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MPC-Net: A First Principles Guided Policy Search
Jan Carius1, Farbod Farshidian, and Marco Hutter

Abstract—We present an Imitation Learning approach for
the control of dynamical systems with a known model. Our
policy search method is guided by solutions from MPC. Typical
policy search methods of this kind minimize a distance metric
between the guiding demonstrations and the learned policy.
Our loss function, however, corresponds to the minimization
of the control Hamiltonian, which derives from the principle
of optimality. Therefore, our algorithm directly attempts to
solve the optimality conditions with a parameterized class of
control laws. Additionally, the proposed loss function explicitly
encodes the constraints of the optimal control problem and
we provide numerical evidence that its minimization achieves
improved constraint satisfaction. We train a mixture-of-expert
neural network architecture for controlling a quadrupedal robot
and show that this policy structure is well suited for such
multimodal systems. The learned policy can successfully stabilize
different gaits on the real walking robot from less than 10 min
of demonstration data.

Index Terms—Learning from Demonstration, Legged Robots,
Optimization and Optimal Control

I. INTRODUCTION

The control of robotic systems with fast and unstable
dynamics requires carefully designed feedback controllers.
Hybrid, underactuated walking robots pose an especially chal-
lenging setting in this respect.

Recent successes in Reinforcement Learning (RL) demon-
strate sophisticated walking robot control [1]–[5], yet a large
number of policy rollouts need to be collected to reach the
required performance level. It is, therefore, common practice
to use physics simulators during training and subsequently
attempt a sim-to-real transfer [1], [4].

Imitation Learning (IL) [6] appears to be a promising
method that could reduce the sampling complexity of learning-
based approaches by guiding them with expert demonstrations.
When good demonstrations are available, sampling efficiency
can be drastically improved over classical RL [7].

An appealing way to automatically generate such demon-
strations for known dynamical systems are model-based meth-
ods such as Optimal Control (OC) and Model Predictive
Control (MPC). They provide a formal framework for gen-
erating control commands that respect physical constraints
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and optimize a performance criterion. Knowledge of a system
model and its gradients enable such methods to discover
complex robot behaviors in a very sample-efficient way [8]–
[13]. Unfortunately, when deploying on a robot, the entire
optimization problem has to be solved online because the
resulting control policy is only valid around the current state.
Moreover, the robustness against disturbances – both of intrin-
sic nature (e.g., modeling errors) as well as external effects –
is critically dependent on the assumption that a new motion
plan can be generated sufficiently fast. Even for moderately
complex systems, the update frequency of MPC becomes a
limiting factor when deploying on onboard computers.

Learning from OC solutions has proven a viable option
for robot control that combines the advantages of both ap-
proaches [14]–[21]. The benefit of using a solver as expert
demonstrator over humans or animals is that there is no
domain adaptation problem, and one can query demonstrations
from arbitrary states. Additionally, one may request the solver
to explicitly handle constraints instead of only presuming that
demonstrations are constraint-consistent.

Several methods take an inverse OC approach to IL: Mul-
tiple local approximations of the value function, computed
by OC runs, are aggregated into a single global approxima-
tion [22]–[24]. The learned value function and its induced
optimal policy are in turn used to reduce the OC time horizon
or speed up convergence. Alternatively, a Behavioral Cloning
(BC) approach to IL attempts to directly learn a policy that
reproduces the expert’s demonstrations without maintaining a
value function explicitly. Accordingly, the original RL problem
is transformed into a supervised learning problem since the
demonstrator’s actions can be interpreted as labels.

Our proposed algorithm belongs to the family of such actor-
only approaches: We introduce MPC-Net, a policy search
method that is guided by an MPC algorithm to find a
parametrized control policy. The method can be seen as
a policy iteration scheme that draws data from a perfect
critic (i.e., the MPC). Our key innovation is a theoretically
motivated loss function, which is based on first principles
from OC, namely the minimization of the control Hamiltonian.
The structure of the control Hamiltonian captures the system
dynamics and constraints of the control problem. We show
that this learning objective has favorable properties in terms of
convergence and constraint satisfaction, which is particularly
important for systems interacting with the environment.

