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Robust Incremental State Estimation through
Covariance Adaptation

Ryan M. Watson1, Jason N. Gross1, Clark N. Taylor2, and Robert C. Leishman2

Abstract—Recent advances in the fields of robotics and au-
tomation have spurred significant interest in robust state estima-
tion. To enable robust state estimation, several methodologies
have been proposed. One such technique, which has shown
promising performance, is the concept of iteratively estimating a
Gaussian Mixture Model (GMM), based upon the state estimation
residuals, to characterize the measurement uncertainty model.
Through this iterative process, the measurement uncertainty
model is more accurately characterized, which enables robust
state estimation through the appropriate de-weighting of erro-
neous observations. This approach, however, has traditionally re-
quired a batch estimation framework to enable the estimation of
the measurement uncertainty model, which is not advantageous
to robotic applications. In this paper, we propose an efficient,
incremental extension to the measurement uncertainty model
estimation paradigm. The incremental covariance estimation
(ICE) approach, as detailed within this paper, is evaluated on
several collected data sets, where it is shown to provide a
significant increase in localization accuracy when compared to
other state-of-the-art robust, incremental estimation algorithms.

I. INTRODUCTION

THE ability to infer information about the system and
the operating environment is one of the key components

enabling many robotic applications. To equip robotic platforms
with this capability, several state estimation frameworks [1]
have been developed (e.g., the Kalman filter [2], or the particle
filter [3]).

The traditional state estimation methodologies perform effi-
ciently and accurately when the collected observations adhere
to the a priori models. However, in many robotic applications
of interest, the observations can be degraded (e.g., global
navigation satellite system (GNSS) observations in an urban
environment, or RGB observations in a low-light setting),
which cause a deviation between the collected observations
and the assumed models. When this deviation is present, the
traditional state estimation schemes (i.e., estimators that utilize
the l2-norm exclusively to construct the cost-function) can
breakdown [4].

To overcome the breakdown of traditional state estimators
in data degraded scenarios, several robust estimation schemes
have been developed. These robust estimation schemes reduce
the effect that erroneous observations have on the estimation
process by scaling the associated covariance matrix [5]. To
enable this covariance scaling in practice, several implemen-
tations have been developed (i.e., maximum likelihood type
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estimators (m-estimators) [6], switchable constraints [7], and
dynamic covariance scaling (DCS) [8]).

To extend robust state estimation from the traditional uni-
modal uncertainty model paradigm to a multi-modal imple-
mentation, the max-mixtures (MM) [9] approach was de-
veloped. The MM approach mitigates increased computation
complexity generally assumed to accompany the incorporation
of multi-modal uncertainty models by first assuming that the
uncertainty model can be represented by a Gaussian mixture
model (GMM), then selecting the single Gaussian component
from the GMM that maximizes the likelihood of the individual
observation given the current state estimate.

This MM approach was extended in [5] to enable the itera-
tive estimation of the GMM, based upon the state estimation
residuals, to characterize the measurement uncertainty model.
Through this iterative process, the measurement uncertainty
model is more accurately characterized, which enables robust
state estimation through the appropriate de-weighting of erro-
neous observations. This approach, however, has traditionally
required a batch [5], or fixed-lag [10] estimation framework to
enable the estimation of the measurement uncertainty model,
which is not advantageous to most robotic applications, as
incremental updates are usually required. Additionally, as we’ll
discuss in this paper, theses approaches are inefficient – both
respect to memory and computation – in the estimation of the
measurement uncertainty model.

Within this paper, we propose a novel extension to the
measurement uncertainty model estimation paradigm. Specif-
ically, we propose an efficient, incremental extension of the
methodology. The efficiency of the approach is granted by
incrementally adapting the uncertainty model with only a
small subset of informative state estimation residuals (i.e.,
the state estimation residuals which do not adhere to the
a priori model). The incremental nature of the approach
is granted through recent advances within the probabilistics
graphical model community (i.e., through the utilization of the
incremental smoothing and mapping (iSAM2) [11] algorithm),
in conjunction with the ability to merge GMM’s [12].

