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Abstract—Enabling robots to walk and run on yielding terrain
is increasingly vital to endeavors ranging from disaster response
to extraterrestrial exploration. While dynamic legged locomotion
on rigid ground is challenging enough, yielding terrain presents
additional challenges such as permanent ground deformation
which dissipates energy. In this paper, we examine the soft landing
problem: given some impact momentum, bring the robot to rest
while minimizing foot penetration depth. To gain insight into
properties of penetration depth-minimizing control policies, we
formulate a constrained optimal control problem and obtain a
bang-bang open-loop force profile. Motivated by examples from
biology and recent advances in legged robotics, we also examine
impedance-control solutions to the dimensionless soft landing
problem. Through simulations, we find that optimal impedance
reduces penetration depth nearly as much as the open-loop force
profile, while remaining robust to model uncertainty. Through
simulations and experiments, we find that the solution space
is rich, exhibiting qualitatively different relationships between
impact velocity and the optimal impedance for small and large
dimensionless impact velocities. Lastly, we discuss the relevance
of this work to minimum-cost-of-transport locomotion for several
actuator design choices.

Index Terms—Legged Robots, Yielding Terrain, Granular
Media, Compliance and Impedance Control, Optimization and
Optimal Control

I. INTRODUCTION

Many uses for mobile robots, including disaster response,
search and rescue, military ground support, and extraterrestrial
exploration, require locomotion over yielding surfaces, such as
soil, sand, snow, gravel, and other regolith. Given the multitude
of legged animals that traverse these yielding substrates with
relative ease, legged robots seem a promising alternative to
wheeled or treaded robots, which often get stuck in or lose
traction on soft ground.

For legged locomotors on yielding terrain, ground defor-
mation due to foot penetration constitutes an irrecoverable
energy loss, so minimizing foot penetration depth is relevant to
energy-efficient locomotion. Recent research ([1, 2, 3, 4]) has
addressed jumping from rest on yielding terrain, i.e., the stance-
to-flight transition. Here, conversely, we address the flight-
to-stance transition, focusing specifically on the challenge of
minimizing foot penetration depth. We call this the soft landing
problem.
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We consider two control strategies for solving this problem.
First, we formulate the soft landing problem as an optimal
control problem to understand properties of control policies
that minimize penetration depth. For robustness to model
uncertainty and ease of implementation, we also consider a full-
state feedback controller—which renders viscoelastic forces,
i.e., mechanical impedance, between the robot’s body and
foot—and we then seek impact-velocity-dependent feedback
gains that minimize foot penetration depth.

A. Background

1) Legged locomotors benefit from adjustable impedance:
Animals achieve remarkable metabolic efficiency during run-
ning gaits, aided by elastic elements such as tendons and
ligaments [5]. Blickhan [6] and, later, Full and Koditschek [7]
observed that hopping and running gaits could be modeled by a
spring-loaded inverted pendulum (SLIP) template, suggesting
that elasticity is a defining characteristic of dynamic legged
locomotion. Alexander [8] proposed that leg springs could
reduce the cost of locomotion and that compliant feet could im-
prove “road holding” by moderating foot-ground forces during
impact. Similarly, Ferris et al. [5] argued that elastic elements
with adjustable compliance are crucial to agile locomotion on
varied terrain. Motivated by the need for agility and robustness
to terrain uncertainty, Hurst et al. [9] and, later, Seok et al. [10]
examined the viability of variable-impedance actuators [11] for
dynamic legged locomotion.

2) Soft substrates introduce additional challenges to dy-
namic legged locomotion: While there exists considerable
and sophisticated research on hard-ground dynamic legged
locomotion, research on dynamic legged locomotion on soft
ground is in an earlier stage of development. Nonlinear control
synthesis tools such as Hybrid Zero Dynamics ([12], [13], [14])
assume point feet and no slippage in order to model ground
contact as a revolute joint between the ground and the foot.
On yielding terrain, this point-contact assumption breaks down.
The stability criterion proposed by Xiong et al. [15] represents
an effort to adapt quasistatic hard-ground locomotion tools
(e.g., gait generation based on the Zero-Moment Point [16])
for use on soft ground. Similarly, Hubicki et al. [2] demon-
strated that jumping on granular media could be improved by
incorporating a dynamic model of the ground reaction force
(GRF) into the robot dynamics used by optimization-based
motion planning algorithms. Although previous studies exam-
ined jumping from rest (e.g., [1], [2]) and cyclic hopping (e.g.,
[3], [4]) on yielding substrates, this paper focuses specifically
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on minimum-penetration-depth landing, which to the best of
our knowledge has yet to be addressed.

