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Federated Imitation Learning: A Novel Framework for Cloud Robotic
Systems with Heterogeneous Sensor Data

Boyi Liu!3, Lujia Wang!, Ming Liu? and Cheng-Zhong Xu*

Abstract— Humans are capable of learning a new behavior
by observing others to perform the skill. Similarly, robots can
also implement this by imitation learning. Furthermore, if with
external guidance, humans can master the new behavior more
efficiently. So, how can robots achieve this? To address the
issue, we present a novel framework named FIL. It provides
a heterogeneous knowledge fusion mechanism for cloud robotic
systems. Then, a knowledge fusion algorithm in FIL is proposed.
It enables the cloud to fuse heterogeneous knowledge from local
robots and generate guide models for robots with service requests.
After that, we introduce a knowledge transfer scheme to facilitate
local robots acquiring knowledge from the cloud. With FIL,
a robot is capable of utilizing knowledge from other robots
to increase its imitation learning in accuracy and efficiency.
Compared with transfer learning and meta-learning, FIL is more
suitable to be deployed in cloud robotic systems. Finally, we
conduct experiments of a self-driving task for robots (cars).
The experimental results demonstrate that the shared model
generated by FIL increases imitation learning efficiency of local
robots in cloud robotic systems.

I. INTRODUCTION

In tradition imitation learning scenarios, demonstrations
provide a descriptive medium for specifying robotic tasks.
Prior work has shown that robots can acquire a range of
complex skills through demonstrations, such as table tennis
[1], drawer opening [2], and multi-stage manipulation tasks
[3]. Nevertheless, there exist a number of problems in the
application of imitation learning. For example, large amounts
of data are required and sometimes they are heterogeneous.
These drawbacks result in long training time for the robot and
limited generalization performance. Cloud robotic system [4]
can be adopted to increase the learning efficiency of robots,
and federated imitation learning algorithm is proposed to fuse
the shared knowledge of robots.
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Fig. 1. The child on the upper left acquires the ability to ride a bicycle
by observing an adult. This is the process of imitation learning in humans.
Correspondingly, the upper right robot acquires skills by training data. This
is the process of imitation learning in robots. The bottom left child not only
acquires bicycling skills by observing an adult, but also gets helps from an
adult. This makes his learning more efficient. Inspired by this, in this work,
FIL enables the bottom right robot not only acquires skills by training data,
but also gets knowledge from other robots through the cloud robotic system.

The cloud fuses knowledge which is from local robots.
However, data heterogeneity hinders the process. This issue
is generally regarded as a major challenge of cloud robotic
systems [5]. To overcome this issue, a novel framework named
FIL has been proposed. It increases imitation learning of
local robots in heterogeneous data condition. As shown in
Fig.1, it is inspired by the case that humans can learn more
effectively if they have external guidance. With FIL, a robot is
capable of taking advantage of knowledge from other robots.
The student/teacher imitation learning in local robots will be
incrseased with the guide model provided by FIL. To evaluate
it, we conduct an autonomous driving task. Experimental result
indicates that FIL enables robots to absorb knowledge from
other robots and apply the knowledge to increase imitation
learning efficiency and accuracy. Videos of the results can
be found on the supplementary websiteﬂ Overall, this paper
makes the following contributions:

« We present a novel framework named FIL. It provides a
knowledge fusion mechanism for cloud robotic systems.

o« We propose a knowledge fusion algorithm in FIL. It
enables the cloud to fuse knowledge from local robots and
generate guide models for robots with service requests.

« Based on transfer learning, we present a knowledge trans-

I'The video is available at https://sites.google.com/view/federated-imitation



fer scheme to facilitate local robots acquiring knowledge
from the cloud.

II. RELATED WORK

In this work, FIL is proposed to increase the learning
efficiency of each local robot in the cloud robotic system. The
cloud generates a shared model and provides guidance services
for each local robot. Methods that can achieve similar goals
include transfer learning and meta-learning. Compared with
these two approaches, FIL achieves heterogeneous knowledge
fusion without raw data sharing. The related work are intro-
duced as follows.

