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Abstract— This paper studies a variant of the multi-player
reach-avoid game played between intruders and defenders with
applications to perimeter defense. The intruder team tries to
score by sending as many intruders as possible to the target
area, while the defender team tries to minimize this score by
intercepting them. Finding the optimal strategies of the game
is challenging due to the high dimensionality of the joint state
space, and the existing works have proposed approximation
methods to reduce the design of the defense strategy into as-
signment problems. However they suffer from either suboptimal
defender performance or computational complexity. Based on
a novel decomposition method, this paper proposes a scalable
(polynomial-time) assignment algorithm that accommodates
cooperative behaviors and outperforms the existing defense
strategies. For a certain class of initial configurations, we derive
the exact score by showing that the lower bound provided by
the intruder team matches the upper bound provided by the
defender team, which also proves the optimality of the team
strategies.

I. INTRODUCTION

Surveillance of perimeters and securing perimeters are im-
portant tasks in civilian and military defense applications. It
has become practical to deploy large number of autonomous
agents to address these problems using multi-robot systems.
Approaches to counter intrusions by unmanned vehicles
have been studied including detection and tracking mech-
anisms [1], patrolling (scheduling) scheme to visit points
on the perimeter [2], and GPS spoofing to manipulate the
behavior of the agents [3].

Scenarios with evasive targets who need to be detected,
intercepted, or surrounded by other robots are often formu-
lated as pursuit-evasion games. The two-player version of
these games (one evader vs. one pursuer) may be formulated
as a differential game and solved using the Hamilton-Jacobi-
Isaacs equation [4]. However, the high dimensional state of
multi-player games can make this approach intractable. Mul-
tiple practical approaches to analyzing the multi-player game
have been considered including Voronoi tessellation [5], [6],
cyclic pursuit [7], and vehicle-routing formulation [8].

When a pursuer robot is tasked to defend a certain
area/target against the evader, the pursuit-evasion game
becomes the target-guarding problem, first introduced by
Isaacs [4]. In these games the evader/intruder tries to
reach the target without being intercepted, and the pur-
suer/defender’s goal is to either intercept the intruder or delay
its intrusion indefinitely [9]–[11]. In this paper we study
the multi-player version of the target-guarding problem, also
called reach-avoid games [12]–[14].
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In related work, the multi-player game has been approxi-
mated as the combination of two-player games [14]. All pair-
wise two-player games between agents can be solved using a
differential-game formulation using numerical tools, even in
the case of complex environment geometry. The authors then
propose a team defense strategy that assigns to each defender
one feasible intruder to capture. This assignment provides an
upper-bound on the intruder’s score, but the obtained defense
policy is potentially suboptimal because it can not consider
cooperative maneuvers for capture.

Our prior work extended the assignment strategy by in-
corporating a cooperative behavior absent from two-player
games: a pair of defenders employ a “pincer movement” to
pursue an intruder from both sides [15]. Although the defense
performance was improved, the policy required a solution to
the maximum-independent-set problem which is NP-hard.

This paper extends the decomposition method first intro-
duced in [15], and proposes a polynomial-time algorithm that
outperforms the existing defense policies. We also discuss
the optimality of the strategies by deriving a condition
under which the lower-bound provided by the intruder team
matches with the upper-bound provided by the defender
team. To the best of our knowledge, we are the first to show
such optimality (equilibrium strategies) in a pursuit-evasion
game played between teams.

The two main contributions of this paper are (i) the
polynomial-time defense strategy that outperforms the ex-
isting ones; and (ii) the analysis that shows the optimality of
the proposed strategy, when the defenders have a numerical
advantage and the initial configuration satisfies a certain
condition. Our video (available at https://youtu.be/
6zUPkzh_iPU) illustrates the complexity of the problem
and the effectiveness of the strategy through multiple multi-
robot simulations.

Section II formulates the problem. Section III reviews
existing results that we use to build our method. Section IV
presents the decomposition method. Section VI proposes the
defense policy and analyzes its performance. Section VII
provides numerical results.

II. PROBLEM STATEMENT

This section formulates the reach-avoid game for robots
defending a perimeter. The target T ⊂ R2 is assumed to
be a convex region on a plane, and its perimeter is given by
an arc-length parameterized curve γ : [0, L) → ∂T , where
L denotes the perimeter length. We use s ∈ [0, L) to denote
the arc-length position on the curve.

A set of ND robot defenders D = {Di}ND
i=1 are con-

strained to move on the perimeter. We assume that the
defender robots must stay on the perimeter of the enclosed
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compound. The position of the ith defender is described by
sDi

or xDi
= γ(sDi

). The defender robot’s control input is
the signed speed; ṡDi = ωDi with the constraint |ωDi | ≤ v̄D.

A set of NA intruders A = {Aj}NA
j=1 have first-order

dynamics in R2. The control inputs are the velocities; ẋAi =
vAi

with the constraint ‖vAi
‖ ≤ v̄A. The ratio of the

maximum speeds is described by

ν =
v̄A
v̄D
∈ (0, 1], (1)

i.e., the defenders are at least as fast as the intruders. Also,
this paper focuses on the case NA < ND for conciseness.

An intruder is captured by a defender if their distance
becomes zero. In a microscopic view, Ai scores if it reaches
the target (xAi

∈ ∂T ) without being captured by the
defenders. In this work, we assume that the defender is
consumed/eliminated when it captures one intruder. This is
a reasonable assumption because [15] shows a method for
the intruders to ensure one defender can not make multiple
captures.

