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Distributed Proprioception of 3D Configuration in
Soft, Sensorized Robots via Deep Learning

Ryan L. Truby

Abstract—Creating soft robots with sophisticated, autonomous
capabilities requires these systems to possess reliable, on-line pro-
prioception of 3D configuration through integrated soft sensors. We
present a framework for predicting a soft robot’s 3D configuration
via deep learning using feedback from a soft, proprioceptive sen-
sor skin. Our framework introduces a kirigami-enabled strategy
for rapidly sensorizing soft robots using off-the-shelf materials,
a general kinematic description for soft robot geometry, and an
investigation of neural network designs for predicting soft robot
configuration. Even with hysteretic, non-monotonic feedback from
the piezoresistive sensors, recurrent neural networks show poten-
tial for predicting our new kinematic parameters and, thus, the
robot’s configuration. One trained neural network closely predicts
steady-state configuration during operation, though complete dy-
namic behavior is not fully captured. We validate our methods on a
trunk-like arm with 12 discrete actuators and 12 proprioceptive
sensors. As an essential advance in soft robotic perception, we
anticipate our framework will open new avenues towards closed
loop control in soft robotics.

Index Terms—Modeling, control, and learning for soft robots,
soft sensors and actuators, deep learning in robotics and
automation.

1. INTRODUCTION

OFT robotics represents an auspicious new paradigm for

designing robots with improved adaptability, resilience,
safety, and more by introducing compliance and deformability
in robot bodies [1]. However, it is this collection of enabling
material properties that complicates approaches to soft robotic
control. Despite more than a decade of progress, implementing
autonomous behaviors in soft robots remains a long-standing
challenge for this interdisciplinary field.
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Two factors make the control of soft robots difficult. First, the
continuum mechanics of these systems makes the implementa-
tion of model-based planning and control difficult (though some
progress has recently been made on this front [2]). Second, em-
bedded sensing through soft materials is necessary for the next
generation of soft robots. However, the design and fabrication of
soft sensorized robots is non-trivial and can require specialized
methods, materials, and equipment [3]-[8]. Consequently, ad-
vances in complex, soft robotic feedback control have typically
been achieved through exteroception and exogenous sensing
methods, including motion capture vision systems [9], [10] and
magnetic tracking [11]. While these approaches are appropriate
in the lab for proofs-of-concept, soft robots require integrated
soft sensors for more practical, sophisticated, and autonomous
capabilities.

Thus, the challenge of soft robotic perception and control
is both a materials and a robotics one. Regarding control,
learning-based strategies represent an alternative approach that
bypasses the challenges of model-based methods [12]. Still, both
model-based and data-driven control approaches need accurate,
reliable sensing of the robot’s posture and extraction of mean-
ingful quantities from soft sensor readings to connect them to
the soft robot’s complex shape. This requires dealing with the
soft sensors’ dynamic behaviors and the continuum nature of
soft robots, simultaneously.

Recent works have used learning-based methods for dealing
with complex sensor characteristics in soft systems [3], [6],
[13]-[17]. However, all of them deal with simple systems, often
without actuation capabilities and/or clear directions for how
these results can be scaled or transferred to the design and control
of more complex soft robots. To the best of our knowledge,
only two works have predicted some kind of actuated soft robot
information from embedded soft sensors [6], [17]. In [6], a soft
robotic hand can predict flexion, lateral, and twist deformations
in its fingers, and in [17], a recurrent neural network (RNN) is
used to learn the tip position and contact forces of a single soft
actuator. Neither of these works achieve a description of full 3D
configuration, which is essential for a complete understanding
of soft robot behavior and, thus, its eventual control.