A. Transfer learning

Transfer learning aims at improving the performance of
target learners on target domains by transferring the knowledge
contained in different but related source domains, which is
similar to the goal of FIL. In recent years, transfer learning re-
search communities are mainly focused on deep transfer learn-
ing [6]. The techniques used in deep transfer learning include
four categories: instances-based transfer learning, mapping-
based transfer learning, network-based transfer learning, and
adversarial based transfer learning [7].

The above approaches have made efforts for knowledge
transferring between domains. Unfortunately, the difference
between domains in a cloud robotic system can be large.
Sometimes the data are collected with different kinds of sen-
sors. Therefore, the datasets of local robots in the cloud robotic
system may be heterogeneous. It is not possible to directly
use the transfer learning technology. Therefore, the proposed
framework first fuses heterogeneous knowledge rather than
using transfer learning technology directly.

B. Meta-learning

Meta-learning and the proposed framework have the same
ultimate aim. Meta-learning, or learning to learn, is the science
of systematically observing how different machine learning
approaches perform on a wide range of learning tasks, and
then learning from this experience, or meta-data, to learn new
tasks much faster than otherwise possible [8]. Applications of
meta-learning in robotics have achieved good results. Among
these, One-Shot Visual Imitation Learning [9] and Domain-
Adaptive Meta Learning (DAML) [10] by Abbeel’s lab are
representative. Compared with the former that can enable
robots to perform imitation learning from action videos of
robots, DAML is an improved approach, which enables the
robot to imitate human actions directly,. DAML enables a
robot learning to visually recognize and manipulate a new
object after observing just one video demonstration from
a human user. To enable this, DAML uses a meta-training
phase where it acquires a rich prior over human imitation,
using both human and robot demonstrations involving other
objects. DAML extends a prior meta-learning approach to
allow for learning cross domain correspondences and includes
a temporal adaptation loss function.

However, the phase of meta-training is essential in DAML
or other meta-learning approaches. It means that we have to
obtain data of all local robots because the step of calculating

loss to update gradients requires all task data (corresponding
local data in the cloud robotic system). It is an impossible task
considering limited communication. The more effect of meta-
learning requires more data and a higher-capacity model to
support. Nevertheless, it is difficult for the cloud to get all the
data of local robots. Therefore, meta-learning approaches are
unsuitable for the cloud robotic system in this work, although
they may get higher accuracy.

C. Knowledge sharing in cloud robotic system

Knowledge sharing is the key in the work, which means
local robots share knowldge with each other. For this purpose,
[11] presented a mental simulation service for the existing
OPENEASE cloud engine. With this service available, agents
can delegate computationally-expensive simulations to more
powerful computing services. In addition, they created a SWI-
Prolog library so that the developers and robots can describe
the world state, self abilities and the problem. [12] proposed
a framework for robots to reason on a central knowledge base
which has ontologies and execution logs from other robots.
This approach achieves knowledge exchanging with cloud
robotic. [13] presented a platform that supports large-scale
on-demand data collection for robot. All of the above three
approaches can realize the fusion of local knowledge. Unfor-
tunately, they can’t fuse the knowledge from heterogeneous
data, which is addressed by this work.

III. METHODOLOGY

In this section, we will present the details of the pro-
posed framework and algorithms, which includes knowledge
acquiring technology, framework of FIL, knowledge fusion
algorithm and knowledge transferring algorithm.

A. Knowledge acquiring by imitation learning

Local robots acquire knowledge through imitation learning
in FIL. Imitation learning is commonly posed either as be-
havioural cloning [14] or as inverse reinforcement learning
[15], both of which require demonstrations. Imitation learning
has empowered recent advances in learning robotic manip-
ulation tasks by addressing shortcomings of reinforcement
learning such as exploration [16] and reward specification [17].
The knowledge acquiring approach used in FIL of local robots
belongs to behavioural cloning, which focuses on learning the
experts policy using supervised learning. The way behavioural
cloning works is quite simple. Given demonstrations of robots,
we will divide these into state-action pairs. We treat these pairs
as i.i.d. examples and finally, we apply supervised learning.