We assume perfect state-feedback information structure:
i.e., the state vector z = [sD1

.., sDND
,xT
A1
..,xT

ANA
]T is

known to every player. The team strategies ΓD and ΓA are
mappings from the current states z to the control actions
ωD = [ωD1 .., ωDND

] and vA = [vA1 ..,vANA
] respectively.

Problem. Given an initial configuration of the game, z0,
what are the optimal team strategies Γ∗A and Γ∗D for the
differential game

min
ΓD

max
ΓA

Q(z0; ΓD,ΓA), (2)

and what is the outcome, Q∗(z0) = Q(z0; Γ∗D,Γ
∗
A)?

III. BACKGROUND

We examine two limiting cases from our prior work: single
defense against one intruder, and pair defense against one
intruder [15], [16]. We also review existing assignment-based
defense strategy for the multiplayer game [14], [15].

A. One v.s. One Game

Given the defender location sD, the game space can
be divided into intruder-winning region RA(sD) and the
defender-winning region RD(sD), and the surface that sep-
arates the two is called the barrier [16].

If the game starts in a configuration xA ∈ RA(sD), there
is a point on the perimeter that the intruder can reach before
the defender does. In the perimeter defense game, the barrier
for the one vs. one (1v1) game is a closed curve that starts
and ends at the defender position.

Property 1. The barrier consists of left and right barriers.
Starting from xA ∈ RD, the intruder cannot penetrate the
left (resp. right) barrier so long as the defender is moving
counter-clockwise (ccw) (resp. clockwise (cw)) [15], [16].

If the initial configuration is xA ∈ RD(sD), the defender
can move to keep the intruder inside of RD(sD). This
implies that the intruder cannot enter RA(sD) – therefore
cannot reach the perimeter – without being captured. The

(a) (b)
Left barrier
Right barrier

Fig. 1: Barriers in 1v1 game for a polygonal perimeter with ν = 0.7. The
intruder winning region RA(sD) is colored in red. (a) Initial configuration
with xA ∈ RD . (b) Both players moved optimally and the intruder stays
in the defender-winning region.
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(a) (b)

Fig. 2: The intruder-winning region RC in the 2v1 game. (a) The intruder
starts in Rpair and aims for the midpoint, while the defender robots perform
the pincer maneuver. (b) The intruder eventually enters RD(Di).

construction of the barrier and the feedback strategies are
detailed in [15], [16], but only their existence is sufficient to
complete the analysis in this paper.

B. Two v.s. One Game

When we have two robot defenders, let Di and Dj be the
defender on the cw and the ccw side. For conciseness, we
denote RA(i) to mean RA(sDi

). A naive extension of the
1v1 game will conclude that the intruder-winning region
against a pair of defenders is

RI(i, j) = RA(i) ∩RA(j). (3)

However, the intrusion strategy and the winning region are
now different because the intruder has to avoid both Di and
Dj simultaneously.

The actual intruder-winning region in the two vs. one
(2v1) game, which we denote by RC(i, j), is smaller than
RI(i, j). We use the subscript I for independent and C is
for cooperative. The boundary of RC(i, j) consists of a
combination of the left barrier of Di, a circle with the center
at the midpoint of the two defenders, and the right barrier
of Dj (see Fig. 2).

The difference withRI(i, j) is given by the paired-defense
region defined as:

Rpair(i, j) , RI(i, j)−RC(i, j). (4)

Property 2. If xA ∈ Rpair(i, j), and if the defenders use a
pincer maneuver [ωDi

, ωDj
] = [1,−1], then xA ∈ RD(i)

or xA ∈ RD(j) occurs before the intruder reaches the
perimeter [15], [16].



If the game starts in the configuration xA ∈ RC , then
there exists a breaching point (the midpoint between the
two defenders) that the intruder can reach before the two
defenders.

C. Existing Assignment Strategies

For a given initial configuration {xAi}NA
i=1 and {xDj}ND

j=1,
the defender-winning regions can be used to determine a set
of intruders that each defender can potentially win against.

Maximum Matching [14]: Consider a bipartite graph
with D and A as two sets of nodes. We draw an edge
between Di and Aj if capture can be guaranteed: xAj

∈
RD(Di). Maximum-cardinality Matching (MM) refers to
finding a largest set of edges such that there is at most one
edge extending from each node. By performing MM on this
graph, we assign at most one intruder to each defender.

The cardinality of the matching, N cap
MM , tells us that at least

N cap
MM intruders will be captured. The upper bound on the

intruder score is then given by

QMM = NA −N cap
MM .

The MM assignment can be found in polynomial time
[14]. However, this method assumes that all defenders play
independent games and ignores the possibility of cooperative
2v1 defenses.

Maximum Independent Set: Our prior work extended
the above assignment method by incorporating the 2v1
games [15]. The bipartite graph is augmented with additional
nodes representing pairs of defenders. To avoid conflicting
assignments where a single defender is used in both 1v1
and 2v1 defense, an assignment method based on Maximum-
Independent-Set (MIS) formulation was proposed. The upper
bound from this method is denoted by QMIS, and we have
QMIS ≤ QMM. The downside of the MIS assignment strategy
is its computational complexity (NP-hard), which motivates
the derivation of a scalable defender team algorithm.

This paper proposes a polynomial-time algorithm with a
score bound QLG that satisfies QLG ≤ QMIS ≤ QMM. In
addition, while the above methods only provide upper bounds
on the score, this paper discusses the optimality of the team
strategy. This is done by also considering the lower bound
on the score guaranteed by the intruder team.