Closely related to our algorithm are policy search methods
with a teacher-learner setup [17]–[19]. These works employ
an OC solver as a teacher from which a policy is learned.
Contrary to our work, however, the teacher adapts to the
student. This assimilation is achieved by adding a penalty term
to the OC cost function so that demonstrations are created that
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remain close to the student’s policy. Additionally, the student’s
objective is usually the optimization of a distance metric
between student’s and teacher’s policy outputs. However,
minimizing a distance measure may not directly correspond to
improved performance, e.g., in constrained settings it is usually
more important to satisfy constraints rather than mimicking
the teacher accurately. In our approach, no such choice of a
distance metric has to be made. Notably, our learner is never
presented with the optimal control input. Additionally, since
our demonstrator does not adapt to the current policy of the
learner, all demonstration samples remain valid and can be
re-used, thereby boosting sampling efficiency.

Imitating a demonstrator that is not adaptive to the learner
induces the problem of distribution matching: Inevitable ap-
proximation errors between the learned and demonstrated
policies make rollouts of the learned policy encounter a
different distribution of states than the one from demonstration
data. Ross et al. [25], [26] show that the resulting errors can
compound quadratically in the time horizon. We use elements
of their proposed solutions (i.e., probabilistic mixing and
dataset augmentation) to ensure that the distributions match.
Simply put, we bias the demonstrator’s query states towards
the observations that our policy sees and thereby receive
samples that match the learner’s distribution better.

While the idea of policy search through minimization of the
control Hamiltonian applies to arbitrary parameterized policies
such as neural networks, weighted motion primitives, or spline
coefficients, we consider the very general class of mixture-
of-expert neural networks policies [27] in this work. Our
choice caters for the fact that OC is an inverse problem with
potentially multiple solutions for the same observation. The
expert data may, therefore, exhibit such multimodal behavior.
We show that this choice of network structure has favorable
properties in terms of convergence and constraint satisfaction
and is particularly suitable for controlling legged robots since
these systems inherently exhibit multi-modal dynamics.

Statement of Contributions

The contributions of this work are as follows:

• Derivation of a novel loss function for policy search that
is based on fundamental concepts from OC

• Experiments showing that the explicit enconding of con-
straints in our loss function achieves improved constraint
satisfaction compared to standard behavioral cloning

• Demonstration of improved efficiency in terms of MPC
calls by exploiting a local approximation of the value
function

• Results showing that a mixture-of-expert network ar-
chitecture outperforms a general Multilayer Perceptron
(MLP) for control of a walking robot

• Validation of the trained control policies on robotic
hardware. The learned controllers successfully stabilize
two different gaits on a quadrupedal robot

Draw random starting point

MPC: Data Generation

Compute optimal control

Integrate state over time step

Compute auxiliary terms

Replay Buffer

Policy Search

Sample random batch
Compute loss
Gradient update stepR

epeat

Fig. 1. Schematic of the MPC-Net policy learning approach

Algorithm 1 MPC-Net Guided Policy Learning
1: Given: Replay Buffer M , mpcSolver
2: Given hyperparameters: maxIter, mpcDecimation,

batchSize, learningRate, rolloutLength
3: for iter in [1 : maxIter] do
4: if modulo(iter, mpcDecimation) then
5: α← 1− iter / maxIter
6: x0 ← sampleRandomStartingState
7: for ti in [0, rolloutLength] do
8: umpc,K ← mpcSolver(ti, x0)
9: x← sampleInNeighborhood(x0)

10: ∂xV ← valueFunctionDerivative(ti,x)
11: ν ← constraintLagrangian(ti,x)
12: Append sample {ti,x, ∂xV,ν} to M
13: x0 ← stepSystem(x0, απmpc + (1−α)π(θiter,x0))
14: end for
15: end if
16: S ← drawRandomSampleBatch(M , batchSize)
17: U ← evaluatePolicyOnSamples(π(θiter),S)
18: l← computeLoss(U ,S)
19: θiter+1 ← stepOptimizer(∂θl)
20: end for