B. Framework of FIL

The framework of FIL is performed in Cloud-Robot-
Environment setup. There are local robots, cloud servers,
communication services and computing device. Local robots
learn skills through imitation learning and the cloud server
fuses knowledge. We develop a federated learning algorithm
to fuse private models into the shared model in the cloud. With
the shared model, the cloud server is capable of generating
guide models corresponding to requests of local robots. After
that, the local robots perform transfer learning based on the



guide model. Finally, the final policy will be quickly obtained.
As illustrated in Fig.2, we will explain the methodology in FIL

with the example of a self-driving task.
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Fig. 2. FIL framework. The work assumes that there are three agents to fulfil
the task. They perform imitation learning to acquire the policy models with
heterogeneous data: RGB images, depth images and semantic segmentation
images. Neither can the raw training data be shared between agents nor
between agents and clouds. Only the parameters of the policy models will
be uploaded and fused, and then the cloud will provide guide models while
robots request.

Based on the self-driving task, we typically collected three
types of data. The three agents use three different types of
dataset separately. Datasets of local robots are labeled but
will not be sent to the cloud. Three different policy models
will obtained by local training. RGB images will be trained
by Agent A, and a private policy model (Private Model A)
will be obtained. Actions of robots will be determined by the
output which might be some actions or parameters. Similar
processes occur in agent B and agent C. Outputs of the
three private models are with same types. The inputs to each
model are different: RGB images, depth images, and semantic
segmentation images. Then the parameters of all three models
will be uploaded to the cloud and fused there. Henceforth, the
cloud will be capable of generating guide models for different
types of input. When a local robot requests a service, the cloud
will provide a guide model in correspondence with the type
of sensor data. FIL can be performed either online or offline.
As presented in Algorithm 1, the whole framework can be
summarized as following steps:

o Stepl: Imitation learning performed by local robots;

o Step2: Parameters (of private models) Transmitting;

o Step3: Fusing (in the cloud) knowledge;

o Step4: Responding to the local requests and generating

guide models for them.

Noted that stepl and step 2 are simultaneous while FIL
performs online. Labels of the cloud data will be updated
simultaneously.

Algorithm 1: Processing Algorithm in FIL

Initialize action-value Q-network with random weights 0;
Input: n: number of local robots ; g: update frequency.

while cloud server is running do

d 6, < robot, performs imitation learning

if t%g == 0 then

for i=0;i<n;i++ do
| Send 6; to the cloud;

end

labels=fuse(0y;, 6, - -,6,)

end

if service_request=True then

Generate 6,;,,, base on labels; Send 6., to
local robots;

O1ocar=transfer(Qiouq).

end

end

C. Knowledge fusion algorithm in the cloud

Knowledge fusion has been a focus of many approaches
since the end of the 20th century. These studies focus on
the construction of knowledge bases [18] [19] or knowledge
representations [20] [21]. However, the above approaches that
define the knowledge representation of the local robots are
unsuitable for cloud robotic systems. We cannot determine
how local robots obtain data and express knowledge. In our
work, the proposed framework aims to make local robot
learn efficiently and smart. In another word, it is one of the
demonstrations of robot lifelong learning.

Existing machine learning approaches fuse knowledge by
centralizing storage of training data. Consequently, these ap-
proaches are unattainable in cloud robotic systems with large
scale local datasets considering the limited communications.
In [22], the federated learning system was introduced. Therein,
the mobile devices perform computation of model training
locally on their training data according to the model released
by the model owner. Such design enables mobile device to
collaboratively learn a shared model while keeping all the
training data on the device. Similarly, multi-sensor data fusion
is required by many robotic tasks, such as the navigation of
self-driving cars, mobile robot SLAM. But it is impossible
to upload all kinds of sensor data to the cloud. Therefore,
we propose a federated imitation learning framework in cloud
robotic systems to improve the ability of robots. In the
proposed framework and algorithm, there is no need to upload
raw sensor data to the cloud, only the parameters of the models
are shared in the cloud.