To address these interwoven challenges, we present a frame-
work for rapidly equipping existing soft robots with distributed,
soft, piezoresistive sensors, and enabling them to perceive their
3D configuration via deep learning. Using feedback from the
soft sensors and motion capture data as model inputs and ground
truth, respectively, we trained long short term memory (LSTM)-
based neural networks to predict configuration parameters for a
soft robotic arm using a new analytical description of soft robot
shape. The arm is a three-segment, modular soft robot with 12
distributed fluidic actuators, each with corresponding sensors
(Fig. 1). One of our trained networks, selected for having the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0002-1313-6463
https://orcid.org/0000-0003-1067-1134
https://orcid.org/0000-0001-5473-3566
mailto:rltruby@mit.edu
mailto:cosimodellasantina@gmail.com
mailto:rus@csail.mit.edu
http://ieeexplore.ieee.org

3300

-100 -

-300 /
" 100

-100 TS
0 100 100

n
=3
<}

z [mm]

Prediction
Ground truth

2 [mm] y [mm]

Fig. 1.  Proprioception of 3D Configuration in a Soft Robot. The soft robotic
arm (left) has a proprioceptive skin of distributed soft sensors (scale bar = 5 cm),
which are fabricated via kirigami from off-the-shelf conductive silicone (inset,
scale bar = 1 cm). A trained neural network provides a prediction of kinematic
parameters from sensor signals, which are used to determine a 3D representation
of the soft robot’s configuration (right).

lowest overall root mean square error (RMSE) in predicted
kinematic parameters, provided predictions of 3D configuration
that reasonably captured the steady-state geometry of the soft
robot arm, even with inputs from our soft sensors exhibiting
highly hysteretic, non-monotonic behaviors. Current predictions
do not completely capture the full dynamic 3D configuration of
the arm. Still, our framework - which is modular and universal
in the sense that it can be easily extended to a variety of soft
systems - achieves an essential step in on-line, proprioception
of body shape in soft robots. Altogether, this letter contributes:

1) A kirigami-inspired design and fabrication strategy for
rapidly integrating piezoresistive silicone sensors onto
existing soft robots as a proprioceptive skin,

2) A new kinematic description connecting the whole soft
robot’s shape to low dimensional features that can be easily
learned by a data-driven strategy, and

3) A deep learning approach to predicting an approximation
of the complete 3D continuum shape of a complex, soft
sensorized robot arm.

II. DESIGN OVERVIEW AND RATIONALE

A. Sensorization Strategy and Soft Robot Design

Molded fluidic elastomer actuators (FEAs) popularly used
in soft robotics can be sensorized with flexible curvature sen-
sors [3], liquid metal sensors [6], soft piezoresistive compos-
ites [7], elastomeric waveguides [5], or ionically conductive
gels [4], [8]. Soft robotic sensors offer important trade-offs
between design, performance, and manufacturability. However,
they must all be integrated into the actuator during fabrication.
We created a sensor design and fabrication strategy that enables
us to bypass any modifications to existing soft robotic fabrication
procedures. Our approach for designing soft, piezoresistive sili-
cone sensors that can easily be distributed across the surface of a
soft robot body is enabled by kirigami (Fig. 2). Sensors are laser
cut from off-the-shelf sheets of conductive silicone elastomers
used in electromagnetic interference shielding. They can be
covalently bonded without adhesives to the surface of a soft robot
by plasma treatment [18]. Neither materials synthesis/handling
nor specialized equipment beyond a hand-held corona generator
and laser cutter are needed, allowing others to easily adopt our
technique.
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Fig.2. Kirigami Sensors. (a) Four kirigami cut patterns (circle (i), 45/—45 (ii),
1D (iii), 0/90 (iv)) are used to fabricate soft sensors from off-the-shelf sheets
of electrically conductive silicone. (b) Sensors are shown at 0 and 15% strain.
(Scale bars = 1 cm).

We distributed 12 kirigami sensors on an elephant trunk-
inspired soft robotic arm, as shown in Fig. 1. The arm is based on
a previously reported, sensorless design, for which a feedback
controller based on a rigorous mathematical model has already
been developed [10]. Four kirigami patterns - called circle,
45/—45, 1D, and 0/90 - were used as cut designs for the soft
sensors (Fig. 2). The soft arm consists of three individual silicone
segments with four embedded FEAs arranged in a cross-like con-
figuration. Complex systems with distributed actuation networks
with 3D maneuverability can be achieved by serially adding
multiple segments together. With our methods, any number of
sensors can be distributed across the soft robot’s body in practice,
and more sophisticated sensory skins can be achieved in the
future through more complex kirigami forms, materials, and
composite structures. For this study, we arbitrarily configured
each segment such that sensors with one of each of the four
unique kirigami patterns lie over the segment’s four embedded
actuators. Segments are assembled such that the same sensor
designs are arranged identically across segments. Because an
investigation into how specific sensor designs influence config-
uration prediction are beyond the scope of the present paper
and warrant a separate study, we maintain this arbitrary sensor
configuration.