II. METHOD

The key steps of our method are listed in Alg. 11 and are
schematically shown in Fig. 1. Data is generated by running
MPC from a feasible, random initial state. Samples from the
resulting optimal trajectories are stored in a replay buffer.
At each policy update step, we construct a loss function
by drawing a batch of the stored samples and perform a
stochastic gradient descent step in the policy parameter space.
Every mpcDecimation-th iteration, MPC produces a new set
of samples that augment the dataset.
In this section, we first explain the control problem and
the structure of its solution. Subsequently, we present the
theoretical properties of the optimal solution and how they
motivate our loss function. Finally, we show how a neural
network policy is trained from demonstrations of optimal
trajectories.

1Our implementation is openly available at
https://github.com/leggedrobotics/MPC-Net
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A. Model Predictive Control

We consider a continuous-time, finite horizon OC problem

minimize
u(·)

Φ(x(tf )) +

∫ tf

0

l(x,u, t) dt, (1)

subject to ẋ = f(x,u, t), x(0) = x0,

g(x,u, t) = 0,

h(x,u, t) ≥ 0, (2)

where tf is the time horizon, x0 a given initial state, Φ(·)
the final cost and l(·) the intermediate cost function. f(·),
g(·), and h(·) are time-dependent vector fields defining the
system dynamics, the equality constraints, and the inequality
constraints, respectively. The problem’s associated optimal
value function V (cost-to-go) is defined as

V (t,x) = min
u(·),
s.t. (2)

Φ(x(tf )) +

∫ tf

t

l(x(t),u(t), t) dt . (3)

In principle, our method works with any optimization algo-
rithm that can handle the constraints (2) and that provides
an approximation of the optimal value function (3). The
entire solving procedure is denoted mpcSolver in Alg. 1.
In this work, we employ a variant of the Differential
Dynamic Programming (DDP) algorithm called Sequential
Linear-Quadratic (SLQ) control [28], which is the continuous-
time equivalent to the Iterative Linear-Quadratic Regulator
(iLQR) [29]. This solver handles the inequality constraints
h(·) through a barrier function b(·) [30] and explicitly com-
putes optimal Lagrange multipliers ν(·) for satisfaction of the
state-input equality constraint g(·) [28]. The Lagrangian of the
OC problem (1) is therefore given by

L(x,u, t) := l(x,u, t) +
∑
i

b
(
hi(x,u, t)

)
+ ν>(t,x)g(x,u, t). (4)

The solution of problem (1) consists of nominal state and
input trajectories {xnom(·),unom(·)} as well as time-dependent
linear feedback gains K(t) that define the optimal control
policy

πmpc(t,x) = unom(t) +K(t) (x− xnom(t)) . (5)

As a byproduct of the solver, we also have access to the state
derivative of the value function ∂xV .

During our emulated real-time MPC loop, we let the
solver compute the optimal policy, then store the values of
{t,x, ∂xV,ν} at the first time step of the solution in our replay
memory. Next, we update the current state using the system
dynamics and continue until the rollout length is reached.

B. Policy Loss Function

It is a known property of OC [31, pp. 111–120] that the
optimal input u∗(t) must satisfy

u∗(t,x) = arg min
u
H(x,u, t) , (6)

H(x,u, t) := L(x,u, t) + ∂xV (t,x)f(x,u, t) , (7)

where H(·) is the control Hamiltonian, which directly arises
from the Hamilton–Jacobi–Bellman (HJB) equation. More-
over, under some sufficient conditions (so-called Weierstrass
conditions), the Hamiltonian attains a strong minimum at u∗.
Its minimization can, therefore, be seen as a recipe for finding
the optimal controls.

A globally optimal policy would have to satisfy (6) at
any t,x. This minimization, however, has a great drawback,
which is commonly referred to as the “curse of dimension-
ality”. Furthermore, recording the solution of every time-
state pair requires an enormous amount of storage, which is
impractical even for moderate-size systems.