To provide a discussion of the proposed incremental co-
variance estimation (ICE) approach, the remainder of the
paper is accordingly organized. First, a brief introduction to
state estimation is provided in Section II, with a specific
emphasis being placed on the current limitations of robust state
estimation. Based upon the discussion provided in Section II,
the discussion turns to the proposed ICE robust framework

All software developed to enable the evaluation presented in this study is
publicly available at https://github.com/wvu-navLab/ICE.
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in Section III. In Section IV, the proposed ICE approach is
validated on several collected GNSS data sets, where improved
estimation accuracy is observed, when compared to other state-
of-the-art robust state estimators. Finally, the paper terminates
in Section V with a brief conclusion and discussion of future
research.

II. STATE ESTIMATION

A. Batch Estimation
The problem generally termed state estimation is primarily

concerned with finding the set of states X (i.e., a set of
parameters that describe the system of interest) that is in
accordance with the set of provided information Y . To evaluate
the level of accordance between the set of states and the
provided information, it is common to utilize the conditional
distribution presented in Eq. 1 (i.e., the optimal state estimate
X̂ is the state vector that maximizes the probability of the set
of states conditioned on the provided information).

X̂ = argmax
X

p(X | Y ) (1)

To enable the efficient representation of this estimation
problem, the factor graph [13] has been extensively utilized1.
This representation is utilized because it enables the fac-
torization of the complex a posteriori distribution into the
product of simplified functions, as presented in Eq. 2. Where,
within Eq. 2, ψn is a single factor within the factorization,
An ⊆ {X1, X2 . . . , XN}, and Bn ⊆ {Y1, Y2 . . . YM}.

p(X | Y ) ∝
N∏

n=1

ψn(An, Bn), (2)

With the factorization of the a posteriori distribution, as
presented in Eq. 2, the state estimation problem simplifies to
the canonical least squares (LS) form [13], as presented in
Eq. 3, where hn is the measurement function (i.e., a function
that maps the state estimate to the measurement domain) and
‖∗‖ is the l2-norm. However, it should be noted that this
simplification is only true if it is assumed that all of the factors
within the factorization adhere to a Gaussian model [13].

X̂ = argmin
X

N∑
n=1

|| rn(X) ||Λn s.t. rn(X) , yn − hn(X),

(3)
In general, for the non-linear case, there is no direct solution

to the problem presented in Eq. 3. Thus, an incremental
methodology of the form Xt = Xt−1+∆̂X must be employed.
To find an incremental update to the state estimate, it is
common to linearize the measurement function about the
current state estimation, as presented in Eq. 4. The linearized
representation of the estimation problem presented in Eq. 4
can be simplified by pulling the covariance matrix inside the
norm, as presented in Eq. 5, where an and bn are the whitened

1For a GNSS specific application, the reader is referred to [14] where the
GNSS carrier-phase ambiguity problem was equated to loop-closures in the
simultaneous localization and mapping (SLAM) formulation.

measurement Jacobian and state estimation residual vectors
(i.e., an , Λ

−1/2
n

∂hn(Xt−1)
∂X , and bn , Λ

−1/2
n rn), respectively.

∆̂X = argmin
∆X

N∑
n=1

∥∥∥∥∂hn(Xt−1)

∂X
∆X − rn

∥∥∥∥
Λn

(4)

= argmin
∆X

N∑
n=1

‖an∆X − bn‖ , (5)

The cost function presented in Eq. 5, can be more compactly
defined as presented within Eq. 6, where the matrices A and
B are defined by stacking vertically their respective whitened
components (i.e., A is a matrix formed by vertically stacking
the set {a1, . . . , aN}, and B is a matrix formed by vertically
stacking the set {b1, . . . , bN}).

∆̂X = argmin
∆X

‖A∆X −B‖ , (6)

To solve the system presented in Eq. 6, it is common to
utilize a matrix factorization of the measurement Jacobain
matrix2 [16]. For this discussion, the QR-decomposition [17]
is utilized, which provides a factorization as presented in Eq.
7, where Q ∈ RN×N is an orthogonal matrix and R ∈ RM×M

is an upper-triangular matrix.