B. Encoding the Geometry of the Soft Robot: 3D
Kinematic Description

The goal of the kinematic model is to connect orientation
and position of each point along the robot to a reduced set of
variables, thus analytically encoding the geometric features of
the robot. Knowing these variables’ values at a given time and
the kinematic description is equivalent to knowing the complete
(approximated) shape of the robot. This reduced set of variables
(configuration hereinafter) can then be learned by the deep
learning part of our method, a task that would be unfeasible
with the complete continuum shape.

We consider the central axis of the robot divided in ngegment
segments, corresponding to the soft robot design discussed
above. Fig. 3 depicts a schematic representation of the robot
with main quantities highlighted. {Sy} is the base frame of the
robot. {S;} is the frame fixed to the tip of the i—th segment, in
such a way that {S; } and {\S;_; } are aligned when the robot is in
a straight configuration, the local z axis is tangent to the robot,
and the local z axis points in the direction of the first (i.e., circle)
sensor. We call s; € [0, 1] the coordinate parametrizing points
along the ¢ —th segment. The distance of a point with coordinate



TRUBY et al.: DISTRIBUTED PROPRIOCEPTION OF 3D CONFIGURATION IN SOFT, SENSORIZED ROBOTS via DEEP LEARNING

:: R(I) (1)a t%l

@ )

{8:}

R{(s:), th(si)

Fig. 3. Kinematic Model for the Soft Robotic Arm. Local reference frames
are indicated by their principal axes. Transformations between reference frames
are depicted as dashed arrows. The rotation matrix and the translation vector
implementing the transformation are reported close to the arrow. {S;} are the
main reference frames along the robot, which are determined with our motion
capture system.

s; from the base of the segment is s; times the length of the
segment itself: s; = 0 indicates the beginning of the segment,
and s; = 1 its end. Each material point has its own orientation
and position in space, which we express using a rotation matrix'
and a triple of real numbers. We call them R} (s;) € SO(3)
and t})(s;) € R® when expressed in base coordlnates {50}, and

L—1( ;) € SO(3) and t!_,(s;) € R® when expressed in local
coordinates {.S;_1}.

To derive such a description, we consider four lengths
on the i—th segment running parallel with each sensor:
Li1,Li2,L;i3,L; 4 € RT. These quantities can be linearly

. . . Lo ,—L1;
combined in the following manner: A, ; = == A =

2
# 0L, = %24:1 Lj;— Lo, where Lg; € R is the
length of the segment when the robot is at rest. Intuitively,
Ay ; carries information on the extent of segment bending in
the « direction in {S;_1 } coordinates. Similarly, A, ; quantifies
segment bending toward the local y. Finally, 0 ; measures the
segment’s net change in length.

It can be proven that Ay ;, Ay ;, L; provide a complete
parametrization of the configuration manifold of the i—th
soft segment under the hypothesis of locally constant cur-
vature and homogeneous elongation within the segment. In
other words, these variables carry all the information we need
for describing the configuration of the i—th segment ¢; =
[Axi, Ay, dL;)T € R3. The formal proof of this statement
is provided in Ref. [19]. The actual kinematic description of the
segment is provided by R! ,(s;;¢q;) =

L 3 Cilo &) S5 Cilois &) —558i(s3 )
S5 Cisi ) L+ R Cilsi A) — 2528 (s0: A) |
(SZ7A1 1 +C (S“ i)
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1(817 Az) X,

disi L K +(5L
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ti—l(si;qi) =

IRepresentation of one element of the Special Orthogonal group of dimension

3,50(3).
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where A = ,/A2 + Ag o Si(si ) = sm(sdA) Ci(si; A)

= (cos(Z dA) 1), and d; € R is the radius of a segment’s
cross-section. These equations connect the configuration g; to
the posture of each point s;, expressed in coordinates {.S;_1}.
They can be derived from the corresponding elements in the
standard parametrization [20], by exploiting a transition map
connecting the bending and curvature variables used there with
the Ay ;, Ay ; introduced here. Ref. [19] provides more details.