We turn to function approximation as a remedy for these
difficulties and introduce a parameterized policy π(t,x|θ).
Our problem is now to find some parameters θ∗ such that
π(·) maps a given (t,x) pair to a control that achieves a
minimum of H. The substitution of the pointwise optimal u∗

with the parameterized policy may introduce an optimality gap
between the minima H(x,u∗, t) and H(x,π(x, t|θ∗), t). We
can relate the size of this optimality gap to the discrepancy in
optimal controls through the following lemma:

Lemma 1. Given that u∗ is a strong minimum of equation (6)
which satisfies the Weierstrass sufficient condition of optimal-
ity. Then the optimality gap in the pointwise minimization of
the control Hamiltonian (6) upper bounds the distance to the
optimal control according to

||π − u∗||2 ≤ 2

δ
(H(x,π, t)−H(x,u∗, t)) , (8)

where δ > 0 pertains to the smallest eigenvalue of ∂2uH in
the neighborhood of the optimal control, u∗.

Proof. The proof is provided in Appendix V.

This statement implies that π(t,x|θ∗) is approaching the
optimal control for a specific (t,x) pair as the optimality gap
in H is reduced. It is unrealistic to minimize this gap for
every point in state-space simultaneously because that would
require an extremely flexible parametrization of π and would
also assume that H is known at every state.

To our benefit, however, SLQ computes the value function
along trajectories in state space. These trajectories induce a
distribution over time and state {t,x} ∼ P that encodes
which areas of the time-state-space are visited by an optimal
controller. For our purposes, it is, therefore, sufficient to
minimize the optimality gap almost everywhere with respect
to P . Taking the expectation of (8) gives

EP
[
||π − u∗||2

]
≤ 2

δ
EP
[
H(x,π, t)−H(x,u∗, t)

]
, (9)

Restricting the minimization only to the relevant states (i.e.,
those with nonzero probability mass) also allows us to invoke
the Universal Approximation Theorem for our parameterized
policy: We can expect to find a θ∗ that makes the expected
optimality gap in H arbitrarily small if the function class
π(t,x|θ) is sufficiently rich. Our strategy for finding the
optimal parameters is, therefore, given by

θ∗ = arg min
θ

E{t,x}∼P
[
H(x,π(t,x|θ), t)

]
. (10)



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

The quantity in the expectation (10) can be seen as a per-
sample loss for policy training. It is essential to realize that
the control Hamiltonian allows us to find the optimal control
via this unconstrained minimization because the future cost
and constraint Lagrangian have already been included. It is,
therefore, not necessary to perform Monte-Carlo-style rollouts
to find the optimal control.

The MPC loop presented in Sec. II-A serves as a data
generation mechanism for the policy search module. In general
terms, the MPC fills a replay buffer with data points that
correspond to the states that it has encountered, and those
tuples are sampled from to compute the empirical expectation
in (10). In our implementation, the samples for computing the
policy gradient are drawn uniformly at random from the replay
buffer in order to break their temporal correlation [32].

C. Augmenting Samples Using the Optimal Solution

A favorable property of SLQ, being a local dynamic
programming approach, is that it computes a second-order
approximation of the optimal value function, as well as a first-
order approximation of the Lagrange multiplies and control
policy, in the vicinity of the optimal state-input trajectories.
In turn, the control Hamiltonian can also be approximated
in a region around the optimal solution. Our numerical in-
vestigation in Sec. III-B demonstrates that this approximated
Hamiltonian still yields an acceptable estimation of the optimal
control input for samples neighboring the MPC trajectories.
This observation motivates us to extract samples not only
from the MPC generated trajectories but also from a tube
surrounding these trajectories, which further improves the
sample complexity of the approach.

By initializing the control problem (1), (2) at feasible,
random starting points, the areas where the value function is
known corresponds to the subset of states that are visited by a
(close-to) optimal policy. This fact can be exploited to increase
the extracted informational content from a rollout of the
optimal policy. By sampling around the nominal state, our data
automatically covers tubes in state space, which accelerates
learning and makes the learned policy more robust. This
procedure, denoted sampleInNeighborhood in Alg. 1, amounts
to drawing states from a Gaussian distribution according to

x ∼ N (xnom,Σx), (11)

where the covariance matrix has diagonal entries correspond-
ing to the typical disturbance that the respective state compo-
nent may encounter. The sampling idea is conceptually similar
to fitting the tangent space of the demonstrator policy instead
of just the nominal control command [16].