IV. LOCAL GAME DECOMPOSITION

We describe a method to partition the game space into
subregions where “local games” between nD defenders and
nA intruders are played. This decomposition leads directly
to an intruder team strategy and accompanying lower bound
on the intruder’s score.

A. Local Game Region

We call the intruder winning region RC(i, j) in the 2v1
game to be the local game region (LGR), and RI(i, j) to be
the Independent-LGR (I-LGR). These regions are generated
by an ordered pair Dpair = (Di, Dj), and we refer to Di

and Dj as the right- and left-boundary defender. In the
degenerate case i = j we set RI(i, i) = RC(i, i) = RA(i).
The total number of LGRs (or I-LGRs) is N2

D, and we

(a) (b)

D1D2

D3
D4

A1

A2

D1D2

D3
D4

A1

A2

Fig. 3: (a) Boundaries of LGRs. The 7th regionR7
C with D7

pair = (D4, D3)

is highlighted. The 7th subteams are S7D = {D1, D2} and S7A = {A2}.
(b) Boundaries of I-LGRs. The 7th intruder subteam is Ŝ7A = {A1, A2}.

(a) (b)

1
2

3

5

4

1
234

5 6

1 2
3

5

4

<latexit sha1_base64="AJcGvGDZCSuZy1mPHMaKe6iqYv0="></latexit>

<latexit sha1_base64="fZh/ryZ28fljypAXvxp0V+3cTYg="></latexit>

<latexit sha1_base64="xKDaPwxL47aeWJrom/bA6bML8v0="></latexit>

<latexit sha1_base64="SJ1KCPcHnyBd0pXXfxSPFH4P3dI="></latexit>

1
234

5 6

Fig. 4: (a) Local intrusion strategy (arrows) for the subteam corresponding
to the 21st LGR. The score is q21 = 3 − 3 = 0. (b) Optimal partitioning
G∗ = {10, 11} that guarantees the score QLG = q10 + q11 = 2.

use the superscripts k ∈ {1, ..., N2
D} to enumerate them.

We also use Dk
pair = (Dk

R, D
k
L) to denote the right- and

left-boundary defenders of kth LGR (or I-LGR). Note the
following properties that are straightforward to see:

Property 3. The boundary of an I-LGR consists of the left
barrier of Dk

R and the right barrier of Dk
L.

Property 4. The intersection of two I-LGRs is an I-LGR.

We define the kth defender sub-team, SkD, to be the subset
of defenders that are on the ccw segment from sDk

R
to

sDk
L

(not including the boundary defenders). The intruder
subteam, SkA (resp. ŜkA), is the set of intruders contained in
RkC (resp. RkI ). See Fig. 3 for an example.

We use nkD , |SkD|, nkA , |SkA|, and n̂kA , |ŜkA| to denote
the cardinality of the subteams. Since RkC ⊆ RkI , we have
the relation nkA ≤ n̂kA. Also note that the difference ∆nkA ,
n̂kA − nkA comes from the intruders inside Rkpair. We use the
LGRs to construct the intruder team strategy and the lower
bound on Q, whereas the I-LGRs will later be used in the
defender team strategy.

B. Local Intrusion Strategy
By playing a 2v1 game against the boundary defenders, any
intruder in RkC has a strategy to win against all defenders
except for those in SkD. In other words, the intruders can play
a local game that involves only SkD and no other defenders.

Lemma 1 (Local game score). Define qk , nkA − nkD to be
the local game score (LGS). If ∃ k such that qk > 0, then
the intruder team can score at least qk points.

Proof. If the nkA intruders in RkC all play the 2v1 game
against (approach near the midpoint of) the boundary de-



fenders Dk
pair, then the defenders outside of this LGR cannot

reach those intruders. This implies that at most nkD intruders
are captured, since we assume that each defender can capture
at most one. Hence, the remaining qk intruders score.

Extending this idea to the entire team, the intruders can
partition A into disjoint sub-teams and play separate local
games. The optimal partitioning is discussed next.

C. Guaranteed Total Score

We consider a partitioning of the intruder team based on
LGRs. This approach is certainly not the only way to parti-
tion the team, but we later show in Sect. VI-C that it results
in an optimal intruder performance. Let G ⊂ {1, ..., N2

D}
denote a set of disjoint LGRs: i.e., RkC ∩ RlC = ∅ for
k, l ∈ G. The set G gives us a way to partition the intruders
into |G| disjoint subteams.

Combining G with the local intrusion strategy guarantees
a lower bound Qlow on the overall score:

Qlow(G) ,
∑
k∈G

max{qk, 0}. (5)

An optimal G∗ is given by G∗ , arg maxGQlow(G), and
it gives the guaranteed total score:

QLG , Qlow(G∗) = max
G

(∑
k∈G

max{qk, 0}
)
. (6)

Values for QLG and G∗ can be obtained in O(N4
D) time

by recognizing (6) as an instance of the maximum weight
independent set problem on a circular arc graph [15]. For
applications where it is critical to avoid any intrusion, it is
easy to test whether the intruders can guarantee a score of
at least one: QLG > 0⇔ ∃ qk > 0.

We let Γ∗A denote the intruder strategy corresponding to
the teaming into G∗ and then approaching the midpoint
between the boundary defenders of the associated LGR.

Theorem 1. The intruder team strategy Γ∗A guarantees that
the intruders score at least QLG defined in (6), i.e.,

Q(z0; ΓD,Γ
∗
A) ≥ QLG(z0), ∀ΓD ∈ UD. (7)

where UD is the set of all permissible defender strategies.