Fig.3 presents the knowledge fusion algorithm. Primary
responsibility of the cloud is to label scenes. Before this,
some data collecting for cloud training is necessary, and the
types of these data should at least cover the types of local
datasets. For example, in the self-driving task of this example,
the RGB images, depth images and semantic segmentation
images should be collected for the cloud. Thus, one scene
has three types of sensor data. Each has a corresponding
uploaded private model which provide its own suggestion
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Knowledge fusion algorithm deployed on the cloud in a self-driving case. Agents obtain private models by performing imitation learning. The cloud

stored different types of sensor data of many scenes. Input corresponding sensor data in the cloud dataset to private models. Then calculate the numerical
characteristics of private models outputs to label scene. Noted that these data is not uploaded from local but collected by the cloud, and the cloud dataset is
much larger than each local dataset. With multi types of sensor data, the cloud is capable of generating guide models corresponding to the sensor type of the

local robot.

of labelling to the cloud. And then, these suggestions will
be congregated to produce a final label for this scene. The
calculation approach of labelling can draw on some methods of
ensemble learning which can be defined according to different
application scenarios, in this case, we choose the median
of outputs. As private models will output the steer of the
agent. Agents usually make decisions of following the road,
turning, obstacle avoiding, etc. Generally speaking, the output
of the model includes two extreme cases: turning and no
turning, where errors occur most. While Median can avoid
extreme values in the evaluation. For example, if there were
5 local models and outputs of them for one scene are: -0.1,
-0.3, 0.4, 0.4, 0.5. We will take 0.4 as the label of current
scene. As data being labeled, cloud models will be trained
immediately. Formula (1) to Formula (5) have summarized
the whole process:

R0 =y XL (550))

In the Formula (1), D; = x(”),y(”)

. =1 .
the local robot i. L represents the loss function.0 repensents
parameters of models. x; are original data and y; are labels. N
is the number of samples of the dataset. Ry, represents the
empirical risk in training sets.
0} = argminR}™"(0)
6
The Formula (2) presents training targets of local robots. It
is the structure risk minimization criteria. R}’ represents
structure risk in datasets.

is the dataset of

2

3)

In the above formula, scene;, is the training data in the cloud.
i represents sensor types, n represents the number.

Me;, = Median (1;y,)

lin = foi (scenejy,)

“4)

1 " 1
G;Ecloud) = arg;nlnﬁng,ll' (Meinvf (Scenel(n); 9)) + E)L ”9”2
®)

In Formula (4) and (5), Me;, is the median of [;,, Gi*gcloud) is
the training targets in the cloud. M represents the number of
sample data. 0 is the regularization term of L2 norm, which
is used to reduce the parameter space and avoid over-fitting,
lambda is used to control the intensity of regularization. y
is true labels in the dataset. 1 means the prediction from the
model we trained. ’in” means the n-th scene of the i-th type
of data.

Noted that we only use the shared model in the cloud as a
guide model for local robots. The shared model maintained
in the cloud is a cautious policy model, which means it
will not make serious mistakes in some private unstructured
environments but the action might not be the best. Thus, it is
necessary for every local robot to train its own policy model
based on the shared model received from the cloud. This is
the transfer learning process in FIL.

D. Transfer the shared model

There have been a lot of valuable studies on transfer learn-
ing. Current research mainly focuses on transferring through
the relationship between source domain distribution and target
domain distribution. This method is unsuitable for cloud
robotic systems because it requires raw data of local robots.
Under the constraints of the above conditions, Layer Transfer
is the transferable learning method that can be implemented.
Layer Transfer means that some layers in the model trained by
source data are copied directly and the remaining layers are
trained by target data. The advantage of this is that target data
only needs fewer parameters to be trained, thus avoiding over-
fitting. It has faster training speed and higher accuracy. On
different tasks, the layers that need to be transferred are often
different. For example, in speech recognition, we usually copy
the last layers and retrain the first layers. This is because the
first layers of speech recognition neural network are the way to
recognize the speaker’s pronunciation, and the last layers are
the recognition. The latter layers have nothing to do with the
speaker. In image recognition, we usually copy the front layers
and retrain the back layers. This is because the first layers of
the image recognition neural network are to identify whether



there is a basic geometric structure, so it can be transferred.
The latter layers are often abstract and cannot be transferred.
So, which layers to be transferred are case by case.
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Fig. 4. A transfer learning approach of FIL

As presented in Fig.4, in the work, we use front layers
as feature extractors in the case of imitation learning. The
decision model in the cloud can be used as the initial model for
local training. In this way, cloud model can play a guiding role.
It can speed up local training and increase the accuracy of local
robots. In the training of local robots, the feature extraction
layer is frozen and only the full connection layers are trained.
If necessary, it can also adjust the relevant parameters in the
process of back propagation. For example, some work may
increase learning rate. After transfer learning, local robots
successfully utilize knowledge from other robots in cloud
robotic systems.