A = Q

[
R
0

]
, (7)

Utilizing the factorization presented in Eq. 7, the cost
function presented in Eq. 6 can equivalently3 be expressed as
provided in Eq. 8, which simplifies to the expression provided
in Eq. 9. The expression provided in Eq. 9 is computational
efficient due to the upper triangular nature of the matrix R
(i.e., the system R∆̂X = c can simply be solved via back
substitution).

∆̂X = argmin
∆X

∥∥QT (A∆X −B)
∥∥ (8)

= argmin
∆X

‖R∆X − c‖+ ‖d‖ s.t. QTB ,

[
c
b

]
(9)

B. Incremental Estimation

The estimation framework discussed in Section II-A pro-
vides an efficient and numerically stable solution when all
of the information is provided beforehand. However, for
many applications, the information is provided incrementally.
When this is the case, the estimation framework discussed
previously is inefficient due to the need to recompute the
QR-decomposition of the entire measurement Jacobian matrix
every time a new information is provided.

To overcome this computation limitation, the concept of
incrementally updating the QR-decomposition was studied

2To make a connection back to the graphical model (i.e., the factor graph),
it was shown in [11] that variable elimination [15] on the factor graph (i.e.,
converting a factor graph to a Bayes net) is equivalent to QR-decomposition.

3The cost functions presented in Eq. 6 and Eq. 8 are equivalent due to the
orthogonality of the matrix Q (i.e., ‖Qv‖ = ‖v‖ given that Q is orthogonal).
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within [18]. Within [18], they enabled the incremental up-
dating of the matrix factorization by first augmenting the
previous factorization (i.e., incorporating new rows in the R
and c matrices), then, restoring the upper triangular form of
the factorization through the utilization of Givens rotations4.

The approach proposed within [18] does have one key
limitation, which is the requirement to conduct periodic batch
re-computation of the QR-decomposition for the entire mea-
surement Jacobian matrix to enable variable re-ordering. This
batch re-computation is utilized to maintain the sparsity of the
upper-triangular system. To mitigate this batch re-computation
the Bayes tree [20] was introduced. This directed graphical
model directly represents the square root information matrix
(i.e., the matrix R in Eq. 9) and can be easily computed from
the associated factor graph in a two-step process, as detailed
in [11]. Due to the structure of the Bayes tree graphical model,
this methodology removes the requirement to re-factor the
entire system when new information is added. Instead, only
the affected section of the Bayes tree is re-factored, as detailed
within [11]. This approach to state estimation is title iSAM2,
and is the approach utilized within this study.

C. Robust Estimation
Utilizing the iSAM2 approach provides an efficient estima-

tion framework when the provided information adheres to the
a priori models. However, when the provided information does
not adhere to the a priori models, the estimator can breakdown
[4]. This property is not exclusive to the iSAM2 framework,
instead, it is a fundamental property of any estimation frame-
work that exclusively utilizes the l2-norm to construct it’s cost
function.

To overcome this limitation, several robust estimation
frameworks have been proposed (e.g., m-estimators [6],
switchable constraints [7], and MM [9]). Linking all of these
estimation frameworks is the concept of enabling robust
estimation through appropriately weighting (i.e., scaling the
assumed covariance model) the contribution of each informa-
tion source based upon the level of adherence between the
information and the a priori model. To implement this concept,
the iteratively re-weighted least squares (IRLS) formation [21],
as provided in Eq. 10, can be utilized, where the weighting
function w(∗) is dependent upon the utilized robust estimation
framework (i.e., DCS [8]).

