any forces present in the dynamics of the robot. Non-
Parametric methods are normally data-driven as in the case
of Gaussian Process Regression [5], Neural Networks and
Gaussian Mixture Models [6]. The data-driven nature of the
algorithms may cause issues if the data is of poor quality or
limited in quantity which also affects the generalizability of
the model.

Semi-Parametric models are one of the most recent cate-
gories proposed to model dynamics and are a combination of
both the previous models, Parametric and Non-Parametric. The
implementations vary in structure, but generally the Parametric
component is designed to handle the traditional rigid body
dynamics, whilst the Non-Parametric component designed for
a non-linear error which represents all forces not defined in
the Parametric component. As an example in [8], [9] the
authors use similar techniques using Random Feature mapping
and Recursive Regularized Least Squares to learn the Non-
Parametric component whilst using standard least squares for
the Parametric component for the Semi-Parametric with rigid
body dynamics (RBD) mean with data in small batches. We
use the Semi-Parametric model with RBD mean in [8], [9] as
our baseline in section IV-A as it allows independent changes
to both components.

The main focus of this paper will be on the issue of online
simultaneous model updates. We focus on an online algorithm
for faster and continuous learning of the dynamics model. The
online aspect will also allow a faster reaction to any physical
changes in the dynamics model. Whilst batch-based methods
can update with respect to long term physical changes in the
dynamics model, they are restricted by the time it takes to
collect a batch before applying an update to the model causing
higher frequency changes to be missed.
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Figure 1: Snapshots of exemplar Modified Fourier Trajectory with Kuka LWR IV – The real arm was snapshot during the
experiment in section IV-B, where it is initially controlled only through feedback control as shown in the first 5 figures. These
photos provide an idea of the variety of configurations the robot explores. The last figure shows a visualization of the whole
trajectory of the end-effector that the arm performs during the experiment.

Simultaneously updating both components of the model
introduces the issue of a non-stationary target for the Non-
Parametric component, which shall be described in the next
section. We aim to solve this using a consistency transform that
will avoid the need to retrain the Non-Parametric component,
or the need to ignore previous data.

The contribution of this work is as follows:
• Introduction of the non-stationary issue during simulta-

neous learning for Semi-Parametric models.
• Proposal of an approximate consistency transform.
• Defining and analyzing an online simultaneous Semi-

Parametric algorithm.

II. PROBLEM STATEMENT

The true dynamics of a fixed robotic platform, with no contact,
can be represented as:

M(q)q̈+C(q, q̇)q̇+G(q) +F (q, q̇) + ε= τ (1)

Where M represents the inertia matrix, C the Coriolis and
centrifugal matrix, G the gravity vector and F the Coulomb
friction vector, which combined form the Parametric contri-
bution of the model. The ε vector represents any other forces
present, such as friction effects not in the coulomb model. τ
is the joint torques due to the sum of these forces which are
the full torques experienced/measured by the platform.

As mentioned the two components of the Semi-Parametric
model learns the full torque model, τ , where ε is learned by
the Non-Parametric component which has the following form:

ε= f(q, q̇, q̈) = τ − τc (2)
τc = M(q)q̈+C(q, q̇)q̇+G(q) +F (q, q̇) (3)

Thus ε represents the torque error between the current state’s
(q, q̇, q̈) parametric modelled torque, τc, and the full measured
torque output, τ .

With the formulation of the model in (2), when we update
the Parametric component the target function of the Non-
Parametric component will change. Due to the change in the
Non-Parametric target function, the problem is classed as non-
stationary with respect to change in the inertial parameters.
This non-stationary function means that the previously learned
component may be inconsistent with new errors, when the
Parametric component is updated, leading to incorrect pre-
dictions. The inaccurate predictions can increase errors in
trajectory tracking relying on state feedback to control these
incorrect torques or lead to instability.