Proof. Lemma 1 and the discussion above.

Now the question is whether the defenders can prevent
the intruders from scoring any more than QLG – is it also an
upper bound? We address this question in Sec. VI.

V. EXTENDED ENGAGEMENT TYPES

We discuss two additional types of engagements that our
defense strategy in Sec. VI leverages: the implicit assignment
and the sequential paired defense. The distinct feature of
these engagements is the aspect of dynamically changing
assignments which the existing MM and MIS approaches
fail to capture.

A1

A2

Di

Dj

left barrier

right barrier

Di
Dj

A1

A2

(a) (b)

Implicit assignment zone
Implicit assignment 

zone

Fig. 5: The implicit assignment structure. (a) Initial configuration where
A1 has 2v1 assignment, and A2 is in the implicit assignment zone. (b) The
structure is resolved into two 1v1 assignments.

A. Implicit Assignment Structure

Definition 1. The implicit assignment structure is a two vs.
two engagement where the defender pair is assigned to one
intruder in Rpair(i, j), and the other intruder is in RD(i) ∩
RD(j), defined as the implicit assignment zone.

See Fig 5a for an example. First note that MM assignment
would ignore A1 since it is not capturable by any individual
defender. The MIS assignment chooses from assigning (i)
the pair to A1, or (ii) one defender to A2 (same as MM),
but cannot have both because one of the defenders will have
overlapping assignments. Importantly, the two choices are
equally good in the MIS analysis since they both guarantee
one capture. What MIS fails to see is that initially assigning
the pair to A1 is the optimal choice here, and in fact it leads
to the capture of both intruders:

Lemma 2. The implicit assignment structure turns into two
1v1 assignments before any intruder reaches the perimeter.

Proof. From the 2v1 assignment against A1, Di moves
ccw and Dj moves cw. Under this movement, A2 remains
in RD(i) ∩ RD(j) because it cannot penetrate Di’s left
barrier nor Dj’s right barrier (Prop. 1). Before they meet
at the midpoint, A1 will move into either RD(i) or RD(j)
(Prop. 2). Suppose without the loss of generality xA1 ∈
RD(i), then A2 will get 1v1 assignment to Dj .

We use the term “implicit” to highlight the fact that
no defender is “explicitly” assigned to A2. Nevertheless,
the greedy behavior against A1 guarantees the capture of
A2 as well. The second structure (i.e., a combination of
configuration and assignment) is defined next.

B. Sequential Paired Defense Structure

Definition 2. The sequential paired defense structure is
an n+ 1 vs. n engagement generated by n interrelated 2v1
games with overlapping defenders.

Fig. 6a shows the simplest example of such configuration.
Note that we are now considering an assignment that is
prohibited in the MIS formulation; defender Dj has two
2v1 games assigned to it. Also note that, by definition, each
defender pair can have at most one intruder assigned to it
(otherwise, it will not be n + 1 vs. n). The key concept to
analyze the success in this configuration is defined next:



A1

A2

Di
Dj

Dk

A1

A2

DiDj

Dk

2v1
1v1

(a) (b)

Fig. 6: Sequential 2v1 structure with n = 2. (a) The defender Dj has two
2v1 assignments, and cw motion is required for both. (b) The structure is
resolved into two 1v1 assignments.

Definition 3. The overlapping 2v1 assignments are conflict-
ing if they require opposing (cw and ccw) direction of motion
from the defender.

For example, Dj in Fig. 6a has non-conflicting assign-
ments, because the two assignments both require cw motion.
Despite the overlap, it can behave optimally for both A1 and
A2, which leads to the resolved configuration in Fig. 6b.
We formally show in Sec. VI-B that the sequential paired
defense leads to the capture of all intruders if they are non-
conflicting.

C. Independent Local Game Score

Before we present our defense algorithm, we extend the
concept of LGS defined for LGRs in Lemma 1 to I-LGRs.
The independent local game score (I-LGS) is defined as

q̂k , n̂kA − nkD = qk + ∆nkA, (8)

where ∆nkA is the number of intruders in the paired defense
region Rkpair.

The local game score of qk = 0 was a critical number
in Sec. IV-C since it meant that any additional intruder in
the LGR will immediately lead to a positive intruder score
(Lemma 1). The I-LGS has another critical number: q̂k = 1.
Unlike qk = 1, this configuration does not immediately lead
to intruder score; suppose qk ≤ 0 and q̂k = 1, then one
intruder in Rkpair can be captured by the pincer maneuver of
the boundary defenders, and the rest may be captured by the
defender subteam SkD. What q̂k = 1 immediately tells us
is that the boundary defenders (Dk

R, D
k
L) need to perform a

pincer maneuver. Otherwise the intruder in Rkpair can enter
RkC to achieve qk > 0, which guarantees a score.

VI. THE LGR DEFENSE POLICY

This section present the LGR-defense policy and its perfor-
mance guarantees. Combined with the intruder team strategy
in Theorem 1, we will discuss the optimality of the strategy.

A. The LGR Defense Algorithm

The LGR defense strategy is presented in Algorithm 1. It is
continuously run throughout the game to update the defender
to intruder assignments that uniquely define each defender’s
direction of motion. As illustrated in Sec. V, the assignments
will dynamically change as the game evolves in time.