X̂ = argmin
X

N∑
n=1

wn(en) en s.t. en , ‖rn(X)‖Λn
(10)

To extend robust state estimation from the traditional uni-
modal uncertainty model paradigm to a multi-modal imple-
mentation, the MM [9] approach was developed. The MM
approach mitigates increased computation complexity gener-
ally assumed to accompany the incorporation of multi-modal
uncertainty models by first assuming that the uncertainty
model can be represented by a GMM, then selecting the
single Gaussian component from the GMM that maximizes

4See section 5.1.8 of [19] for a thorough review of Givens rotations with
applications to LS.

the likelihood of the individual observation given the current
state estimate.

The MM approach was extended within the batch co-
variance estimation (BCE) framework [5], [22] to enable
the estimation of the multi-modal covariance models during
optimization. The BCE approach enables the estimation of
the multi-modal covariance model through the utilization of
variational clustering [23] on the current set of state estimation
residuals. The BCE approach provided promising results with
the with the primary limitation being the batch estimation
nature of the framework. To overcome this computational
limitation, an extension to the BCE approach, as described
within section III, which enables efficient incremental updating
while maintaining the robust characteristics, is proposed within
this paper.

III. PROPOSED APPROACH

To facilitate a discussion of the proposed ICE framework
the assumed data model is first explained. Then, a method
for incremental measurement uncertainty model adaptation
is presented. Finally, pull the previously mentioned topics
together, the discussion concludes with an overview of the
proposed ICE framework.

A. Data Model

As calculated by the estimator, a set of state estimation
residuals R = {r1, r2, . . . , rN | rn , yn − hn(X)} is
provided. The set of state estimation residuals can be char-
acterized by a GMM, which, for this work, will act as the
measurement uncertainty model, GMMg . As proposed within
[9], with the intent to minimize the computation complexity
of the optimization problem, the GMM can be reduced to
selecting the most likely component from the mixture model
to approximately characterize each observation, as depicted
in Eq. 11 where µm is the components mean and Λm is the
components covariance.

rn ∼ max
m

wmN (rn | θm) s.t. θm = {µm,Λm} (11)

For this work, it is additionally assumed that the set of
residuals, R, can be partitioned into two distinct groups. The
first group is the set of all residuals which sufficiently adhere to
the a priori covariance model (i.e., do not deviate sufficiently
from the most likely component within GMMg), which will
be indicated by the set RI. While, the second group is the
set residuals which do not sufficiently adhere to the a priori
covariance model, which will be indicated by the set RO.

To quantify the level of adherence to the a priori uncertainty
model, the z-test, as provided in Eq. 12, is employed. Within
Eq. 12 µ, and σ are the mean and standard deviation of the
most likely component from GMMg for the state estimation
residual rn. Utilizing the z-test as a metric to quantify the level
of agreement between the set of state estimation residual and
the a priori uncertainty model, we can more concretely define
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the two groupings as, RI = {r | r ∈ R, Z(r, φ) < Tr}5 and
RO = {r | r ∈ R, r /∈ RI}.

Z(rn, φ) =
rn − µ
σ

s.t. φ , {µ, σ} (12)

B. Uncertainty Model Adaptation

By definition, the set RO is not accurately characterized
by GMMg thus, it is desired to adapt the uncertainty model
to more accurately represent the new observations. To enable
the adaptation of the uncertainty model, a two step proce-
dure is utilized. This procedure starts by estimating a new
GMM, which will be indicated by GMMn, based solely on
the set RO. Then, GMMn is merged into the prior model
(i.e., GMMg) to provide a more accurate characterization the
measurement uncertainty model. This procedure is elaborated
upon in Section III-B1 and Section III-B2, respectively.

1) Variational Clustering: To estimate GMMn,
the set of model parameters which maximizes the
log marginal likelihood, as depicted in Eq. 13, must
be calculated. In Eq. 13, θ is the set of mean vectors and
covariance matrices which define the new GMM, and Z is an
assignment variable (i.e., the variable Z assigns each r ∈ RO

to a specific component within the model).

log p(RO) = log

∫
p(RO,θ,Z)dZdθ (13)

In general, the integral presented in Eq. 13 is computational
intractable [24]. Thus, a method of approximate integration
must be implemented. For this work, the variational inference6

[24], [25] approach is utilized primarily due this class of
algorithms run-time performance when compared to sampling
based approaches (i.e., Monte Carlo methods [26]).