D. Addressing Distribution Mismatch

Unfortunately, despite our efforts to extract samples from
trajectories that cover a large volume in state space, there is
still a bias of the state distribution towards those states that are
encountered by the optimal policy. This distribution mismatch
is a common problem in IL and stems from the fact that a
learned controller produces inevitably different control inputs
than the demonstrator (even when fully converged, unstable

Fig. 2. Architecture of our mixture-of-experts network. The dimensions
correspond to the instantiation for the ANYmal robot.

physical systems may amplify small differences), which will
eventually drive the system into an area of the state space
from which no data is available. To avoid this scenario, we
use a behavioral policy πB(·) to push the emulated MPC loop
towards the states that will be seen by the learned policy.
Taking inspiration from Dagger [26], the update rule for the
next state (stepSystem method in Alg. 1) is given by

x(t+ ∆t) = x(t) + f(t,x,πB(t,x,θ))∆t, (12)
πB(t,x,θ) = (1− α)πmpc + απ(t,x|θ), (13)

where the mixing parameter α is initially zero and linearly
increases with the number of iterations until it has reached
one in the final iteration. Through this process, the learned
policy is gradually given more responsibility to decide where
the MPC algorithm should be applied. It is important to note
that the MPC solver is not influenced by the learned policy
and produces optimal solutions independent of the value of α.

E. Policy Structure and Training

Now that the loss function and a way to populate our expe-
rience buffer is defined, we turn the actual training procedure
and computation of stochastic gradients of our policy.

In this work, we use a mixture-of-experts architecture [27]
for the control policy, shown in Fig. 2. Allowing multiple poli-
cies πi to compete naturally handles the non-uniqueness of the
OC solution. For example, passing an obstacle around the left
or right side may be an equally good choice that two different
experts will try to imitate, but forcing a monolithic network
to interpolate between these solutions can be catastrophic.

The final control output of the network is a convex combi-
nation of the outputs of different expert sub-policies

π(t,x|θ) =

NumExperts∑
i=1

pi(t,x|θ)πi(t,x|θ) . (14)

The mixing coefficients pi are the output of a gating network
whose final activation ensures that all coefficients are positive
and sum up to one. While a softmax layer achieves this
constraint, we find that a sigmoid activation with subsequent
normalization performs better in selecting a consistent number
of experts for a given task across multiple training runs. We
believe the reason for this observation is that the softmax
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Fig. 3. The quadrupedal robot ANYmal. The floating base and three joints
per leg amount to 18 DOF. Our kinodynamic model of this robot has 24 states
and 24 inputs.

activation is too sharp in selecting one specific expert such that
an unlucky initialization may lead to some experts never even
being considered and therefore not receiving policy updates.

Both the expert sub-policies and the gating network share
a common latent space representation. The overall policy (14)
remains a feed-forward neural network and can, therefore, be
trained with standard deep learning optimization techniques:
At each policy iteration step, we draw a batch of {t,x, ∂xV,ν}
tuples from the replay buffer and compute the empirical loss
for this batch as

loss =

BatchSize∑
j=1

NumExperts∑
i=1

pi(tj ,xj |θ)H(xj ,πi(tj ,xj |θ), tj) .

(15)

Note that we force each experts’ output to individually min-
imize the Hamiltonian to encourage specialization [27]. This
procedure is slightly different from inserting (14) into (10),
which would only encourage their combined output to be
optimal. Training the optimal policy involves taking gradient
steps in the parameter space. The policy gradient for the loss
function (15) for a given sample j is equal to

Nexperts∑
i=1

pi(tj ,xj |θ)∂uH(xj ,πi(tj ,xj |θ), tj)∂θπ(tj ,xi|θ)

+ ∂θpi(tj ,xj |θ)H(xj ,πi(tj ,xj |θ), tj). (16)

For all nominal states the control derivative of the Hamiltonian
∂uH is computed as a byproduct of solving the problem (1),
(2); for neighboring states the derivative of (7) can be queried.
The gradients of p and π are calculated by backpropagation.