3) Soft substrate ground reaction forces depend on intruder
kinematics: The response of yielding terrains to foot contact
varies widely with ground composition, compaction, and incli-
nation, as well as the mass, size, and speed of the locomotor
(e.g., a sandy beach is a collection of rigid rocks to an ant but is
a soft deformable terrain to a human). Granular media (collec-
tions of discrete particles that interact only through repulsion
and friction [17]) are a common material which can be used
as a versatile proxy for naturally-occuring soft substrates by
tuning their packing density and fluidizing with air [18], [19].
Even with the relative simplicity of a homogeneous granular
bed, the resulting GRFs are not trivial, and various models
have been proposed to account for their dependence on intruder
kinematics (i.e., intrusion depth and speed) and particle packing
density (see, e.g., [20], [21], [18], [22]). For the simplest case
of quasi-static vertical intrusion, the GRF increases linearly
with penetration depth due to the increase in the frictional
force between particles with increasing lithostatic pressure.
However, upon retraction, the GRF drops to nearly zero as
the permanently deformed ground does not spring back.

The GRF in granular materials is also velocity dependent,
with various models having been proposed depending on
the packing density [20], the packing density and interstitial
fluid [22], and accreted material beneath the foot leading to
an “added-mass” effect [1]. However, at low impact velocities
typical of legged locomotion, the work done by the velocity-
dependent GRF term is small relative to the work done
by the depth-dependent term. Given the dominance of the
depth-dependent force at these velocities and the number of
terrain-specific parameters required to model velocity depen-
dent forces, in this paper we will focus on first-order depth-
dependent GRFs in the interest of model generalizability and
tractability.

B. Paper Outline

The remainder of this paper is structured as follows: Sec-
tion II derives a dimensionless dynamic model for a vertically-
constrained two-mass robot impacting soft ground. We first
approach the soft landing problem through analytical optimal
control methods in Section III. This approach provides insight
into the soft landing problem but yields a brittle optimizer,
so in Section IV we examine impedance control as a more
robust alternative, using simulation to study how the opti-
mal impedance varies with dimensionless impact velocity and
model parameters. In Section V, we compare the optimal
impedance control and bang-bang force control solutions. We
present experimental results for impedance control in Sec-
tion VI and discuss extensions of this work to minimum cost-
of-transport hopping in Section VII.

II. MODELING

A. Soft Ground Model

Li et al. [21] show that resistive force theory gives rise
to a depth-dependent GRF in the case of vertical quasistatic

Fig. 1: Force control and impedance control models (Equa-
tions (2)-(4)). Soft ground is treated as a unidirectional spring
with stiffness kg (Equation (1)). The body, located at qb, has
mass mb, and the foot, located at qf , has mass mf . Heights qb
and qf are measured relative to the undisturbed ground surface.

penetration of a flat-bottomed intruder into granular media.
While higher-order effects (inertial drag [23] and granular
accretion [1]) are present, we focus on the dominant first-order
depth-dependent stress in the interest of generalizability, and
note that this approximation is in good agreement with our
experimental results (see Section VI). Consequently, we model
the GRF for soft ground, fg , as

fg =


0 if qf ≥ 0 or q̇f > 0 (flight),
−kgqf if qf < 0 and q̇f < 0 (yielding),
[0,−kgqf ] otherwise (static),

(1)

where kg > 0 is the ground stiffness, qf is the foot position, and
q̇f is the intruder velocity. This unidirectional ground-spring
model is depicted in Figure 1. The first case (“flight”) simply
says the GRF is zero when the intruder is not in contact or is
breaking contact. We refer to the second and third cases as the
“yielding” and “static” regimes, respectively.