2) Efficient GMM Merging: To enable the second step
of the measurement uncertainty model adaptation (i.e., the
merging of GMMn into the prior model GMMg), an im-
plementation of the algorithm presented in [12] is utilized.
To provide a description of the approach, let’s evaluate the
equivalence between gn , {wn, µn,Λn} ∈ GMMn (e.g., the
first component in GMMn) and gg , {wg, µg,Λg} ∈ GMMg

(e.g., the first component in GMMg).
To test the equivalence, we will first extract the set of

observations RO,gn ⊆ RO that correspond to set of state
estimation residuals that are characterized by component gn.
Utilizing RO,gn , it is desired to check if the set of state estima-
tion residuals has an equivalent covariance to the hypothesis
covariance model (i.e., we want to see if Λn = Λg , where
Λn = cov(RO,gn) and Λg is the hypothesis covariance from
gg).

To determine if our two GMM components have an equiva-
lent covariance model, we must first transform the set of obser-
vations RO,gn with Cholesky decomposition of our hypothesis

5Tr is a user defined parameter that encodes the acceptable amount an
observation can deviation from the a priori model in terms of multiples
of the standard deviation.

6To enable the implementation of the ICE approach in software, the libcluster
[25] software library was utilized.

covariance7. This transformation provides us with a new data
set, defined as Y = {y = L−1r | r ∈ RO,gn , Λg = LLT }.

Utilizing the transformed set of state estimation residuals
Y, the W -statistic [27] can be constructed, as provided in
Eq. 14, to test the equivalence of covariance matrices. Within
Eq. 14, Λy = cov(Y), m is the cardinality of the set Y (i.e.,
m =|Y|), and d is the dimension the state estimation residuals
(i.e, ym ∈ Rd).

W =
1

d
Tr
(
(Λy − I)2

)
− d

m

(1

d
Tr(Λy)

)2
+
d

m
(14)

The W -statistic is known to have an asymptotic χ2 distri-
bution with degrees of freedom d(d+1)/2, as depicted in Eq.
15. Thus, a Chi-square test with a user defined critical value
is utilized to test the equivalence of covariance matrices.

mWd

2
∼ χ2

d(d+1)/2 (15)

To test the equivalence of mean vectors, the T -statistic [28],
as provided in Eq. 16, is utilized. Within Eq. 16, µn is the
mean of the component of GMMn, and µg is the mean vector
of the component of GMMg . The T -statistic is utilized to test
the equivalence of mean vectors because it is known to have
an asymptotic F distribution, as depicted in Eq. 17. Thus, an
F-test with user defined critical value is utilized to test the
equivalence of mean vectors.

T 2 = m ‖µn − µg‖Λy
(16)

m− d
d(m− 1)

T 2 ∼ Fd,m−d (17)

If both the mean and covariance of two components are
found to be equivalent, then the new component gn is merged
with the prior component gg to adapt the measurement uncer-
tainty model GMMg . To adapt the measurement uncertainty
model, the mean, covariance and weighting can be updated,
as presented in Eqs. 18, 19, and 20, respectively. Within Eqs.
18, 19, and 20, N is the total number of points which are
characterized by GMMg , M is the total number of points
which are characterized by GMMn, and m is the number of
points which are characterized by component gn.

µ =
Nwgµg +mµn

Nwg +m
(18)

Λ =
NwgΛg +mΛn

Nwg +m
+
Nwgµgµ

T
g +mµnµ

T
n

Nwg +m
− µµT (19)

w =
Nwg +m

N +M
(20)

If the new component gn does not match a component
within GMMg , then the mean and covariance of gn is added
to GMMg . When the new component is added to GMMg the
weighting vector is updating, as presented in Eq. 21, where

7This whitening process is conducted because the covariance test is only valid
for unit covariance matrices.

https://github.com/dsteinberg/libcluster
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N , M , and m are as defined above. When the new component
is added, the weighting for all of the remaining components
in GMMg are updated according to Eq. 22.

w =
m

N +M
(21)

w =
Nwg

N +M
(22)

Through the utilization of the mixture model merging ap-
proach developed within [12], and outlined in this section,
the measurement uncertainty model can be adapted online.
This adaptation is conducted without the need for storing all
previous state estimation residuals (i.e, only the most recent
residuals RO which do not adhere to the a priori model are
required), which dramatically reduces the computational and
memory cost of the proposed approach.