Algorithm 1 LGR Defense
1: Remove uncapturable intruders using Algorithm 2
2: for every time step do
3: Assign 2v1 defense using Algorithm 3
4: Assign 1v1 defense using Algorithm 4
5: Return: assignments (i.e., direction of motion)

First, Algorithm 2 removes/ignores intruders from the
game to consider a virtual game with QLG = 0. The purpose
is to ignore the intruders that cannot be captured, and make
sure all other intruders will be captured. This algorithm needs
to be run only once at the beginning of the game.

Algorithm 2 Removal of uncapturable intruders

1: Initialize: Armv = ∅, and i = 1
2: while QLG > 0 do
3: Qnew ← compute QLG without {Ai,Armv}
4: if Qnew < QLG then
5: Append Ai to Armv
6: QLG ← Qnew

7: i← i+ 1
8: Return: Armv

Then the cooperative 2v1 defense and the individual 1v1
defense are considered sequentially. In this paper, we restrict
ourselves to the case when q̂k ≤ 1, ∀ k after the removal of
uncapturable intruders. The assignment of cooperative 2v1
games is presented in Algorithm 3.

Algorithm 3 Assign 2v1 Defense

1: Initialize: Aassgn = ∅, D2v1 = ∅, and D1v1 = D
2: while ∃ k s.t. q̂k = 1 do
3: m← argmaxk n

k
D for k s.t. q̂k = 1

4: Aj ← select one intruder in Rm
pair

5: Append Aj to Aassgn, and m to D2v1
6: Remove Dm

R and Dm
L from D1v1

7: Recompute q̂k for all k with A \Aassgn

8: Return: D2v1, D1v1 and Aassgn

The I-LGRs with q̂ = 1 are visited sequentially from the
largest to the smallest in terms of the subteam size. In each
iteration, one intruder in Rpair is assigned to the boundary
defenders (line 5) regardless of whether the defenders al-
ready have other 2v1 assignments or not, which potentially
generates the sequential paired defense structure. The indices
saved in D2v1 is sufficient to know which defender should
perform a pincer movement with which pair. The already
assigned intruders are removed from the computation of q̂
(line 8), and the while loop terminates when all the I-LGRs
have q̂ ≤ 0, which occurs in less than NA iterations. Since
the bottleneck in the while loop is the recalculation of q̂’s
which is O(N2

DNA), the time complexity of Algorithm 3 is
O(N2

DN
2
A).

When assigning 1v1 games, Algorithm 4 accounts for the
implicit assignment structure. The implicit assignment is still
applicable to the pairs in sequential paired defense structure,
but with a restriction. Noting that each structure involves
n + 1 defenders and n intruders, we can only consider



Algorithm 4 Assign 1v1 Defense
1: Inputs: Aassgn, D2v1, and D1v1
2: A1v1 ← A \Aassgn
3: Initialize a bipartite graph with {D1v1,D2v1} and A1v1
4: for k in D2v1 do
5: if inequality in Eq. (9) is satisfied then
6: Draw edges to ∀Aj s.t. xAj ∈ RD(Dk

R) ∩RD(Dk
L)

7: for Di in D1v1 do
8: Draw edges to ∀Aj s.t. xAj ∈ RD(Di)

9: Solve maximum matching and save the edges for D1v1
10: Return: 1v1 assignments (edges for D1v1)

one additional “implicit” assignment, otherwise there will
be more intruders than the defenders. To guarantee capture,
it is necessary and sufficient for the additional intruder to be
in the implicit assignment zone of the outermost defender
pair (e.g., (Dk, Dj) in Fig. 6). In summary, a 2v1 defender
pair, Dk

pair, can have an implicit assignment if Dk
R or Dk

L

are not used in any other 2v1 defense that is associated to a
larger I-LGR, i.e.,

nkD > nmD ,∀m ∈ D2v1 s.t.,Dm
pair ∩Dk

pair 6= ∅ (9)

The solution of the matching problem (line 9) only affects
the behavior of the defenders in the set D1v1, but not the
pairs in D2v1 because the assignments are only “implicit”
for them. This is why we only need the edges for D1v1. The
computational bottleneck in Algorithm 4 is the maximum
matching, which is known to have efficient polynomial time
algorithms [14]. Noting that |{D1v1,D2v1}| ≤ ND and
|A1v1| ≤ NA, the number of nodes in the bipartite graph
is at most ND +NA, which leads to O((NA +ND)w) time
with w < 2.5 [18].

An example of the assignments given by Algorithm 1 is
shown in Figure 7a simulation results. Notice that a defender
can have multiple 2v1 games assigned to it. Algorithm 3
generated the sequential paired defense structure involving
D1, D2, D3 and D4. After the 2v1 assignments, A4 and
A5 are left for 1v1 assignments. The pair (D1, D4) is
eligible for the implicit assignment, and only A5 is in the
implicit assignment zone. Therefore, the maximum matching
in Algorithm 4 selects A4 to be pursued by D5 and leaves
A5 to be implicitly assigned to (D1, D4). We will prove the
performance guarantees in the remaining sections.

B. Performance Guarantees

This section proves that the LGR defense in Algorithm 1
guarantees the overall score to be zero if the game starts in
a configuration with QLG(z0) = 0 and q̂k(z0) ≤ 1,∀ k. We
first provide instantaneous properties:

Lemma 3. If QLG(z) = 0 and q̂k(z) ≤ 1,∀ k, then no
intruder is unmarked: i.e., every intruder has either (i) 1v1
assignment, (ii) 2v1 assignment, or (iii) implicit assignment.