The non-stationary nature of the problem is an important
issue if we wish to maximize the contribution of the Parametric
component such that the overall model becomes more state
generalizable. The same issue can occur if we want to also
improve estimations of the inertial parameters through the
Parametric component, which can be used by other model
predictive controllers.

To solve the issue of the non-stationary target function we
propose an online Semi-Parametric algorithm with a consis-
tency transform for the Non-Parametric component with re-
spect to the known inertial parameter change. The consistency
transform will allow the previously learned component to
approximately remain consistent with the new target function
without further learning or retraining.

III. METHODOLOGY

In the implementation of this paper, we have used Composite
Adaptive Control [2] and Gaussian Mixture Models [13]
(GMMs) for the Parametric and Non-Parametric components
respectively. The Parametric component can be freely chosen,
however, [2] was chosen due to the proven stable adaptation.
The Composite Adaptive Control algorithm also defines two
sources of learning, the state (position and velocity) and
torque errors. The two errors can be beneficial for Semi-
Parametric controllers, as often the state errors are driven
towards zero quickly, due to both components learning the
correct torque combined. When the state errors approach zero
the learning using this error stalls, meaning that the Parametric
component will stop learning even if the inertial parameters
are incorrect. By using the torque errors as well we can
still drive the Parametric learning even if the state errors
tend towards zero, allowing us to maximize the Parametric
component’s contribution and to minimize the error on the
inertial parameters.

GMMs were chosen for the Non-Parametric component
for several reasons. Firstly, efficient implementations of the
algorithm exist as evidenced in [13], which compared against
other methods such as Gaussian Process Regression, have a
significantly smaller complexity. Secondly, the representation
is statistically significant, which can reduce the amount of
memory required due to previous data being described by
the statistics. The last reason is due to the GMM’s statistical
nature, the space is easier to understand allowing a linear
transformation to be defined and applied.
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Figure 2: Consistency Example - Starting from the original Sine Wave (a), we demonstrate the idea of transforming the GMM
with a known change in the local function. In this example, we take a standard Sine Wave and multiply it by 0.2 and apply the
transformations from section III-D. (b) shows the mean transformation of the GMM sub-models which put the centre of each
Gaussian onto the new updated function. (c) shows the result when the covariance transformation is applied to the sub-models
in (b). The covariances adjust to the new slopes of the function and the new GMM is now consistent with the change in the
function. It is important to note that no learning is done between (a) - (c), only the consistency transform applied.

A. Parametric Model

The basic approach for the Parametric learning component is
to rearrange the rigid body dynamics equations to be linear
with respect to the dynamic parameters, creating a non-linear
matrix based on the robot state and the kinematic parameters of
the robot known as a regressor. The regressor is computable in
closed form given kinematic knowledge of the robot platform.
The regressor can then be inverted or used in an iterative
least-squares algorithm to find the inertial parameters given
input data. In this work we use a Composite Adaptive Control
scheme [2], this combines both dynamics learning and control
in a way that is provably stable with convergence in position,
velocity and inertial parameters.

Composite Adaptive Control [2] learns using two sources
of error from two different regressors. These regressors are
defined as direct and indirect in [2]. The direct regressor
formulation uses (4), known as resolved accelerations and
velocities, to eliminate the need for acceleration measurements
by using the knowledge of the desired trajectory. This allows
the model learning to be driven by the position and velocity
errors during the task, which can be used to show stable
convergence in the tracking errors. We can then reformulate
the rigid body dynamics equation into a matrix which is
independent of the inertial parameters (5).

q̇r = q̇d−Λ(q− qd) q̈r = q̈d−Λ(q̇− q̇d) (4)

M(q)q̈r +C(q, q̇)q̇r +G(q) +F (q, q̇) = Y(q, q̇, q̇r, q̈r)π (5)

Where •d is the desired value of •, Λ is a positive definite gain
matrix, Y is the direct regressor, and π is the inertial parameter
vector. Typically for each link i the inertial parameters are:
πi = [mi,mici

T , Ixxi, Ixyi, Ixzi, Iyyi, Iyzi, Izzi]
T , where mi,

ci and Ii are the mass, centre of mass and link inertia
respectively.