III. RESULTS

We assess the policy structure and loss function of the MPC-
Net algorithm separately to highlight the performance of our
method and justify individual design choices.

A. Experimental Setup

The results presented in this document are produced with the
quadrupedal robot ANYmal (Fig. 3), which is an example of a
hybrid system with time-varying flow map and constraints. The
constraints encode zero contact forces for a foot in swing phase
and zero velocity when in stance phase. Our kinodynamic

TABLE I
HYPERPARAMETERS OF MPC-NET

maxIter 100’000 mpcDecimation 500
rolloutLength 3 s Replay Buffer Size 100’000
time step ∆t 0.0025 s Nexperts 8
learningRate 1e-3 batchSize 32

model amounts to 24 states (base pose, base twist, joint
angles) and 24 control inputs (joint velocities, foot contact
forces). The control commands from our policy are fed to a
whole-body tracking controller that computes the final actuator
torque commands. Instead of providing the absolute time to the
network, it is more expedient to encode the phase of the gait
cycle of the legged robot. By abuse of notation, we, therefore,
define four ‘time’ variables, one per leg, which are zero during
stance phases and describe half a period of a sine wave during
the swing motion.

We use a quadratic OC cost function (1) of the form

Φ(x) = (x− xref,f )>Qf (x− xref,f ) , (17)

l(x,u, t) = (x− xref(t))
>Q (x− xref(t)) + u>Ru. (18)

The reference states encourage the system to return to the
origin with a trotting or static walk gait and then maintain a
nominal configuration. Our quadratic cost structure, together
with the fact that our constraints and dynamics are input-affine,
makes the Hamiltonian a quadratic function in u. Notably, this
guarantees that all assumptions made for the proof of Lemma 1
are fulfilled.

Since our loss function (15) directly depends on the sampled
data, it is not a suitable termination criterion for the training
process and has a high variance. We monitor the training
progress of our policy by computing a rollout of the system
dynamics f(·) with the learned policy from random initial
points. A rollout lasts 3 s but is terminated early if the pitch
or roll angle exceed 30 ◦ or the height deviates more than
20 cm from the nominal value. This procedure can be seen
as a test set for our learning approach. The resulting average
rollout cost (1) and the survival time are good performance
indicators for the policy.

All hyper-parameters of our algorithm are summarized in
Tab. I. The network weights are randomly initialized before
training and optimized with the AMSGrad variant of the
Adam optimizer [33], [34], which implements the stepOp-
timizer primive in Alg. 1. We take the data from MPC as
is without any pruning of failed rollouts or outlier states.
For the following comparisons, we execute five training runs
for each configuration and average the results. For better
interpretability, the progression of training is shown in terms of
the total duration of accumulated rollouts rather than (linearly
related) optimizer iterations.

B. Loss Function

We begin by providing numerical evidence that minimizing
the control HamiltonianH yields optimal controls. To this end,
we compare the optimal policy from MPC (5) with the result
of the minimization (6). Table II shows median constraint
violation and relative deviation from the optimal input for
40 randomly drawn points on or near optimal trajectories.
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TABLE II
COMPARISON BETWEEN THE MPC POLICY AND HAMILTONIAN

MINIMIZATION. WE SHOW MEDIAN CONSTRAINT VIOLATION ||g|| AND
THE RELATIVE ERROR TO THE OPTIMAL CONTROL u∗

states on opt. trajectory states near opt. trajectory
||g|| ||u−u∗||

||u|| ||g|| ||u−u∗||
||u||

πmpc 3.44e-6 0.0 3.58e-4 2.48e-2
arg minH 3.46e-4 1.58e-3 5.40e-4 2.80e-2

For query states x̃ near the optimal trajectory the benchmark
control u∗ is computed by solving (1) for x0 = x̃. The values
confirm that our estimation of H is sufficiently accurate and
that its minimization produces constraint-satisfactory control
commands. Additionally, this result suggests that the require-
ment for Lemma 1 (i.e., the existence of a strong minimum)
also holds for states in the vicinity of an optimal trajectory.