B. Robot Model

In order to focus on foot-ground interaction, our robot is
intentionally simple. As shown in Figure 1, the robot consists of
a body (position qb, mass mb) and a flat-bottomed foot (position
qf , mass mf ), with a linear motor (idealized as a force source
U ) located between the body and the foot, such that U > 0
pushes the two masses apart. In the case of impedance control,
also shown in Figure 1, this force results from stiffness Kp and
damping Kd between the body and the foot.

The robot dynamics are divided into three phases: flight,
yielding stance, and static stance. We restrict our analysis of
the soft landing problem to the two stance phases, beginning
at impact (t = 0, qf = 0). The stance dynamics are

d2qb
dt2

= −g + U

mb
, (2a)

d2qf
dt2

= −g + fg − U
mf

, (2b)



Fig. 2: Finite state machine depicting transitions between flight,
yielding stance, and static stance for the robot and unidirec-
tional spring GRF model given by Equations (1) and (2).

where the state-dependent GRF fg is given by Equation (1).
We choose g = 9.81 m/s2 without loss of generality. Fig-
ure 2 shows the finite state machine that describes transitions
between yielding stance, static stance, and flight.

For realism, we limit the actuator stroke,

D ≤ qb − qf ≤ D + S, (3a)

where D is some minimum separation distance between the
body and the foot. We choose D = 0 without loss of generality.
We also limit the actuator force,

−Umax ≤ U ≤ Umax. (3b)

In impedance control, viscoelastic forces are rendered through
the feedback law

U = −Kp (qb − qf − L0)−Kd (q̇b − q̇f ) , (4)

where Kp > 0 and Kd > 0 represent stiffness and damping,
respectively, and L0 is the rest length of the virtual spring
emulated through the feedback law above. We take L0 = S/2.
Throughout this paper, we assume the following initial condi-
tions:

qb(0) = L0, qf (0) = 0, and q̇b(0) = q̇f (0) = V0, (5)

where V0 is the impact velocity.

C. Nondimensionalization
To reduce the dimensionality of the model parameter

space, we nondimensionalize the robot-ground model in Equa-
tions (2), (3), and (4). We first introduce the following dimen-
sionless variables for the body and foot positions, time, and
the control force: xb = qb/xs, xf = qf/xs, τ = t/τs, and
u = U/us. The corresponding unit distance, time, and force
are xs = mtg/kg (where mt = mb + mf ), τs =

√
mt/kg ,

and us = mtg.1 Substituting these expressions for position,

1Note that there are other valid choices for the dimensionless variables; all
that is required is that they span the fundamental dimensions of the system
(in this case, mass, length, and time). Our choice of dimensionless variables is
particularly convenient for examining penetration depth because the position
scaling factor xs is the minimum depth at which the ground can support the
total weight of the robot. Moreover, leg stiffness (in the impedance control
case) is now measured in units of ground stiffness, so the dimensionless
dynamics are independent of the ground stiffness.

time, and control into Equations (2a) and (2b) yields the
dimensionless body and foot dynamics

d2xb
dτ2

= ẍb = −1 +
1 + rm
rm

u, and (6a)

d2xf
dτ2

= ẍf = −1− (1 + rm) (xf + u) , (6b)

where the mass ratio rm = mb/mf is the ratio of the body
mass to the foot mass. By defining the state vector x =
[x1, x2, x3, x4]

>
= [xb, ẋb, xf , ẋf ]

>, the nondimensionalized
dynamics can be represented in control-affine first-order form
ẋ = f(x) + g(x)u:

d
dτ


x1
x2
x3
x4

 =


x2
−1
x4

− (1 + rm)x3 − 1


︸ ︷︷ ︸

f(x)

+


0

1+rm
rm
0

− (1 + rm)


︸ ︷︷ ︸

g(x)

u. (7)

The dimensionless actuator stroke and force limits are

0 ≤ xb − xf ≤ s, (8a)

where s = S/xs, and

−umax ≤ u ≤ umax, (8b)

where umax = Umax/us. The nondimensionalized impedance-
rendering feedback controller is

u(x) = −kp(xb − xf − `0)− kd(ẋb − ẋf ), (9)

where kp = Kp/kg and kd = Kd/
√
mtkg are dimensionless

stiffness and damping constants and `0 = s/2. The dimension-
less initial conditions are

x(0) = [`0, v0, 0, v0]
> , (10)

where v0 = V0τs/xs.