C. Algorithm Overview

With the discussion provided in the previous sections, the
conversation can now turn to an overview of the proposed
robust estimation framework. To facilitate a discussion, a
graphical overview of the ICE framework is depicted in Fig.
1.

From Fig. 1, it is shown that the ICE algorithm starts at
each epoch by calculating the set of state estimation residuals
Rt from the current set of observations Yt. As discussed
within Section III-A, this set of state estimation residuals
Rt can be partitioned into two distinct groups (i.e., the set
of state estimation residuals which correspond to erroneous
observations RO,t, and the set of state estimation residuals
which correspond to observations that adhere to the a priori
model RI,t) through the utilization of the z-test.

With the set RO,t, the previous set of state estimation
residuals which correspond to erroneous observations RO is
appended. If the length of RO is greater than a user defined
threshold8 (i.e., if |RO|> Tc), the set is utilized to modify the
measurement uncertainty model, as described in Section III-B.
After the adaptation of the uncertainty model, the set RO is
cleared and the set of observations which adhere to the a priori
model RI,t are incorporated. With the incorporation of the new
observations, a new state estimate is provided, following the
discussion provided in Section II-B.

If the length of set of state estimation residuals, which
correspond to erroneous observations, RO is less than a user
defined threshold, then the uncertainty model is not adapted
for the current epoch. Instead, the previous measurement
uncertainty model is utilized to incorporate the new set of
observations which adhere to the a priori model. With the new
observations incorporated, a new state estimated is provided,
as described in Section II-B. This process is continued in an
iterative fashion for as long as needed (e.g., until the data
collection terminates).

8Several factors can affect the specific realization of this threshold (e.g., the
expected dynamics of the environment, or the number of observations per
epoch).

Calculate Residuals

Environment
Sensor

A Priori Information

Z-test

|RO| > Tc Variational Clustering

GMM Merging

Add New Observations

Incremental State Update

Rt

RO,t RI,t

Yes
RO

No

GMMn

GMMg

R, c

X
t ,G

M
M

g

t
=

t
+

∆
t

Yt
Xt,GMMg ICE

Gather Observations

Fig. 1: Graphical depiction of the proposed incremental covari-
ance estimation (ICE) algorithm. The proposed approach en-
ables efficient, incremental, and robust state estimation through
the iterative adaptation of the measurement uncertainty model,
based upon the state estimation residuals that correspond to
erroneous observations.

IV. RESULTS

A. Data Collection

To conduct an evaluation of the proposed robust estimation
framework, a collection of three kinematic GNSS data sets is
utilized. These GNSS data sets, as can be visualized through
their ground traces, which are shown in Fig. 2, were made
publicly available and are described within [5].

For these data collects, the binary in-phase and quadrature
(IQ) data in the L1-band was recorded. By recording the
IQ data in place of the GNSS receiver dependent observa-
tions (i.e., the pseudorange and carrier-phase observables),
the same data collect can be utilized to generate several
sets of observations with varying levels of degradation after
playing back through a software defined GNSS receiver [29]
with different sets of tracking parameters. Specifically, the
receiver dependent observations can be generated off-line by
playing the IQ data into a GNSS receiver, where the level
of degradation is varied by changing the GNSS receiver’s



SUBMITTED TO IEEE ROBOTICS AND AUTOMATION LETTERS 6

Fig. 2: Ground trace for the three utilized GNSS data sets.
The white trace corresponds to data collect 1, the green trace
corresponds to data collect 2, and the blue trace corresponds
to data collect 3.

tracking parameters (i.e., changing the bandwidth of the phase
lock loop (PLL), the delay lock loop (DLL) and the correlator
spacing). For a detailed discussion on the impact that the
GNSS receiver tracking parameters can have on the quality
of the generated observables, the reader is referred to [30],
[31], which is reviewed in [5].