The direct regressor suffers with parameter convergence of
the model as the learning is not dependent on the torque
predictions. The indirect formulation solves this issue by
driving the update law on the predicted filtered torque error
at the given state of the robot. The indirect regressor uses
a filtering approach to reformulate the dynamics equation
without the need for acceleration measurements.∫ t

0
w(r)τ(r)dr = W(q̇, q)π (6)

Where w(r) is the impulse response from a first-order filter
and W is the filtered regressor.

By combining the two regressors into the single update
law (7), the learning process is driven by both tracking and
prediction errors. When combined with the control law in [2],
the controller can be shown to be stable in the Lyapunov sense
with convergence in the parameters, velocity and position [2].

∆π̂ =−P(Y(q, q̇, q̇r, q̈r)T s+W(q, q̇)TRe) (7)

Where ∆• is the change in •, •̂ is the estimated value of •,
s = q̇− q̇r, e is the measured torque error, and P and R are
positive definite weight matrices.

B. Non-Parametric Model

The general concept of the Gaussian Mixture Model is to rep-
resent a non-linear function through a sum of multidimensional
Gaussian sub-models. This represents the full joint probability
space for the inputs and outputs, as each Gaussian has the
dimension of the input plus output dimensions. To define these
Gaussian sub-models, to learn a function, they need to be
placed throughout the state space following the training data.
An example of a trained GMM on a Sine Wave is shown in
figure 2a.

The GMM learning was implemented using the Iterative
Gaussian Mixture Model (IGMM) algorithm defined in [13]
which can be learned iteratively at a low computational cost.
The algorithm also defines a metric for adding and removing
components.

Using the GMM we apply a regression algorithm, known
as Gaussian Mixture Regression, to predict an output based
on a given input. The regression uses the fact that each
Gaussian is defined as a prior, a mean vector (µ), and a
covariance matrix (Σ). As each Gaussian also represents the
joint probability of the inputs and outputs, we can decompose
the parameters representing the mean and covariance as (8).
Using this structure we condition each Gaussian on the input
dimensions, with a given input, to create a conditional mean
for the output dimensions (9).

µj =
[
µji
µjo

]
Σj =

[
Σji,i Σji,o
Σjo,i Σjo,o

]
(8)

x̂o =
M∑
j=1

p(j|xi)
(
µjo+ Σjo,iΣ

j
i,i

−1(
xi−µji

))
(9)
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Where the •j indicates the Gaussian • belongs to, p(j|xi) is
the posterior probability of the input given the jth Gaussian, i
and o represent the input (q, q̇, q̈) and output (τ ) dimensions re-
spectively, µi and µo represent the input and output dimension
means, Σk,l represents the covariance between the dimensions
k and l, and x̂o represents the conditioned prediction output
of the GMR algorithm.

C. Semi-Parametric Model
The Semi-Parametric model takes both of these compo-
nents and combines them such that the Parametric compo-
nent describes the forces related to the dynamic parameters
(M(q), C(q, q̇), G(q), F (q, q̇)), whilst the Non-Parametric
target is the error between the actual torque and the Parametric
component. As mentioned in section II this can create an
inconsistency between the components if both are updated,
which could potentially cause erratic or dangerous behaviour
through poor predictions.

D. Semi-Parametric Consistency
When the Parametric component updates are known with
respect to the inertial parameters, we can determine the change
in torque in any given state given the change in parameters.
In the following, we demonstrate the linear transformation
in the Non-Parametric function with respect to the inertial
parameters.