III. OPTIMAL CONTROL FORMULATION

We formulate the soft landing problem as a constrained
optimal control problem:
• cost function: J(x, u) = −xf (T ), where T is the free

terminal time at which the foot stops intruding.
• dynamic constraints: ẋ = f(x) + g(x)u, as defined in

Equation (7).
• state inequality constraints: actuator stroke limits, as de-

fined in Equation (8a), represented by the vector inequality
h1(x) ≤ 02×1.

• control bounds: actuator force limits, as defined in Equa-
tion (8b), represented by the scalar inequality h2(u) ≤ 0.

Additionally, there are two constraints on the terminal state
x(T ). The first terminal constraint requires the foot to stop,
so ẋf (T ) = 0. The penetration depth xf (T ) must support the
constant force ub required to bring the body to rest, given the
body velocity ẋb(T ) and remaining stroke xb(T )− xf (T ):

ub =
rm

1 + rm

(
1 +

ẋ2b(T )

2 (xb(T )− xf (T ))

)
. (11)



The resulting second terminal constraint is

xf (T ) +
1

1 + rm
+ ub = 0. (12)

We use Pontryagin’s Maximum Principle (PMP, [24]) to deter-
mine the structure of the penetration-minimizing force profile
u∗(τ). We first define a control Hamiltonian:

H = λ> (f(x) + g(x)u) , (13)

where λ(τ) ∈ R4 is the state of the adjoint system, propagating
backwards in time from T . In the presence of bounded controls,
PMP states that the optimal control u∗(t) satisfies

u∗(τ) = arg max
−umax≤u≤umax

H(x∗(τ), u(τ), λ(τ)). (14)

The state inequality constraints and terminal constraints in-
crease the complexity of the problem and prevent us from
obtaining an analytical expression for u∗(τ), but PMP allows us
to make several key observations about the control Hamiltonian
H:
• The dynamics are time invariant, so H is constant.
• The terminal time T is free, so H(T ) = 0, and because
H is constant, then H(τ) = 0 ∀τ ∈ [0, T ].

• The control Hamiltonian H is linear with respect to the
control u.

In light of the facts above, Hamiltonian maximization implies
bang-bang control—the control force u is always at one of
its boundaries—as long as neither state inequality constraint is
active for a finite period of time [25]. These conditions—for
which bang-bang control minimizes penetration depth—remain
true for any robot-ground dynamic model that is time-invariant
and control-affine, including the inertial drag [23] and added-
mass [1] GRF models.

Figure 3 shows a typical optimal bang-bang force profile
and the resulting motion if we assume that there is a single
control switch, from umax to −umax, before the foot comes
to rest. We solve numerically for the optimal switch time τ∗.
Intuitively, this force profile first stomps the foot down into
the ground then pulls up on it to stop its descent. In this way,
the robot as quickly as possible deforms the ground to the
depth that will support the force needed to bring the body
to rest. By performing this “stomp” quickly, the robot has
more time and therefore more stroke to decelerate the body,
and therefore does not need to penetrate as deep.2 We also
considered additional switching events for force control (using
MATLAB’s fmincon solver to find the optimal switching
times) and found the difference in penetration depth to be no
larger than 1%; while a single switching event may not always
be optimal, it appears quite close to optimal.

Bang-bang solutions to the soft landing problem appear to
reduce penetration depth by at least a factor of two, com-
pared to a rigid impactor (see Figure 7 and the discussion

2Note that penetration depth can be further minimized by increasing the
pre-impact leg extension xb(0) − xf (0), subject to stroke limits, in order to
increase the distance over which the body must decelerate and thereby reduce
the required penetration depth. Such initial condition optimization is exhibited
in nature, e.g., by falling cats as they prepare for impact [26].