C. Comparison to Behavior Cloning

The next experiment compares our proposed Hamilto-
nian (10) as a loss function with a simpler BC loss that
encourages matching of the demonstrator’s control command

θ∗ = arg min
θ

E{t,x}∼P ||πmpc(t,x)− π(t,x|θ)||R . (19)

We use the control cost matrix R here to normalize the
different control dimensions. We see in Fig. 4 that the simpler
loss (19) results in similar convergence to a stable control
law, but the Hamiltonian loss consistently achieves a lower
constraint violation value. Constraint violation means that
physical feasibility is violated, effectively allowing the robot
to stabilize by cheating. When deployed in a physics simulator,
the policy trained on (19) tends to fall after a few footsteps as
violations errors accumulate because cheating is not possible
anymore.

We conjecture that the structure of the Hamiltonian, which
includes constraint violation penalties explicitly, encourages
the learning algorithm to respect constraints more carefully
than in the case of only observing constraint-consistent demon-
strations. Note that our loss would inform the learner about
constraint violations even if the demonstrations violated them.

D. Sample Efficiency

We show in Fig. 5 how sampling around the optimal
trajectory influences the learning process for a quadruped
walking motion. There is no noticeable effect in the loss
function (i.e., the value of the Hamiltonian) throughout the
process, which also suggests that this value is not a good
indicator for the actual performance of the policy. Instead,
a clear effect can be seen in the progression of the survival
time. The plot suggests that the additionally sampled states
provide valuable information for the training algorithm to
learn faster and stabilize the system more consistently at the
end of the training. More importantly even, we observe that
the policy that is trained only on nominal samples is overly
aggressive to small deviations in the system’s state. These
strong gains lead to oscillatory behavior when deployed on the
real system, where sensors and the state estimator inevitably

Fig. 4. Comparison between minimization of the control Hamiltonian and a
simpler loss penalizing differences in policy outputs. Both loss functions are
applied to the mixture-of-expert network architecture.

Fig. 5. Effect of collecting additional samples around the optimal trajectory.
The maximum duration of a policy rollout is 3 s. Five independent experiments
are averaged for each setting.

introduce noise. Subsequently, only the policy that is trained
with additional samples around the optimal trajectory is robust
and smooth enough to stabilize the system under noisy state
estimates. Evidence of this result is shown in the video2.

Finally, experiments show that the policies with sampling
become usable on the robot at approximately 75% of the
maximum number of iterations, indicating that sampling also
improves the effective amount of information extracted from
demonstrated trajectories and thereby necessitating fewer MPC
calls. Our algorithm, therefore, learns to stabilize a walking
robot from an experience buffer that is equivalent to running
the robot for nine minutes with an optimal controller. Notably,
this time scale opens up the possibility of learning directly on
a real system.

2https://youtu.be/VI7wt5PCJ14
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Fig. 6. The top graph shows a comparison of constraint violation during
training between the expert mixture network and a MLP of equivalent size.
The bottom two graphs display the output of the expert gating network for
two different gaits (one color per expert). Switching times correspond exactly
to changes in the contact configuration and the pattern repeats periodically
with the period of the gait.

E. Mixture-of-Expert Architecture

In this experiment we compare the performance of our
mixture-of-expert architecture to a classical two-layer MLP

πMLP = A2(tanh(A1x+ b1)) + b2 , (20)

with an equally-sized latent space than the one of the expert
mixture.3 While both architectures achieve similar conver-
gence to a stable controller, Fig. 6 shows that the expert mix-
ture reaches a significantly better constraint violation score.

We allow the expert mixture network to use 8 experts for
training. Interestingly, the gating network decides to use fewer
experts, and swiching between these sub-policies happens
precisely at the times when the contact configuration of the
system changes. For a trotting gait, only three experts are
needed (blue expert for the first pair of diagonal legs, a mixture
of red and black for the other pair, and red for the final
stance phase) while a static walk selects four experts, one per
swing leg. This result shows that the policy learns to select
an appropriate expert in different domains of the state space.
Moreover, a specialized expert that focuses only on a specific
contact configuration learns to obey the constraints better than
a single policy for all phases of the gait.