M(q)q̈+C(q, q̇)q̇+G(q) +F (q, q̇) +f(q, q̇, q̈) = τ (10)
f(q, q̇, q̈) = τ −Y(q, q̇, q̈)π̂ (11)
∂f(q, q̇, q̈)

∂π
=−Y(q, q̇, q̈) (12)

∆f(q, q̇, q̈) =−Y(q, q̇, q̈)∆π̂ (13)

Equation (11) is obtained through substituting (5) in (10). Then
taking the derivative with respect to the inertial parameters
(π) results in (12). When multiplying this by the change in
inertial parameters (∆π) leads to (13). Using (13) we can
approximately update each Gaussian in the GMM in their
local space by linearly approximating the change in torque
with respect to state and parameter update. In particular noting
that each of the Gaussian sub-models is described through
two main variables; the mean, and the covariance, which we
can update with linearly approximated space transformations.
Figure 2 gives a visual example of the transformation.

The mean is particularly straightforward to update using:

τµ′ = τµ−Y(qµ, q̇µ, q̈µ)∆π̂ (14)

Where •µ is the metric • obtained from the relevant dimen-
sions of µ of the Gaussian and •′ is the updated metric.

The covariance is not as straightforward as it lies across the
relevant space that changes non-linearly. We should be able
to make a rough assumption that the covariance matrix in this
situation roughly is equivalent to (15) for the case of dynamics.

Σ =


In×n 0 0 ∂τ

∂q

0 In×n 0 ∂τ
∂q̇

0 0 In×n
∂τ
∂q̈

∂τ
∂q

∂τ
∂q̇

∂τ
∂q̈ In×n

 (15)

Where n is the number of degrees of freedom of the robot.

Using the fact the covariance should describe how those
variables should change with respect to the other dimensions,
the off-diagonal terms should be equal to the partial derivatives
of those dimensions. In the context of this paper, we can omit
the effect of the diagonal and off-diagonal terms on q, q̇, q̈ as
they should not change with respect to the inertial parameters.
The important terms to consider are those on the off-diagonal
terms involving the τ .

Using (15) as an assumption of the covariance layout, the
update to the covariance matrix is as follows:

T =


In×n 0 0 −∂Y(qµ,q̇µ,q̈µ)

∂q ∆π̂
0 In×n 0 −∂Y(qµ,q̇µ,q̈µ)

∂q̇ ∆π̂
0 0 In×n −∂Y(qµ,q̇µ,q̈µ)

∂q̈ ∆π̂
0 0 0 In×n


T

(16)

The covariance matrix can be updated by this matrix by:

Σ′ = TΣTT (17)

Using these equations with a trained GMM model you can
maintain the consistency between the two Semi-Parametric
components, and freely update both online and simultaneously
with a minimal conflict between the components or invalidat-
ing the previously learned GMM model.

It is important to note at this point that the mean update
is exact, however, the covariance update is only approximate
in nature due to the Gaussian sub-models being a first-order
approximation to the data. This can mean that if the Gaussian
approximates an area where the inertial parameters have a
large affect the approximation may deteriorate with large
changes of these parameters.

E. Implementation

The implementation of this system was done using the ORO-
COS framework [14] which specializes in real-time execution.
The dynamics matrices, regressors, and state derivatives of the
regressors have been calculated using the Adaptive Robotics
Dynamics Library (ARDL)1, specializing in support for adap-
tive dynamics algorithms, using algorithms inspired by [12].
The velocity and acceleration of the joints were estimated
through the use of a single-dimensional Kalman filter and PLL
filter respectively [15].

Trajectory Error Compute

Current State Model

Parametric

Non-Parametric

q, q̇, q̈

τ

q̇r

q̈r

−
τc

τ̃

qd, q̇d, q̈d

τoutput

∆π

Figure 3: System Diagram

Figure 3 shows the control system in the entirety with each
component implemented as described in section III with only
the key input and outputs shown. It is key to note that the
current model component is using the same model as the
Parametric component and replicates the change in the inertial
parameters.