Fig. 3: Example robot state trajectory under bang-bang control,
v0 = −3, rm = 5, s = 20, umax = 8.2. Bang-bang control
quickly (τ ≈ 0.5 in this example) stomps the foot to the depth
required to support the body-arresting force ub.

in Section V). While open-loop bang-bang control appears to
minimize foot penetration depth, the absence of feedback and
the discontinuities in applied force u result in a brittle optimizer
that is difficult to implement on real hardware. For robustness
and ease of implementation, we consider an impedance control
solution to the soft landing problem in the following two
sections.

IV. NUMERICAL IMPEDANCE OPTIMIZATION

In this section, we examine the effect of dimensionless leg
stiffness kp and damping kd on penetration depth xf and
seek optimal pairs

(
k∗p, k

∗
d

)
that minimize penetration depth,

given the stroke s and mass ratio rm, for a range of impact
velocities v0. We hypothesize that the optimal stiffness and
damping will be less than one, or in other words, that the
optimal impedance will not be stiffer than the ground. We
use MATLAB’s ode15s integrator to numerically simulate
impedance-controlled impacts for 0 ≤ kp ≤ 1, 0 ≤ kd ≤ 1,
and −10 ≤ v0 ≤ 0, and initially take rm = 5 and s = 20.
These values approximately describe our experimental appara-
tus, detailed in Section VI.

Figure 4a shows three example trajectories, obtained by
holding kp constant while varying kd. For certain values of kp
and kd, the robot foot stops multiple times before reaching the
final depth. The foot initially comes to rest at some depth then,
due to the impedance (kp, kd) and the body motion (xb, ẋb), the
downward force on the foot exceeds the ground yield threshold
at that depth, and the foot resumes intrusion. Figure 4b shows
several snapshots of these stepped-intrusion regions emerging,
morphing, and vanishing as v0 grows.

Allowing for arbitrarily many steps during intrusion, we seek
the depth-minimizing impedance for a given impact velocity,
mass ratio, and stroke limit. Figure 5 shows snapshots of
the impedance-depth relationship for several impact velocities.
Impacts where the stroke limit 0 ≤ xb − xf ≤ s was
violated are discarded from the search for

(
k∗p, k

∗
d

)
. Note that

in many instances, impedances that result in stepped intrusions
also violate the stroke limit, but in some cases the optimal
impedance results in repeated intrusions. For all simulated v0,
the optimizer (denoted by a ? in Figure 5) resides on the



(a) Stepped-intrusion trajecto-
ries.

(b) Stepped-intrusion regions in the
kp-kd plane for several v0.

Fig. 4: a) For impact velocity v0 = −1 and stiffness
kp = 0.2, three different values of damping result in one-
step intrusion (kd = 0.4), two-step intrusion (kd = 0.18), and
three-step intrusion (kd = 0). b) Number of intrusion steps vs.
dimensionless stiffness, damping, and impact velocity; rm = 5,
s = 20. Multi-step intrusions appear to occur primarily at low
stiffness and low damping.

Fig. 5: Normalized dimensionless penetration depth xf/x∗f vs.
stiffness kp and damping kd for several impact velocities v0
(rm = 5, s = 20). Minimum penetration depth is denoted
by x∗f . The white region on the left corresponds to impacts
where the stroke limit is exceeded. As v0 grows in magnitude,
∂xf/∂kp (sensitivity of penetration depth to relative stiffness)
also grows in magnitude.

stroke limit boundary. While this increases the brittleness of
the optimizer, a safety factor can be simply added by reducing
the stroke limit used in control computations compared to the
actual stroke limit.

Having analyzed the k∗p-k∗d-v0 relationship in detail for mass
ratio rm = 5 and stroke limit s = 20, we conclude this section
by studying the effect of rm and s on the optimal impedance.
Figure 6 shows the k∗p-v0 and k∗d-v0 curves for a range of mass
ratios and stroke limits. Optimal stiffness k∗p appears to increase
monotonically with |v0|, regardless of mass ratio rm and stroke
limit s, although the magnitude of the rate of stiffness increase
|∂k∗p/∂v0| appears inversely proportional to both mass ratio
and stroke limit. For small v0, k∗d decreases as v0 increases,
until v0 reaches a critical velocity (somewhere between 2 and
6, depending on s), at which point k∗d increases with v0, with
its rate of increase inversely proportional to s. Additionally,
increasing rm appears to bias the k∗d-v0 curve upward.