Proof. It suffices to show that, after Algorithm 3, the in-
truders without 2v1 assignment gets either 1v1 or implicit
assignment. We use Hall’s marriage theorem [17] to show
that the maximum matching in Algorithm 4 covers all the

intruders. For any subset W ⊆ A1v1, let N (W ) denote the
neighbor set: i.e., the subset of defenders that can capture
at least one in W . Hall’s theorem states that all intruders in
A1v1 are covered if |W | ≤ |N (W )| for all W ⊆ A1v1.

For |W | = 1, it is easy to see by contradiction that every
intruder has at least one edge: if an intruder has no edge,
then the smallest I-LGR that contains it will have q̂ ≥ 1,
which contradicts the termination of Algorithm 3.

Now, suppose the inequality is true for |W | = 1, .., n. We
will prove that the inequality is also true for |W | = n + 1:
If the bipartite graph can be separated into m connected
components involving intruder subsets w1, ..wm, then we
have |N (W )| =

∑m
i |N (wi)| because the defender nodes

for each subset wi are disjoint. Since we have |N (wi)| ≥
|wi| from the supposition that the inequality is true for |wi| ≤
n, we obtain |N (W )| ≥ ∑m

i |wi| = |W |. If the bipartite
graph is connected and |N (W )| ≤ n, there exists an I-LGR
whose defender subteam is N (W ) and the intruder subteam
is W . Then this region has the score q̂ ≥ (n+ 1)− n = 1.
Since this contradicts the termination of Algorithm 3, we
obtain |N (W )| ≥ n+ 1 = |W |.

With mathematical induction, we have shown that |W | ≤
|N (W )| for W ⊆ A1v1 with any size. Therefore, maximum
matching in Algorithm 4 covers all the intruders.

Lemma 4. If QLG(z) = 0 and q̂k(z) ≤ 1, ∀ k, then the
sequential paired defense structure generated by Algorithm 3
has no conflict (see Definition 3).

Proof. For Di to have conflicting 2v1 assignments, the
following condition is necessary: Di has two I-LGRs, l and
r with q̂l = q̂r = 1, where Dl

R = Di and Dr
L = Di. If Di

gets both assignments, then there is a conflict.
Consider RmI , RI(Dr

R, D
l
L), which contains both RlI

and RrI . The score satisfies q̂m ≥ (nlD + 1) + (nrD + 1) −
(nlD + nrD + 1) = 1. We also know QLG = 0 ⇒ qm = 0,
implying that Rmpair has at least one intruder to be assigned to
Dm

pair. Since this assignment reduces one intruder from either
l or r, Di only needs to perform 2v1 defense for one of the
two: i.e., Di does not get both assignments.

The above results are used to study how the assignments
and scores evolve over time:

Lemma 5. If initially QLG(z0) = 0 and q̂k(z0) ≤ 1, ∀ k,
then the number of 2v1 assignments reduces over time, and
the conditions QLG(z) = 0 and q̂k(z) ≤ 1, ∀ k are preserved.

Proof. By Lemma 4, each defender pair performs optimally
against the assigned intruder. From Prop. 2, the intruder
currently in Rpair moves into the defender winning region of
one of the boundary defenders. Among all the 2v1 games,
consider the one that achieves this transition first. During the
transition, the intruder leaves an I-LGR that it was contained
in (reducing its I-LGS from 1 to 0), but it does not enter any
new I-LGR. Such transition guarantees that the scores qk
and q̂k are both non-increasing for all k (see Appendix for
more details). We now have one less 2v1 games. Since the
conditions for Lemma 4 are still true, similar transitions will
repeat until there is no more 2v1 assignments.



Theorem 2. If initially QLG(z0) = 0 and q̂k(z0) ≤ 1,∀ k,
then the LGR defense strategy (Algorithm 1) guarantees the
overall score to be zero.

Proof. Lemmas 2 and 5 show that the number of implicit as-
signments and 2v1 assignments reduces as the game evolves.
Since the conditions QLG = 0 and q̂ ≤ 1 are preserved
throughout the game (Lemma 5), we can invoke Lemma 3
to conclude that every intruder gets 1v1 assignment before it
reaches the perimeter. Therefore, no intruder can score.

C. Saddle-point equilibrium

This section addresses a general case when the intruder team
can guarantee non-zero score: QLG > 0. First, the following
lemma shows that exactly QLG intruders need to be removed
in Algorithm 2.

Lemma 6. If QLG(z0) > 0, then there exists a set of
QLG(z0) intruders whose removal generates a new game with
QLG = 0.

Proof. When QLG(z) > 0, one can show by contradiction
that there exists at least one intruder whose removal reduces
QLG by 1 (see Appendix for more details). After removing
this intruder, the same argument holds if QLG is still positive.
Repeating this process, the score reduces to zero after
removing QLG(z) intruders.

Following the proof of Lemma 6, we can find the set
Armv in Algorithm 2 by visiting every intruder and asking
whether it reduces QLG or not (Algorithm 2). Importantly, the
answer remains the same whether QLG is already reduced or
not. Therefore, each intruder needs to be visited only once;
Algorithm 2 terminates within less than NA iterations. Since
the bottleneck in the while loop is the computation of QLG
(line 3), the time complexity is O(NAN

4
D).

The main result is summarized in the following:

Theorem 3. If initially q̂k(z0) ≤ 1, ∀ k after removing
intruders found by Algorithm 2, then the LGR defense policy
Γ∗D guarantees

Q(z0; Γ∗D,ΓA) ≤ QLG(z0), ∀ΓA ∈ UA, (10)

where UA is the set of all permissible intruder strategies.