1https://github.com/smithjoshua001/ARDL
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IV. EXPERIMENTAL VALIDATION

To demonstrate the use of the consistency transformation we
define two main experiments. The first will use a pre-trained
baseline model [8] and a pre-trained GMM model trained
solely on artificial dynamics model data. The second shall
train the proposed model with the transformation online on
a real platform.

A. Virtual Model Experiment

To demonstrate the non-stationary effect, we shall use a virtual
dynamics model of a Kuka LWR 4 manipulator, with simulated
inertial parameters (π). This model will generate the torque
data required to train both components and to provide the
updated torque when the inertial parameters are changed.
State data will be generated from seven pre-defined exciting
trajectories appended to the end of each other. This state will
contain q, q̇, q̈, and τ .

Initially, the Parametric component uses 0π for the inertial
parameters, such that it produces zero torque. The baseline [8]
and GMM model are then trained on the error as stated in (2)
using every third data point. Effectively the models are trained
to learn the entire robot dynamics.

The Parametric component is then updated to use 0.5π
as inertial parameters. We then compare the output of the
Parametric component plus the baseline/GMM model with the
virtual dynamics model to get the normalized Mean Squared
Error (nMSE) measure (18). The consistency update is then
applied to the GMM model and the outputs compared again.

nMSE• =

∑
(•−•̂)2

N

(•max−•min) (18)

Where •min and •max are obtained as the maximum and
minimum values of the desired position and velocity when •
is q or q̇. When • is τ however, •min and •max are obtained as
the maximum and minimum values of the recorded measured
joint torque of the robot.

The metrics that will then be analysed will be the initial
baseline and GMM torque prediction error on the full dynam-
ics, and the Semi-Parametric torque prediction error with and
without the transformed GMM and the baseline model with the
new inputs. The trajectories that will be used will be several
different Modified Fourier trajectories [16], a cyclic trajectory
that guarantees a particular starting state.

B. Real Platform Experiment

To demonstrate the online simultaneous Semi-Parametric con-
troller we aim to show three key features. First, the Non-
Parametric component can learn the desired function, online,
starting with an incorrect Parametric component. Second,
applying the transform without updating the Non-Parametric
component does not significantly increase the tracking or
torque errors. Third, to show that both components can be
learned simultaneously with the same effect.

To do this we use a Kuka LWR IV to execute five repeating
trajectories for 10 minutes. The following phases are designed
to show the initial errors due to the initial incorrect model,
followed by the previously defined features.

1) Starting from an incorrect Parametric component and
an empty Non-Parametric component, the trajectory will
be executed. The Non-Parametric component will be
updated iteratively but not output to the control. The
Parametric component does not update. (0-90 seconds)

2) The Non-Parametric component will then continue to
be updated iteratively and will output the learned torque
error. The Parametric component does not update. (90-
180 seconds)

3) The Parametric component will then be updated itera-
tively with the Non-Parametric component being trans-
formed accordingly but not updated. (180-360 seconds)

4) The Parametric component will continue to be updated.
The Non-Parametric component will both be updated
iteratively and transformed continuously. (360-600 sec-
onds)

The phases will also be modified to show the effects of not
applying the consistency transform. In particular, phase 3 will
become identical to phase 4.

With the real robot, due to the lack of ground truth of the
dynamics at the desired state, (qd, q̇d, q̈d), we cannot directly
use the torque as an performance metric. We use other metrics
as indirect indicators of performance. In particular, we shall
look at the state errors for position and velocity, which provide
the feedback signal for the controller, and the error between
the measured torque and the estimate of the current torque
from the Semi-Parametric model at the robot’s current state.

The exemplar trajectory, shown in figure 1, will be shown
in a graph with and without the transform. The main evi-
dence will be provided as nMSE of the performance metrics,
calculated from the concatenated data from each phase of
each trajectory. The desired outcome of this experiment should
show minimal change to the normalized mean squared error
(nMSE) or a reduced nMSE.