R! | and t! | can be further reorganized into the SF(3)

element?

i

i—1(5i§Qi) té—l(siﬂh’)

T
0 0 0 1

P (siqi) = €]
The posture of the point s; on the i—th segment of the soft
robot, in base coordinates, can then be derived using the standard

SE(3) algebra

TS(SU(I) :T01(17q1) (Su%) (2)

Finally, the continuum shape of the segment in configuration
q; is represented by the sub-set S; = {T((si;q), Vs; € [0,1]},
while the shape of the whole robot S is the collection of these
sets Vi € {1...

TS (1, g 1)TE

nsegment } .

C. Inversion Problem

The ultimate goal of our framework is to estimate the robot’s
continuum shape, S;, through the information that can be re-
trieved from the soft sensor readings, v;. This problem is studied
in dynamic system theory as system inversion [21]. However,
existing techniques in the field are not suitable for soft robotics,
since they require reliable and relatively simple models of the
dynamic relationship between input and output. Such models
would take the form of the dynamical system &; = F;(&,S)),

H;(&;,S;), to be connected in series to the actual dynamics
of the soft robot. The variable of interest S; serves here as
the input, and the sensor readings v; as output. &; are internal
states, taking into account short and long term memory effects.
The former include low pass behaviors common to many soft
sensing systems. The latter include the hysteretic behaviors of
soft sensor composites. Finally, F;, H; are generic applications,
describing the internal dynamics and the output characteristics,
respectively.

The complexity of the inversion problem can be strongly
reduced by relying on salient geometric features that can be
extracted from the kinematic model, as introduced in the previ-
ous subsection. Thus, we substitute the parametrization of S; in
terms of ¢; into F; and H;, getting the following set of standard
ordinary differential equations

&= fil&ia), vi=hil&,a), 3)

where ¢; € R? is the parametrization of the i—th segment,
as introduced in the previous section. f; : R™nternal x R3 —
Rinternal defines the internal dynamics of the sensor, and h; :
RMinternal x R3 — Rsensor is the output function.

Finally, our goal is to regress the low dimensional robot con-
figuration ¢; from the sensor readings v;, without having a direct
knowledge of the internal states ;. Deriving adequately precise

2Element of the Special Euclidean group of dimension 3.
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Fig. 4. Sensorized, Soft Robotic Arm Segment Fabrication. (a) Molded wax
cores are loaded into a 3D printed mold. (b) An acetate film lines the mold’s
inner wall. (c) Silicone is cast into the mold and cured. (d) A cured arm segment
is removed, and inner wax cores are melted out. (¢) The final arm segment with
plasma bonded sensors is ready for arm assembly. (Scale bars = 2 cm.)

models of f; and h; remains difficult, if not impossible. In-
stead, we turn to black box nonlinear system identification [22],
specifically deep learning. Since these techniques ignore the
causal relationship between data [23], we can directly regress
an approximation of the inverse system instead of estimating f;
and h; and inverting them:

Ui = wi(i,00), @ = (i, v0),
if v, =hi (&, q). 4)

where 1 € R™nternal ig the internal state of the inverse model,
and ¢; € R? the estimation of the segment configuration. ;
and ¢; are the functions to be learned from data, specifying the
internal dynamics of the inverse model and its output function,
respectively. Given the dynamic, multi-scale nature of (3) and
(4), we use LSTM-based neural networks as approximators. We
do not report the structure of x; and ¢; for LSTM architectures
(see [24] for details).

s.t. (jl >~ q;,

III. METHODS

A. Soft Sensor and Soft Sensorized Robot Fabrication

Soft strain sensors with circle, 45/—45, 1D, and 0/90 cut pat-
terns are fabricated from 0.5 mm-thick, electrically conductive
silicone sheets (Shore A hardness of 65+4/—35, Silex Silicones
Ltd) via laser cutting (CO» laser, Universal Laser Systems). The
conductive silicone is filled with carbon black and has an ap-
proximate volume resistivity of 5 2-cm. All sensors are cleaned
by alternating 15-min intervals of sonication in isopropanol and
acetone.