Proof. From Lemma 6, ignoring QLG(z0) intruders generates
a virtual game with QLG = 0. All intruders in this virtual
game are captured since the conditions for Theorem 2 are
satisfied. In the original game, at most QLG(z0) intruders
that are ignored by the defenders can possibly score.

Finally, the combination of the strategy Γ∗A from Theo-
rem 1 and Γ∗D from Theorem 3 gives us the following result:

Corollary 1. If q̂k(z0) ≤ 1, ∀ k after removing QLG(z0)
intruders found by Algorithm 2, then

Q(Γ∗D,ΓA) ≤ Q(Γ∗D,Γ
∗
A) ≤ Q(ΓD,Γ

∗
A), (11)

i.e., the strategy set (Γ∗D,Γ
∗
A) gives a saddle-point equilib-

rium, and the value of the game is Q∗(z0) = QLG(z0).
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Fig. 7: Simulation snapshots.

If the intruders stick to Γ∗A, then the defender team cannot
reduce the score by changing their strategy. Similarly, if the
defenders keep Γ∗D, then the intruders cannot increase the
score by changing their strategy.

VII. SIMULATION RESULTS

A. Illustrative Example

Figure 7 shows snapshots from a six vs. five scenario (one
defender is out of the frame) with QLG = 0 and q̂k ≤ 1,∀ k.
Since there is no region with qk > 0, no team is formed
among the intruders, and each plays an individually-optimal
behavior against all the defender robots. Each snapshot
highlights the moment when the sequential paired defense
reduces into a smaller structure. From t = 0.050 s to 0.067 s,
the transition is caused by A3 moving into RD(D4). The
pair (D1, D2) has an implicit assignment to A5. At t = 80,
the implicit assignment structure is resolved, and now all
the intruders have 1v1 assignments that guarantee perfect
defense.

Note that the MM policy will treat A1 as uncapturable
and assign 1v1 defenses so that the other four defenders
will be captured, resulting to QMM = 1. The only way, in
this scenario, to guarantee capture of both A1 and A2 is for
D2 to perform two 2v1 defenses sequentially (with D3 and
then with D1), and the LGR defense algorithm achieves this
without any explicit look-ahead planning.

B. Statistical results

This section presents the difference between the expected
performance of MM-defense and LGR-defense, measured
by the upper bounds QMM and QLG. Since the scores are
greatly affected by the initial configuration, we compute the
average score from randomly generated initial configurations.
To study the effect of initial distance of the intruders to
the perimeter, we randomly select the azimuthal positions
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Fig. 8: Score statistics with varying initial intruder distance, for uniformly
(solid line) and randomly (dashed line) placed defenders. (a) Score upper-
bound QLG. The lines indicate the mean, and the shaded area is the envelope
containing min and max. (b) Suboptimality of the upper-bound QMM .

of the intruders for each distance. We test two cases for the
defenders’ initial configuration: (i) uniformly spaced, and (ii)
randomly placed on the perimeter.

Figure 8a shows how the scores change as a function of
the initial distance. The parameters are: ND = 40, NA = 39,
ν = 1, and 10,000 initial configurations are tested for each
distance. The scores monotonically decrease as the intruders’
starting distance increases and eventually converge to zero
(not shown for clarity). These values represent upper bounds
on the number of intrusions which LGR policy can certify
at the beginning of a game, and so might also be used to
inform higher level coalition forming algorithms as in [19].

Figure 8b shows the suboptimality of the bound QMM
provided by the MM policy. The difference satisfies QMM−
QLG ≥ 0 because the LGR defense always performs at
least as good as the MM policy. The difference is small
at short distance because almost all intruders can trivially
score. The difference increases with more opportunities for
the cooperative 2v1 defenses, and it reduces again at larger
distance since the easier configuration allows the MM to
perform near optimal: i.e., defenders do not need to employ
cooperative strategy to capture intruders.

The shaded envelope containing the maximum difference
highlights the benefit of using the LGR defense policy.
Consider, for example, the situation in which the intruders
are detected at the distance 0.1 units from the perimeter, and
suppose they can select the initial azimuthal positions. If the
intruders select a formation possibly with the knowledge that
the defenders employ MM strategy, the gap in the score can
be as large as QMM −QLG ≈ 15, which is significant given
the score QLG ≈ 20± 7 at this distance.

The statistical results on the computation time are provided
in Appendix.

VIII. CONCLUSION

This paper presents a cooperative defense strategy for a
variant of the multi-player reach-avoid game. The proposed
LGR defense policy runs in polynomial time and outperforms
the existing assignment-based policy. In fact, LGR defense
performs optimally under certain conditions, where the per-
formance is measured by the number of intruders that reaches
the target. The improved performance compared to the

maximum-matching formulation is due to the incorporation
of cooperative defense, in which a pair of defenders pursue
an intruder from both sides. The low computational complex-
ity compared to a maximum-independent-set formulation is
achieved by the proposed decomposition method into local
games.

There are various aspects to be addressed in the future
work, including the extension to three dimensions, envi-
ronments with obstacles, distributed algorithm with relaxed
assumptions on the information structure (e.g., local sensing
and communication), and cooperative defense with hetero-
geneous teams.
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APPENDIX

A. Proof of Lemma 5

From Lemma 4, there are no conflicting 2v1 assignments.
Therefore, looking at each 2v1 game separately, the defender
pair performs optimally against the assigned intruder. Re-
calling the 2v1 analysis, the intruder in Rpair will eventually
move into the defender winning region of either of the two
boundary defenders (Prop. 2). Consider the first transition
that occurs among all 2v1 games,1 and let k1 be the index
of the associated I-LGR. Clearly, q̂k1 changes from 1 to 0
with this transition.