The parameters for the Parametric component are as fol-
lows: R = In×n, P is obtained through equations (16)
and (17) in [2], with λ0 = 1.5 and k0 = 0.1. The er-
ror gains Λ = diag([20,20,20,20,10,10,10]) and KD =
diag([5,5,5,5,2,2,2]) from (6) and (8) in [2]. The initial Σ
for the IGMM algorithm was obtained through a subset of
pre-collected data from the trajectory shown in figure 1.

V. RESULTS

A. Transformation Validation
The results from the simulated experiment are shown in
figure 4. The chart shows three main results; the errors for the
baseline model [8], with 400 random features, and the GMM
model initially trained on the full torque, the recall errors for
both models when the inertial parameter update is applied,
and the recall error for the GMM model transformed with the
consistency transform.

The results show that the baseline method [8] and the GMM
model without the consistency transform demonstrate the non-
stationary effect increasing the nMSE in all joints. The GMM
model with the consistency transform does show an increase
in error from the original model. This is reduced compared
to the baseline and GMM without the transform models. This
shows that the transformation, whilst not perfect due to the
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Figure 4: Virtual Model Adaptation - The random feature RRLS model [8], shows the non-stationary issue, as evident in the
large increase in nMSE in all joints between the 0π and 0.5π models. The proposed GMM model demonstrates the same
effect between the two models without consistency transform, however, when the consistency transform is applied the error is
reduced. This is a strong indication that the model is kept more consistent with the update in inertial parameters.

approximate nature of the transform, adjusts the GMM to the
change in parameters allowing the old data to remain more
consistent.

B. Real Platform Experiment
Figure 5 displays the nMSE results, along a log scale, when
running without and with the consistency transform respec-
tively.

In figure 5a we can see that during Phase 1, where the Non-
Parametric component does not output, the errors are at the
maximum they can be with respect to the high feedback gains.
The torque nMSE in this phase is particularly high. During
Phase 2 we can notice a drop in most of the metrics. The torque
nMSE in Phase 2 again is quite high, especially in joint 2.
Phases 3 and 4, which are equivalent for the no transformation
scenario, show that nMSE increases almost back to the original
nMSE from Phase 1.

From figure 5b, Phase 1 and 2 are very similar in scale
to figure 5a. Phases 3 and 4 we can see that the nMSE
metrics are of a similar or less order than in Phase 2. There
is a small increase that can be noticed in some metrics from
Phase 3 to 4, however, these are relatively small and are most
likely the cause of the GMM having local sub-models that
sub-optimally represent that space in the target function or
due to numerical instability on the covariance. The lack of
improvement in the nMSE measures does not mean that the
models are inconsistent in this case as it can be that the
components, given their initial parameters, have reached a
minima.

The error behaviour is more evident with the trajectory
shown in figure 1. The trajectory provides a specific run’s evo-
lution over the experiment, shown in figures 6 and 7. Figure 6,
where the transform is not applied, shows that the learning
appears to stall, with the sum of the two components being
much greater than the output of the controller indicating high
feedback torques. The deteriorating trajectory tracking also
indicates the higher feedback torques needed to compensate
for the incorrect model torque.

Figure 7, where the transform is applied, maintains the tra-
jectory tracking performance whilst learning both components.
Figure 7a shows clearly the transference behaviour between
the two components. We can see that as the Parametric
component gets updated iteratively, the torque contribution is
increased. With the Non-Parametric component we can see a

relative decrease in torque contribution of a similar magnitude
as the increase in Parametric torque. This behaviour indicates
that the components are being adapted with respect to each
other so that their output is consistent, and the training biases
the model towards the Parametric component.