IV. EXPERIMENTS

In this section, we will present our experimental setup
and the results. To verify the effectiveness of FIL, we have
to answer two questions: 1) Is FIL capable of generating
an effective shared model based on shared knowledge in
cloud robotic systems? 2) have the shared model of FIL
improved the learning process or accuracy of local robots?
To answer the first question, we have conducted experiments
to generate cloud models and compare its performance with
general models. To answer the second question, we then have
conducted experiments to compare the learning process and
accuracy of local robots with FIL and without FIL.

A. Experimental setup

Self-driving car can be regarded as an advanced robot. So
it is enough to use cars to verify robot control algorithms. In
the work, we have used Microsoft AirSim and CARLA as our
simulator to evaluate the presented approach. In addition to
have high-quality environments with realistic vehicle physics,
AirSim and CARLA have a python API which allows for easy
data collection and control.

In order to collect training data, a human driver is presented
with a first-person view of the environment (central camera).
The simulated vehicle is controled using the keyboard by
the driver. The car should be kept at a speed around 6m/s,
collisions with cars or pedestrians should strive to be avoided,
but traffic lights and stop signs will not be considered. As
Fig.5 presents, we have used three different types of sensor
data: RGB images, depth images and semantic segmentation
images. Any of these three types of sensor data can make

(b) Data collection for the cloud

(a) Data collection for local

Fig. 5. As presented in subfigure (a), we collected training data for local
robots in three different environments corresponding to three different types
of data. As presented in subfigure (b), we collected different types but
simultaneous data in many different environments.

the agent to perform obstacle avoidance tasks within tolerable
errors. The policy network mainly consists of convolution
layers and fully connected layers. Then a linear layer followed
by a softmax, and the value function by a linear layer. Its
architecture presented in Fig. 6 is similar to VGG-16.
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Fig. 6. Network architecture of imitation learning in experiments

As for the cloud robotic systems, the server and agent
communicate via HTTP requests, with the data server utilized
the Django framework to respond to asynchronous requests.
Our cloud programs run on the Microsoft Azure cloud. We
conduct local robot experiments with a single NVIDIA Quadro
RTX 6000, which allows us to run our simulator to receive
photo-realistic images for training.

B. Evaluation for the shared-model generating method in FIL

In this section, the robot (car) will challenge the tasks
such as avoiding collisions and making timely turns. The
observations (images) are recorded by one central camera. The
recorded control signal is the steering angle. The steering angle
is scaled between -1 and 1, with extreme values corresponding
to full left and full right, respectively. Considering the actual
driving, we transfer the steering angle between -0.69 radians
and 0.69 radians.

Once the three private policy networks been trained, the
cloud will work to fuse their knowledge. As mentioned before,
we assume that there are three companies train their policies
by imitation learning with heterogeneous sensor data. Sharing
the training data between agents or sending the raw data
to the cloud is forbidden. So, the cloud server only gets
the parameters of the three local networks and performs the
knowledge fusion algorithm. Different types of sensor data
is collected simultaneously from different environments in
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Fig. 7. Performance comparison of shared models and original local models. The red lines indicate the steering angles output by the policy model. The blue
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the first row is performance of each model in turning task, the second row is the performance of each model in going straight task. The agents are not trained
separately in these two tasks because the output of the policy model is the steering angle rather than actions.

CARLA and Airsim before that. Then every scene in cloud
will be labelled. The cloud generates local policy network 1
for company 1 based on RGB images, local policy network 2
for company 2 based on semantic segmentation images, and
local policy network 3 for company 3 based on depth images.
Then the parameters of these three private networks will be
uploaded to the cloud. Finally, the cloud gets labels of datasets
in the cloud. It will generate policy networks corresponding
to different sensor requests. In this experiment, three policy
networks will be generated. They are named cloud policies.
The process in the cloud is unsupervised learning. There is no
manual labels but cloud generation. For evaluation, we labeled
some scenes to mark the result. In the simulation environment,
the controller uses the policy network to control the robot.

TABLE I
RESULTS OF LOCAL POLICIES AND CLOUD POLICIES.