Arm segments are molded from Dragon Skin 30 (Smooth-On)
using lost-wax casting methods with 3D printed molds [10]
(Fig. 4(a)-(d)). Molds are lined with 0.1 mm-thick acetate
films to create a smooth surface that facilitates plasma bonding
of sensors to the arm segments (Fig. 4(b)). After curing, the
kirigami strain sensors are plasma bonded to the surface of
the segments using a hand-held, atmospheric corona treater
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Algorithm 1: Extract Posture ¢ From One Set of Motion
Capture Readings T)} (1) ... Ty "™ (1).
T(?(l) «— I4><4
for i < 1, ngegment do
Ti(1) < ReadMotionCapture(i)
for i <— 1, ngegment do
T4 (1) « (Tg (1) ' T5(1)
A; < arccos(R!_4[3,3])d;
SL; + t¢1[3]A;/[d; sin(A;/d;)] — Lo
Ay <t 4[1] A7 /[di(Lo,i + 6L;)(R;_[3,3] = 1)]
Ayt [2] A?/[di(Lo; + 6L:)(Ri_,[3,3] — 1)]

> Initialization

>Posture extraction

(Electro-Technic Products) [18]. The corona treated sensor is
firmly pressed against the arm segment and left undisturbed.
After 24 hr of bonding at room temperature, Kapton tape is
laid over all sensors, and the wax is removed through melting
by heating segments in a 90 °C oven, followed by complete
immersion in boiling water, both for 1 hr [10]. The Kapton tape
is removed, and neodymium rare earth magnets are glued at
the ends of each strain sensor using a conductive, silver-filled
silicone adhesive (SS-26, Silicone Solutions). Steel disks are
soldered to 28 gauge wire and placed as break-away leads on
each magnet. Silicone tubing is glued into the four actuator
inlets of each segment using Sil-Poxy (Smooth-On) (Fig. 4(e)).
All leads and actuator tubing are threaded through the segment
cores, and the segments are glued together to form the arm.

B. Soft Robot Operation and Characterization

The test bed for operating and characterizing the soft robot
includes a 16-line pressure manifold for pneumatic actuation
(Festo Corporation), readout electronics, digital acquisition unit
(DAQ, USB-6212, National Instruments), and motion capture
setup (OptiTrack). Inflation pressures of 0 to 120 kPa are used
for actuation. Sensor feedback is obtained with voltage dividers,
whose output voltages are recorded with the DAQ. Each sen-
sor’s resistance, Rsg, is given by Rg = p(l/A), where p is the
resistivity of the conductive silicone, [ is the sensor length, and
A is the sensor cross-sectional area. As a sensor deforms, Rg
changes. The voltage divider converts Rg to an output voltage,
V, where V = Ve Re/(Rs + R2). Voe and Ry are 9 V and
7.5 MQ, respectively. If 1} is a sensor’s initial voltage, then
AV decreases as Rg increases (where AV =V — V). Optical
tracking markers are placed at the arm’s base and at the end of
each arm segment to designate {S;}. Motive motion capture
software (OptiTrack) coordinates all motion capture data and
sensor inputs from the DAQ. Camera and sensor sampling rates
are 100 frames/sec and 1000 Hz, respectively.

The motion capture provides direct measurements of position
and posture of each segment’s end, expressed in base coordi-
nates. To extract ¢ from these data, we express the postures
in local coordinates and invert (1) for s; = 1. The operations
needed to perform this task are reported in Algorithm 1 as
pseudo-code. We call t¢_, [4] the j—th element of the translation
partof T ;(1), and R!_,[j, k| the element (34, k) of the rotation
part of the same matrix.

We use two discrete actuation patterns to characterize our soft
sensorized robot: inflation sweeps and inflation steps. During
inflation sweeps, segment S; is inflated to 120 kPa then deflated
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(ii), indicating input (IN), multi-layer perceptron (MLP), long short term mem-
ory (LSTM, with HL hidden layers), fully connected (FC), dropout (DL), and
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back to 0 kPa at 10-kPa increments held for 3 sec each. The
inflation pressure is swept sequentially in Actuators 1, 2, 3, and
4 of segment S5 (i.e., the actuators beneath the circle, 45/—45,
1D, and 0/90 sensors, respectively). During inflation steps, the
same actuator is inflated in all segments to 100 kPa and held for
15 sec before deflation to 0 kPa, which is held for 15 sec. This
step inflation is applied sequentially to Actuators 1 through 4 in
all segments.