Let us examine how q̂ changes for other I-LGRs. Observe
that the transition occurred by the intruder leaving Rk1I (see
Fig. 2). Also observe that any I-LGR that contains this in-
truder immediately after the transition had already contained
it before the transition. From the above two observations, it
is clear that q̂k is non-increasing for all k.

Let us also examine if qk can possibly become positive
for any k with the transition. For any qk = 0 to increase
to a positive number, either of the following two needs to
occur: (i) an intruder inside RkI enters RkC , or (ii) an intruder
outside RkI enters RkC . The first case is equivalent to an
intruder moving from Rkpair to RkC , where q̂k = 1. This
cannot occur due to Proposition 2. The second case entails
an intruder to enter RkI because of the relation RkC ⊂ RkI .
However, this cannot occur either from the discussion in the
previous paragraph. Therefore, qk ≤ 0,∀ k ⇔ QLG = 0 will
be preserved with the transition.

We have shown that there are one less I-LGR with q̂ = 1,
implying that there are one less 2v1 assignments, and the
condition QLG = 0 is still true after the transition. Since the
conditions for no conflict (Lemma 4) are still true, the next
transition that reduces the number of 2v1 games eventually
occurs. By repeating this process, we see that the number
of 2v1 assignments monotonically decreases as the game
progresses.

B. Proof of Lemma 6

We show by contradiction that there exists at least one
intruder whose removal reduces QLG by one, when QLG > 0.
The contradiction will be derived by supposing that there is
no such intruder, and showing that it leads to the existence
of G with Qlow(G) > QLG, which contradicts the optimality
of QLG in (6).

Suppose there is no intruder whose removal reduces QLG.
Then there exists at least two sets G∗1 and G∗2 that gives
the optimal score Qlow(G∗1) = Qlow(G∗2) = QLG, with the
constraint SkA ∩ SlA = ∅ for k ∈ G∗1 and l ∈ G∗2, i.e., no
common intruders. The two sets do not share any intruder
because if they did, then the removal of the common intruder
will reduce both Qlow(G∗1) and Qlow(G∗2).

Now, take k ∈ G∗1 with qk > 0 and consider merging it
to G∗2. If RkC ∩ RlC = ∅ for ∀ l ∈ G∗2, then G3 = {k,G∗2}
is a valid disjoint set and it has Qlow(G3) > Qlow(G∗2),

1The case in which multiple transitions occur simultaneously can also be
treated similarly.

which contradicts the optimality of G∗2. If k intersects with
l ∈ G∗2, then let m be the smallest LGR that contains both k
and l. Since the regions intersect, we have nmD < nkD + nlD.
However, since they share no intruders, we have nmA ≥ nkA+
nlA. Therefore, qm = nmA − nmD > nkA + nlA − nkD − nlD =
qk + ql, which again contradicts the optimality of G∗2. The
case when k intersects with multiple LGRs in G∗2 can be
treated similarly.

After removing one intruder, the same argument still holds
if QLG is positive. Repeating this process, the score QLG
reduces to zero after removing n intruders. Also, observe
that the order of the removal does not affect the result.

C. Computation Time

Figure 9 shows how the scores and the computation time
change with the number of intruders, NA. The number of
defenders are ND = NA + 1. For each NA, we tested 100
configurations. The configurations are generated similarly to
Sec. VII, where the initial distance is set to be one half of
the defender spacing: i.e., rA = π

ND
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Fig. 9: Top figure shows the score bounds provided by three different
policies. The accompanied percentages indicate the fraction of trials in
which QMIS > QLG. The bottom figure shows the computation time in
log scale. The trend lines that scale with N2

A and N5
A are shown in green.

The top figure shows that the MM policy suffers from sub-
optimal capture guarantees. While the MIS policy frequently
provides the optimal score QLG, it still cannot always provide
this bound as shown by the fraction of trials in which the
score was QMIS > QLG.

The bottom figure shows the computation time for the
algorithms implemented in MATLAB, run on a laptop with
a Core i7-7820HQ processor with 16 GB of memory.

The LGR-defense policy is considered into two parts: the
removal of uncapturable intruders (Algorithm 2) which needs



to be run only once at the beginning of the game, and
the assignments (Algorithms 3 and 4) that needs to be run
continuously throughout the game. In Sec. VI-C, we showed
that Algorithm 2 has the complexity O(NAN

4
D), which is

equivalent to O(N5
A) in this experiment. The comparison of

the purple data points “LGR (Removal)” with the trend line
∼ N5

A validates the above theoretical bound.
We showed in Sec. VI that Algorithms 3 and 4 have

complexities O(N2
DN

2
A) and O((NA + ND)2.5), equivalent

to O(N4
A) and O(N2.5

A ) in this example. The comparison
of the blue data points “LGR (Assignments)” with the trend
line ∼ N2

A shows that the empirical growth in computation
time is sub-quadratic.

The MM policy that has the bound O(N2.5
A ) also shows

sub-quadratic complexity. The MIS policy performs exhaus-
tive search for the maximum independent set. It is clear
that the computation time is super-polynomial. The result
is shown only up to NA = 25, since for NA ≥ 30 there
were examples where the search could not be completed.

This statistical result supports our claim that the LGR
defense policy outperforms MM and MIS policy while
maintaining scalability (i.e., polynomial time algorithm).
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