Fig. 6: Dimensionless model parameters rm and s affect the k∗p-
v0 and k∗d-v0 curves; arrows indicate direction of increasing rm
and s. Increasing mass ratio rm reduces |∂k∗p/∂v0| and biases
the k∗d-v0 curve toward higher kd. Increasing stroke limit s
reduces |∂k∗p/∂v0| and reduces |∂2k∗d/∂v20 | for large v0. Thick
curves correspond to rm = 5 and s = 20, the parameter values
used in experiments (see Section VI).

Fig. 7: Nondimensionalized penetration depth xf vs. impact
velocity v0 for rigid, impedance-controlled, and bang-bang
force-controlled leg; rm = 5, s = 20. The smallest possible
penetration depth is xf = −1.

V. COMPARISON BETWEEN IMPEDANCE CONTROL AND
FORCE CONTROL

Depth-versus-impact velocity curves for optimal impedance
control and bang-bang force control are shown in Figure 7
along with a worst-case scenario in which the robot impacts
as a rigid body. While bang-bang force control uses the full
force available (±umax), optimal impedance control does not
saturate u until v0 is sufficiently large. For this comparison,
we take umax to be the maximum force applied by the optimal
impedance controller at the maximum simulated impact ve-
locity (v0 = −10); this results in umax = 8.2. Recall from
Section II-C that the minimum achievable foot penetration
depth is xf = 1 when v0 = 0. If the body and foot are rigidly
connected, when the robot “impacts” with v0 = 0 it will gain
momentum as it sinks, penetrating to a depth of xf = 2. As
v0 approaches zero, foot penetration under bang-bang control
approaches the best-case penetration depth xf = 1; optimal
impedance control results in slightly deeper foot penetration
but still comes close to xf = 1. As v0 grows, ∂xf/∂v0
approaches unity more slowly for the impedance-controlled and
bang-bang-controlled cases than for the rigid case.



As shown in Figure 7, both control policies significantly
reduce penetration depth, compared to the rigid impact depth.
The open-loop force profile represents a brittle optimizer, due
to the absence of feedback, whereas impedance control is more
robust to model uncertainty because it has feedback. This
robustness compensates for the small increase in penetration
depth compared to open-loop bang-bang force control.

VI. EXPERIMENTAL VALIDATION

To validate the optimal impedance-impact velocity trends
observed in simulation on a physical soft substrate, we per-
formed experiments in which a two-mass vertically-constrained
impedance-controlled robot was dropped into a prepared bed
of granular media.

A. Experimental Setup

The experimental apparatus, shown in Figure 8a, consists of
three systems:

1) Fluidized bed trackway: This system consists of a blower
driven by a variable-frequency drive, which forces air through
a porous membrane diffuser and its honeycomb support, flu-
idizing a 20-cm deep bed of poppy seeds, chosen for their
proximity in size to naturally occurring soft substrates and for
their low density which makes fluidization feasible [18], [27].
During fluidization, airflow from the blower excites the poppy
seeds into a “bubbling” state; when the airflow is shut off,
the seeds settle into a loosly packed state, such that intrusion
results in further compaction rather than dilation. Fluidization
between experiments ensures repeatable and homogeneous
ground conditions.

2) Robot: The 1-D hopping robot consists of a body
(mb = 2.5 kg) and a foot (mf = 0.5 kg) and is built around
a LinMot PS01-23x160H-HP-R linear brushless DC motor,
driven by a 32-bit microcontroller running a position-control
loop at 2 kHz which is used to emulate viscoelastic forces
and apply feedforward friction and cogging compensation. An
incremental encoder inside the motor measures the position
of the slider relative to the stator, and an ATI Mini45 6-axis
force/torque sensor mounted in series between the slider and
a hollow acrylic cylinder (130 mm diameter) measures ground
reaction forces. The diameter of the acrylic cylinder results in
a ground stiffness of kg = 4.4 kN/m, determined by measuring
force and penetration depth during quasistatic intrusions.