For training and validation purposes, we also collect data from
the arm as it undergoes several additional actuation sequences.
These actuation motifs are called random actuations, swing
inflation, and extension sequences. In random actuations, all 12
actuators in the arm are randomly actuated at inflation pressures
of 50 to 120 kPa and changed every 3 sec for 100 cycles.
Swing inflation sequences are identical to inflation steps, except
two neighboring actuators are inflated simultaneously, cycling
between Actuators 142, 243, 3+4, and 4+-1. Fig. 1 shows the
arm with Actuators 344 inflated at 100 kPa during a swing
inflation sequence. Extension sequences involve inflating all
actuators in S7 to 50 kPa for 15 sec and then deflating to 0 kPa
for 15 sec, repeating for Sy then Ss.

C. Neural Network Design and Training

All neural network design, training, and validation was per-
formed with MATLAB’s Deep Learning Toolbox. Two
types of neural networks, noted Architectures 1 and 2, were de-
signed (Fig. 5). The input layer features of each architecture are
time series responses from a single sensor, while the regression
output layers provides values corresponding to predictions of
the ¢; parameters. With Architecture 1, we explore a quasi-static
simplification of the inversion problem discussed in Section I C,
i.e. v; ~ h;(q;), which ignores the dynamic, hysteretic behavior
of the soft sensors. This leads to the simpler static inverse model
Gi = i (v;) : RMsensors — R3Msegments guch that ¢;(h;(q;)) ~ g;.
To model this, Architecture (Arch.) 1 is based on a shallow
MLP layer with two hidden layers, followed by a set of low pass
filters. In contrast, Arch. 2 contains an LSTM layer, rendering
it sensitive to the sensors’ dynamic responses, followed by
dropout and fully connected layers. Both architectures have 12
inputs and 9 outputs (i.e., 12 sensor signals and 9 ¢; parameters,
respectively).

Training and validation sets are comprised of data collected
from unique sequences of inflation steps (ISt), inflation sweeps
(ISw), random actuations (RAs), swing inflations (Swl), and
extension (Ext). The training data set includes a concatenated
sequence of the following: RAs, ISt*, Ext, RAs, ISw, ISt*,
RAs, RAs, ISt*, RAs, ISw, ISt¥, SwI*, ISt, ISt, Swl, SwI*,
ISt, Sw1, ISt, RAs, ISt, Swl (where * indicates that the sequence
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was only performed on S3). The validation data set includes a
concatenated sequence of the following: RAs, ISw, ISt. While
we use repeat actuation sequences in the training and validation
sets, note that the sensor response is different in each due to
the dynamics and deformation history-dependent nature of the
soft sensors’ responses. Also, RAs are the longest sequences,
especially compared to the ISt and ISw motifs, ensuring that
random behaviors from the arm are prominently featured in the
data sets. Training and validation data sets amount to approxi-
mately 80 and 13 min of data, respectively, with both training and
validation sets including data over intervals where the arm was at
rest. Following the practices used in [17], we use the validation
set as our test set for evaluating neural network performance,
due to the challenge of collecting extensive data sets with soft
robots.

Three networks of each architecture were trained with various
sets of hyperparameters. Networks are trained using the Adam
optimizer for a maximum of 1000 epochs with a validation
frequency of 10. Over-fitting is minimized by L2 regularization
and a patience of 20. In Arch. 1, the number of hidden neurons
in both the first and second layers were varied in [8, 16, 24,
32], in all combinations. In Arch. 2, the dropout layer rates
were varied in [0.1,0.2,0.5], and the number of hidden states
were varied in [10, 100, 200]. The root mean square error on
the prediction from the test (i.e., validation) set is evaluated for

each network as RMSE = \/Zjlio PD} e lals -4l A1

k=0 12nsample
where NgensorMsegment = 12, ¢[7, k] is the j—th element of the
configuration at the sample %, and §[7, k] its estimation.