Controller Hit the Miss Mistakes
obstacle turns in straight

Local controller for RGB images 3.45% 12% 16.67%
Cloud controller for RGB images 0.69% 0 0
Local controller for depth images 0 20% 0
Cloud controller for depth images 0 4% 0

Local controller for segmentation images 0 12% 6.67%
Cloud controller for segmentation images 0 4% 0

Fig. 7 presents results of these six policy networks in some
main challenging scenes to the car. From Fig.7, it is clear that
the cloud model presents higher accuracy than local models.
So that it can avoid errors of local models training from single
training set collected by one type of sensors. We conducted
3 experiments, each one sets a different starting point. Then
we evaluated the performance of robots in obstacle avoidance,
turning and straight forward tasks. The results are summarized
in Table 1. It can be seen from the experimental results that the
cloud knowledge improves the local controller that is trained
using general imitation learning. The controller based on cloud
policies performs better. Especially the controller for RGB
images.

C. Evaluation for the knowledge-transfer ability of FIL

We conducted the experiment as illustrated in Fig. 8 to
evaluate the knowledge-transfer ability in FIL. As presented

Challenges in the self-driving task

Fig. 8.

in Fig. 9, we compare the six models in a neighborhood
environment. Corresponding to every type of training data, we
obtained a pair of policies: a transferred policy and a general
policy. So, there are three pairs of policies generated in the
experiment. The performance of controllers based on these
policies in key challenging tasks are presented in Fig. 10. The
results are summarized in Table 2. From the results, we can
see that the imitation learning models obtained in cloud robotic
system perform significantly better in accuracy, compared with
general models that trained by traditional imitation learning
without shared knowledge. FIL improves the training process
of imitation learning with the help of shared knowledge.
There is a pre-trained model from the cloud for transfer in
local imitation learning. So, there is no need for local robots
to learn from scratch. We present the comparison of train
process in Fig 10. From the figure, we can see that the
transferred policies have lower error starting point and the
error value. Local policy models transferred by FIL also have
better generalization. Controllers based on transferred policies
from FIL perform better in different weather compared with
policies trained by general imitation learning. As presented
in Fig.12, we conducted the experiments for controllers in
different weathers. The results are presented in the last three
rows of the Table 2. The results showed that the model from
FIL could improve the accuracy of the controller from general
imitation learning in bad weather.

V. CONCLUSION

In this work, we propose an imitation learning framework
for cloud robotic systems with heterogeneous sensor data shar-
ing, named Federated Imitation Learning (FIL). FIL is capable
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TABLE I

PERFORMANCE COMPARISON OF STANDARD CONTROLLERS AND TRANSFERRED CONTROLLERS IN DIFFERENT BAD WEATHER CONDITIONS

Error rate in dust

Controller Error rate in normal  Error rate in rain ~ Error rate in snow  Error rate in fog
Standard controller for RGB images 17.39% 26.09% 30.43% 34.78% 52.17%
Transferred controller for RGB images 4.35% 8.70% 17.39 % 31.82% 39.13%
Standard controller for depth images 13.04% 4.35% 8.70% 8.70% 17.39%
Transferred controller for depth images 10.87 % 4.35% 8.70% 8.70% 15.22%
Standard controller for segmentation images 2.17% 2.17% 6.52% 21.74% 36.36%
Transferred controller for segmentation images 2.17% 2.17% 5.43% 17.39% 31.82%

Bold values are winning results
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Fig. 11.
(a) Rain (b) Snow (c) Fog (d) Dust
Fig. 12. Bad weather conditions, rain, snow, fog, sand and dust. We

conducted data collection and comparison experiments in these environments

of improving imitation learning efficiency and accuracy of lo-
cal robots by taking advantage of knowledge from other robots
in the cloud robotic system. Additionally, we propose the
knowledge fusion algorithm and introduce a transfer method in
FIL. Our approach is able to fuse heterogeneous knowledge of
local robots. Finally, the framework and algorithms are verified
in a self-driving task.

For future work, we expect to research the scalability
problem of the platform. How to scale FIL if there are more
autonomous cars or more types of sensor data? Although FIL
is capable of dealing this issue by simpily expanding the cloud
dataset, further work on convergence justification of the fusion
process is needed.
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