3) Clutch and lifting mechanism: This system consists of a
solenoid and a timing belt driven by a stepper motor and is used
to suspend the robot along a vertical guiderail before dropping,
to control the impact velocity. The LinMot stator is mounted
on a carriage that rides along the guiderail, and an RLS LA11
absolute magnetic linear encoder measures the position of the
carriage along the guiderail.

B. Experimental Procedure and Results

We performed impedance-controlled impact experiments
over a range of impact velocities and impedances. While
arbitrarily large impact velocities are achievable in simulation,
experimentally achievable impact velocities do not exceed 1.2

m/s (or v0 = −4.8), due to the maximum height from which the
robot can be lifted and then dropped. In simulation, the effect
of damping on penetration depth is most pronounced at low
stiffnesses (see Figure 5), so we first sought the lowest position
feedback gain achievable at the maximum impact velocity
(v0 = −4.8) without exceeding the stroke limit;3 this position
feedback gain corresponded to kp = 0.2. We selected kp = 0.5
and kp = 0.9 for the second and third relative stiffnesses,
respectively. We selected a range of kd values between 0 and
2.5, closely spaced for small kd and further apart for large kd
to obtain higher resolution near the optimal solutions predicted
in simulation. We performed five impacts for each combination
of kp, kd, and v0.

Nondimensionalized penetration depth data from the exper-
iments are plotted along with simulated depth-versus-damping
curves in Figure 8b. Comparing the three panels of Figure 8b,
observe that for small damping kd, as stiffness kp increases, so
does penetration depth (for each impact velocity v0); this trend
is less noticeable for larger kd as the robot begins to resemble
a rigid impactor. At low kp, the optimal damping k∗d decreases
as impact speed |v0| increases, but |∂xf/∂kd| increases as |v0|
increases.

The experiments qualitatively reflect the trends observed in
simulation for rm = 5 and s = 20, although discrepancies
between experimental data and simulation are noticeable for
low impedances. This disagreement may be largely attributed
to nonlinearities in the apparatus (e.g., friction between the
motor slider and stator, friction between the carriage and
guiderail, force ripple in the motor, and/or off-axis loading
during impact). While feedforward force control is used to
compensate for these nonlinearities, it is imperfect, and at low
impedances these errors in applied force are larger relative to
the emulated viscoelastic force and the ground reaction force.

Additionally, the unidirectional-spring GRF model is indeed
a first-order approximation, and higher-order effects such as
inertial drag are more pronounced for large impedances and
impact velocities, exemplified by the disagreement between
experiments and simulation for v0 = −4.8, kp = 0.5, 0.9
and large kd. Nevertheless, the experimental results con-
firm the impact-velocity-dependence of the penetration depth-
minimizing impedance on a real example of yielding terrain.

VII. MINIMUM COST-OF-TRANSPORT HOPPING

We extend our work to hopping gaits by examining the
relationship between minimum penetration depth and minimum
cost of transport (CoT) for impedance-controlled impacts.
Our model is restricted to vertical motion, i.e., there is no
characteristic horizontal length scale by which to normalize
energy expenditure, so instead we define cost of transport as
the relative energy loss during impact:

CoT =
E(0)− E(T )

E(0)
, (15)

3If the leg is not stiff enough, the body will collapse onto to the foot upon
impact, violating the stroke limit.



(a) Experimental apparatus. (b) Experimental and simulation results.

Fig. 8: Experimental apparatus and results. a) 1-D robot: guiderail (A), slider (B), stator (C), hollow acrylic cylinder (D),
force/torque sensor (E). Clutch/lifting mechanism: stepper motor (F), solenoid (G), linear carriage (H), absolute position encoder
(I), and timing belt (J). Fluidized bed trackway: blower (K), porous membrane diffuser and honeycomb support (L), poppy seeds
(M), and x-y gantry (N). b) Nondimensionalized penetration depth −xf (T ) vs. kd for several kp and v0 (rm = 5, s = 20).
Error bars indicate ±1 standard deviation.