IV. EXPERIMENTAL RESULTS

A. Soft Robot Characterization

Fig. 6(a) illustrates the steps of an inflation sweep actuation
pattern in segment Ss. Figs. 6(b) and 6(c) show AV for all
sensors and g3 parameters (A, 3, A, 3, and 0L3) as a function
of inflation pressure, respectively, during inflation sweeps in
each actuator. All sensors exhibit hysteretic and non-monotonic
behavior (Fig. 6(b)). In general, the sensor responses vary sig-
nificantly for different kirigami cut patterns. Also, all sensors
decreasein Rg (i.e., increase in A1) when the opposing actuator
is inflated and compresses the sensor. Otherwise, all other trends
are less obvious.

First, all sensors exhibit a similar trend when the actuators
they lay above are inflated: the sensors begin to decrease in V,
but begin increasing in V' around 80 to 100 kPa (Fig. 6(b)).
One would expect that increasing sensor strain during inflation-
induced bending would lead to monotonically increasing Rg
(i.e., decreasing V). However, the structural dynamics of the
percolated networks of conductive carbon black particles in
the sensors can result in a changing p, yielding non-monotonic
sensor responses [25]. Monotonic changes in Rg are observed
when sensors lie perpendicular to bending direction. Finally, we
observe expected changes in A, 3, Ay 3, and §L3: increasing
inflation pressures at Actuators 1, 2, 3, and 4 induce bending
in the direction along the —z, —y, z, and y axes of {S>},
respectively (Fig. 6(c)), and § L3 > 0 during bending.

Figs. 7(a) and 7(b) provide the sensor readings and the posture
parameters, respectively, for all segments during inflation step
actuation patterns. From Fig. 7(a), the sensors’ nonlinear, defor-
mation history-dependent responses and their evolution when
the robot is at rest are clearly shown. In Fig. 7(b), the oscillatory
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Fig. 6. Characterization of a Single Arm Segment. (a) Photographs show the
arm’s third segment (S3) actuating at 120 kPa inflation pressure, sequentially
applied from Actuator 1 (top) to Actuator 4 (bottom). Transparent overlays of
the segment at 0 kPa are included for visual reference of deflated state. (Scale
bars = 2 cm). (b) Voltage change, AV, for each sensor and (c) configuration
values versus inflation pressure are provided for each actuation pattern shown in
(a). In both (b) and (c), shaded error bands indicate standard deviation (n = 3);
filled lines with solid markers and dashed lines with empty markers indicate data
from inflation and deflation cycles, respectively.

TABLE I
RMSE OF VALIDATION SET PREDICTIONS FOR ARCH. 1 (mm)

Hidden neurons, 15¢ layer
8 16 32 64
8 [5.9]5.716.4]59]6.0[11[7.2]7.2]6.4]6.116.7]6.3
5.6/6.0[6.3(8.216.2|6.5(7.1]6.9(8.0(8.6[8.6] 10
3216.1(6.0(7.3(7.8(8.4|8.3]9.0/10[9.0] 11|10 8.1
6417.717.4]17.119.0(8.6[7.6]/9.0[8.0[ IT[I1]15]10

2nd Jayer
N

TABLE II
RMSE OF VALIDATION SET PREDICTIONS FOR ARCH. 2 (mm)

Hidden layers
10 100 200
0.1[1.93]2.22]2.03|1.54[1.52|1.67|1.27|1.70
2(2.23[|1.77(2.01[1.50| 1.42|1.71|1.68 | 1.37
0.5]2.22]2.10[2.11|1.45]1.53[1.35|1.46]1.53

1.46
1.37
1.43

Dropout
o
[\S]

swinging of the actuated arm is captured. Due to inertia and the
arms’ mechanical properties, the swinging of the arm should be
most pronounced at 57 and minimal for S5. These features are
correctly reflected in our kinematic model. We note that only
some of the sensors’ responses in Fig. 7(a) reflect the arm’s
swinging motion.

B. Neural Network Design and Training

Tables I and II provide RM SE values (in units of mm) for
all trained networks. Overall, LSTM-based Arch. 2 provides
lower RM SFE than MLP-based Arch. 1, presumably due to
Arch. 2’s sensitivity to the sensors’ dynamic responses over
time. For Arch. 2, changes in dropout rates did not have clear
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Fig. 7. Characterization of the Full Arm. In a sequential pattern with all
actuators, moving from inflating Actuator 1 of all segments to Actuator 4 of
all segments, the arm is inflated for 15 sec at 100 kPa and deflated for 15 sec.
(a) The output voltage from sensors in the first (S1), second (S2), and third (S3)
segments and (b) the configuration values for the first (q1 ), second (g2), and third
(g3) segments are provided versus time (all plots share the same z-axis.)

trends for influence on RM SE. Finally, for Arch. 2 networks
with a given dropout rate, more hidden layers in the LSTM layer
typically resulted in lower RMSE. An Arch. 2 network with
a dropout rate of 0.1 and 200 hidden layers in the LSTM layer
provided the lowest RM S E of all trained networks, at 1.27 mm.
We emphasize that these hyperparameters are optimal for our
specific validation data set here, not, necessarily, for a generic
new set of data.