F. Robot Control

Finally, we test our trained policy on the physical ANYmal
robot. The on-board policy evaluation takes approx. 0.125 ms,
compared to 38 ms of an MPC update, and can therefore
be called synchronously to the tracking controller. We verify
that both a trotting and a static walk gait can be learned
from the MPC oracle using the same network structure and
identical hyperparameters. Despite the seemingly more stable
static walk, both gaits pose a comparable level of difficulty to
the learning algorithm which manifests in similar convergence

3 We also tested deeper and wider MLP architectures but could not observe
improved performance.

Fig. 7. Time evolution of ANYmal’s base position and yaw angle under the
trained policy. All quantities return to zero with minimal overshoot.

properties. The attached video shows the robot’s behavior
under our learned policy.

We test the policy’s ability to return to the origin by starting
the robot at a nonzero initial displacement and yaw rotation. In
Figure 7, we plot the resulting state trajectories of x-y position
as well as yaw angle, confirming that the network succeeds in
the regularization task without overshoot.

IV. CONCLUSION

In this work, we explored a variant of MPC-guided policy
search to learn a feedback control law. Contrary to other
imitation learning approaches, which try to mimic the control
commands of a teacher, our formulation is based on minimiz-
ing the control Hamiltonian. The optimization corresponds to
solving the OC problem with a restricted family of control
laws. We show that our algorithm is capable of learning a
feedback policy for two different gaits of a walking robot from
less than 10 minutes of demonstration data.

By design, our method cannot outperform the MPC policy
because it optimizes the same cost function, and we cannot
learn in areas where the optimization algorithm does not
converge. However, the improved speed in control evaluation
may very well stabilize motions that were not possible before
or enable online control altogether. Even if the MPC algorithm
is too slow to stabilize the robot, the sample efficiency of our
methods facilitates learning directly on the hardware. To this
end, one may compute the MPC solution online on a powerful,
off-board machine.

Online MPC may also be too energy-consuming for longer
autonomous operation, in which case MPC-Net could control
the robot by default and MPC is only queried as soon as un-
known states are encountered. Such an operating mode would
ensure the safety of the system while generating more training
data in regions of the state-space that are still uncertain.

A limitation related to imitating optimized trajectories is
the lack of exploration, as our policy search method will fall
into the same local minima that the MPC optimizer found.
Future research is necessary to investigate how policies could
systematically request new samples from the MPC to improve
in areas where the optimal control is still uncertain.

V. APPENDIX: PROOF TO LEMMA 1
Let p := π − u∗ be the difference between an arbitrary

policy π and the optimal controls u∗ for a single time and
state. We define H̄ : [0, 1]→ R as

H̄(α) = H(x,u∗ + αp, t) , (21)



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

where α is an interpolation parameter. Assuming second order
differentiability of H, the Fundamental Theorem of Calculus
allows us to write

H̄(1)− H̄(0) =

∫ 1

0

∂uH̄(α)p dα . (22)

Applying the same idea again to the integrand, we get

∂uH̄(α)− ∂uH̄(0)︸ ︷︷ ︸
=0

=

∫ α

0

p>∂2uH̄(β) dβ , (23)

with ∂2uH̄ denoting the Hessian matrix w.r.t. u. The second
term above vanishes because u∗ is optimal. Now we can
substitute (23) into (22), resulting in

H̄(1)− H̄(0) = p>
(∫ 1

0

∫ α

0

∂2uH̄(β) dβ dα

)
p . (24)

Assuming that u∗ is a strong minimum which satisfies the
Weierstrass sufficient condition, the Hessian of the Hamilto-
nian is positive definite in the neighborhood of the optimal
input. Thus for small enough p, there exists a positive scalar
δ > 0 for which

∂2uH̄(β) > δI, for all β ∈ [0, 1] (25)

We then have,

p>
(∫ 1

0

∫ α

0

∂2uH̄(β) dβ dα

)
p >

δ

2
p>p . (26)

Replacing the left side of the inequality with H̄(1)− H̄(0) and
recalling the definition of p yields the statement of Lemma 1.
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