An observation from the experiments is that the bias has
the effect of simplifying the Non-Parametric target function, as
evidenced by the reduced increase of sub-models in the GMM.
Without the transform, we observed the GMM increased by
eight sub-models on average, whereas with the transform
the GMM increased by a single sub-model on average. This
indicates that the GMM is kept consistent as fewer new sub-
models are needed for the new target function.

VI. CONCLUSION

This paper addresses the non-stationary issue when updating
both components of a Semi-Parametric model simultaneously
and online. We have verified that a consistency transform of
the Non-Parametric component with respect to changes in
parameters can reduce errors caused by the non-stationary
problem.

Overall, from sections V-A and V-B and figures 6 and 7, we
show using the consistency transform we are able to maintain
performance whilst adapting both components online without
explicit retraining of the Non-Parametric component. The ex-
periments also show that the Semi-Parametric model biases the
learning towards the Parametric component, hence reducing
the contribution of the Non-Parametric component. The bias
in the Semi-Parametric model should allow greater ability in
terms of generalization, as the Parametric component typically
does a better job at generalizing over the state space. The
reduced contribution of the Non-Parametric component will
also reduce the effect of incorrect predictions as they should
be relatively small compared to the Parametric component.

VII. DISCUSSION

In future we plan on expanding the analysis of the simplifi-
cation of the Non-Parametric target function and the general-
ization capability of the model due to the bias effect towards
the Parametric component. Which has been observed during
the experiments in sections V-A and V-B.

The issues around the Gaussians, becoming singular or
becoming numerically unstable, can be further explored as an
extension. Possible solutions to explore are; adding robustness
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(a) No Transform (logscale) - With no transform the nMSE appears to have a trend where Phase 2 learns the dynamics decreasing the nMSE
error. Onwards though through Phase 3 and 4 the nMSE tends to increase in most joints with the final nMSE in all joints over all metrics
being larger than in Phase 2. This indicates the two components conflicting.
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(b) Consistency Transform (logscale) - The metrics show that the nMSE reduces from phase 2. After phase two the nMSE does not change
by a large margin, especially when comparing both Phases 3 and 4 against Phase 2. This is indicative that the two components are being
kept consistent with each other, maintaining better accuracy overall.

Figure 5: nMSE of metrics (q (rad), q̇ (rads−1), τ (Nm))

to singularities, or regularization, to the GMM sub-models,
adapting the idea of consistency transform to other models,
such as neural networks that are better suited for pure re-
gression problems. Another extension would be looking into
the physical plausibility of the inertial parameters, as this is
currently not enforced.
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(a) Joint 2 - Torque Contributions - The contribution of both components to the combined output of the model with state feedback. With
no consistency transform, we can see that the components stall in learning. The stall indicates that the change in the Parametric component
is not taken into account in the Non-Parametric component. Phase changes indicated by background. Phase 1: No Parametric update, Non-
Parametric updates but does not output. Phase 2: No Parametric update, Non-Parametric updates and outputs. Phase 3: Parametric updates,
Non-Parametric updates but no transform is applied. Phase 4: Same as Phase 3.
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(b) Joint 2 - Position and Velocity Error - As the Parametric component continues to learn we see that the errors increase due to this
inconsistency. Phase changes indicated by background.

Figure 6: Non-Consistent Transform Exemplar
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(a) Joint 2 - Torque Contributions - The contribution of both components to the combined output with state feedback. We see that as the
components adapt, the Parametric component increases and the Non-Parametric component equivalently decreases. Phase changes indicated
by background. Phase 1: No Parametric update, Non-Parametric updates but does not output. Phase 2: No Parametric update, Non-Parametric
updates and outputs. Phase 3: Parametric updates, Non-Parametric does not update but the consistency transform is applied. Phase 4:
Parametric updates, Non-Parametric updates and the consistency transform are applied.
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(b) Joint 2 - Position and Velocity Error - We determine that the errors during the learning do not change significantly when consistently
transforming the model. Phase changes indicated by background.

Figure 7: Consistent Transform Exemplar