C. Validation of 3D Configuration

With our trained neural network (Arch. 2 with RMSE of
1.27 mm), sensor voltage inputs are used to predict ¢; for all
segments during inflation steps (Fig. 8) and random actuation
cycles (Fig. 9). Fig. 8(a) shows four near-steady state configura-
tions after swinging about, for each actuation step of the inflation
step sequence. Fig. 8(b) shows the corresponding ground truth
3D configurations computed from motion capture data compared
with the predicted configurations. Fig. 8(c) shows ground truth
parameters, q;, and estimated ones, ¢;, over time for the second
step inflation, in which Actuator 2 in all segments is inflated
to 100 kPa. ¢; is in relatively close agreement with ¢; during
step inflation cycles. The network dampens the amplitude of
the oscillatory, dynamic motion in ¢; and g2 (Fig. 9(c)), though
it does predict the general steady-state behavior of the arm’s
motion during these actuation steps. Thus, the network satisfac-
torily predicts the steady-state configuration of the arm but not
its full dynamics.
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Fig. 9. Validation Results on Random Arm Actuations. (a) Photographs and (b) respective plots of ground truth and predicted configurations are provided for
representative soft robot poses during random actuation cycles. In (b), the grey curves represent ground truth configurations over several seconds; the red and black
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Fig. 9 provides data regarding predictions of ¢; as the arm
is randomly actuated at inflation pressures of 50 to 120 kPa
changed every 3 sec (Fig. 9(a)). Again, as for Fig. 8(b), Fig. 9(b)
shows the computed and predicted 3D configurations using
posture parameters ¢; and ¢;. Fig. 9(c) shows ¢; and ¢; for
the course of this study, with colored regions indicating the
specific postures shown in Figs. 9(a) and 9(b). A slight phase
delay between ¢; and g; is observed in Fig. 9(c). This behavior,
not observed in Fig. 8(c), is likely due to the higher level of
dynamicity during random actuations. We again see agreement
between ¢; and ¢; during random actuations, with the network
better predicting steady-state configuration.

V. CONCLUSIONS

We have developed a framework for learning 3D configuration
in a soft robot through distributed proprioception enabled by a
soft sensor skin. We have shown an example of a trained RNN
that reasonably predicts the steady-state configuration of our
soft robotic arm during both prescribed and random actuation
sequences, even with feedback from non-monotonic, hysteretic,
soft piezoresistive sensors. Our neural network’s inability to
predict all details of the arm’s full dynamic motion is likely
the result of two important features: (i) the soft sensor’s current
sensitivity is insufficient for capturing small dynamic, oscilla-
tory motions, and (ii) the use of voltage dividers as convenient
readout electronics can unintentionally suppress dynamic details
in sensor signals. The former represents a general limitation
and challenge for the development of soft robotic sensors from
soft materials, while the latter speaks to a general question of
how data engineering also influences our approach. We are now
working towards two follow-up investigations of how sensor
and neural network designs influence our ability to predict the
full, dynamic, 3D configuration of soft sensorized robots. First,
we are exploring how our different kirigami sensor designs
influence the accuracy of configuration prediction. Second,
we are interested in exploring new neural network architec-
tures that enable us to look at sensory feedback in both the
time and frequency domains and/or better identify important
sensor signal features in order to predict subtle configuration
dynamics.

Overall, our results represent a fundamental step towards
learning-based, soft robotic proprioception, which is necessary
for addressing key challenges in closed-loop feedback control
for soft robotics. We hope our framework can be readily used
by others in the field to model, sensorize, and learn 3D config-
uration in other soft robots, expediting advances in soft robotic
perception and control.
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