where E(0) and E(T ) are the total mechanical energy of the
robot-ground system at impact (τ = 0) and when the foot
comes to rest (τ = T ), respectively.4 The CoT can range
from 0 to ∞, where CoT = 0 represents a perfectly elastic
impact, CoT = 1 represents a perfectly inelastic impact, and
CoT > 1 reflects additional energy loss due to work done
by the actuator and by gravity. Losses occur through actuation
and ground dissipation: E(0) − E(T ) = Eact + Egnd. From
the unidirectional spring GRF model (Equation (1)), energy
lost due to ground deformation is given by Egnd = 1

2x
2
f (T ).

Actuation loss is given by Eact =
∫ T

0
u(τ) (ẋb(τ)− ẋf (τ)) dτ .

For impedance control (Equation (9)), the integrand in Eact
is quadratic in ẋb − ẋf ; consequently, the CoT-minimizing
impedance is large for low impact velocities, and the resulting
state trajectory remains far from the stroke limit. As v0
grows, the CoT-minimizing impedance converges to the depth-
minimizing impedance, as shown in Figure 9.

Our metric for actuation loss is conservative, and there exist
more energy-efficient actuator designs for rendering viscoelas-
tic forces. In particular, variable-stiffness actuators [28] are a
promising alternative to emulated compliance, in part because
they can store elastic potential energy. Regenerative braking
converts mechanical energy to electrical energy by generating
a voltage proportional to motor speed [29], offering an energy
efficient realization of viscous damping. As actuator efficiency
improves, Eact shrinks relative to Eground, so minimizing CoT
increasingly depends on minimizing penetration depth.

VIII. CONCLUSIONS

In this paper we examined force control and impedance
control solutions to the soft landing problem, minimizing foot
penetration depth into a soft substrate for a given impact

4Because the flight phase of a hopping gait is governed by ballistic dynamics,
E(0) scales with stride length; thus, normalizing by E(0) has the effect of
normalizing by stride length, to within a scaling factor. The mechanical energy
lost during impact is E(0) − E(T ), and in a hopping gait this energy must
be injected back into the robot to maintain cycle-to-cycle stability, so it is a
reasonable metric of cycle-wise energy expenditure.

(a) Depth comparison. (b) CoT comparison.

Fig. 9: Comparison between minimum-CoT and minimum-
depth impedance-controlled impacts. a) For small impact
velocity v0, the minimum-CoT solution penetrates almost as
much as the rigid impactor. As v0 grows, the minimum-
CoT solution converges to the minimum-depth solution. b)
When viscoelastic forces are emulated through dissipative
actuation (CoT = (Egnd + Eact) /E(0)), the minimum-depth
solution has a significantly larger CoT at small v0 than the rigid
impactor because actuator dissipation is larger than ground
dissipation. As v0 grows, the CoT-v0 curves approach the
same slope, but the CoT of the minimum-depth solution is
reduced significantly when impedance is rendered losslessly
(CoT = Egnd/E(0), Eact = 0).

velocity. We derived a dimensionless model of a simple robot
consisting of a body and foot impacting into yielding terrain
approximated as a unidirectional spring. From this model,
we formulated a constrained optimal control problem, from
which we obtained an open-loop bang-bang force profile that
appears to minimize foot penetration depth but is brittle due to
the lack of feedback. Motivated by biology, recent actuation
trends, and the need for a more robust control policy, we
also examined impedance control, seeking optimal impact-
velocity-dependent stiffness and damping. Impedance control
experiments, in which a vertically-constrained two-mass robot
impacted into a bed of granular media, reflected the optimal
impedance solutions found in simulation, suggesting that real-



world legged locomotors can indeed reduce foot sinkage with
the right leg stiffness and damping. Lastly, we looked beyond
the soft landing problem to energy-efficient locomotion, seek-
ing impedances that minimized the relative energy loss during
impact. As joint actuation technology improves in efficiency,
minimizing this relative energy loss will increasingly depend on
minimizing foot penetration depth. We plan several extensions
of this work, including online terrain parameter estimation for
adaptive locomotion control as well as planar and 3D walking
and running on yielding terrain.
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