For this study, two sets of observations are generated (i.e.,
a low-quality and high-quality data set) for each of the data
collects. The specific GNSS receiver tracking parameters uti-
lized to generate the low-quality and high-quality observations
are provided within Table III of [5]

B. Evaluation
Utilizing these data collects, an evaluation of the proposed

methodology can be conducted. To provided a comparison for
the proposed approach, three additional estimation frameworks
will be utilized. The first comparison methodology is the
traditional l2-norm based estimator. The second comparison
methodology is the MM approach, which has a static mea-
surement error covariance model (i.e., a fixed two component
measurement error covariance model). The final comparison
methodology is the DCS approach, where the DCS approach is
utilized because it is both a closed form version of switchable
constraints and a specific implementation of an m-estimator
[8]. All of the utilized estimators are built upon the iSAM2
algorithm [11], as implemented within the Georgia Tech
Smoothing and Mapping (GTSAM) library [32].

1) Localization Performance: To start an evaluation, the
localization performance of the estimation frameworks will be
assessed. To enable the assessment of the localization perfor-
mance, a reference ground-truth must first be established. To
generate this ground-truth, a differential GNSS solution (i.e.,
real time kinematic (RTK)9) is utilized, which is known to
provide centimeter level localization accuracy [30].

With the RTK generated reference ground-truth solution, the
localization performance of the four estimation frameworks,
when low-quality observations are utilized, is provided in

9This solution was realized with RTKLIB [33], which is an open-source
software package for GNSS based localization.

Table I10. From Table I, it can be seen that all three of the
robust estimation frameworks provided a significant increase
is localization accuracy, with respect to the median, when
compared to the traditional l2-norm approach. Additionally,
it should be noted that the ICE approach provides the most
accurate solution for all three data collects when low-quality
observations are utilized.

To continue the localization performance evaluation, we
can assess the localization performance of the four estimation
frameworks with the high-quality observations, as provided in
Table II. From Table II, first, it should be noted that all four
estimation frameworks are providing comparable localization
statistics – as would be expected when the utilized obser-
vations adhere to the a priori measurement error covariance
model. However, it can also be noted that the ICE approach is
providing the most accurate localization statistics the majority
of the time.

2) Covariance Estimation Analysis: To continue the eval-
uation, the estimated covariance from the ICE approach is
assessed. Within this assessment, we have two primary ob-
jectives. First, we would like to show that the incrementally
estimated covariance represents the measurement uncertainty
model. Secondly, we would like to show that the covariance
estimation process is efficiently conducted.

To enable this assessment the high-quality observations are
utilized, as provided in Fig. 3. Within Fig. 3, the black points
correspond to the state estimation residuals of observations
which sufficiently adhere to the a priori measurement error
uncertainty model. While, the red points correspond to the
state estimation residuals of observations which were not well
defined by the a priori measurement uncertainty model, and
thus not included during optimization; however, were utilized
to modify the measurement uncertainty model. Additionally,
the ellipses correspond to components of the incrementally
estimated measurement error uncertainty model, with 95%
confidence.

From Fig. 3, it can be seen that the incrementally esti-
mated measurement uncertainty models closely resemble the
assumed model for the high quality observations (i.e., an inlier
distribution which characterizes a majority of the observations,
and outlier distributions which characterize a small percentage
of erroneous observations). This is specifically evident for
data collects 1 and 3, as depicted in Fig. 3a and Fig. 3c,
respectively.

To verify the efficiency of the covariance adaptation ap-
proach, we can evaluate the number of times the measurement
uncertainty model was adapted. For, data collects 1 and 3,
as depicted in Fig, 3a and Fig. 3c, the covariance model
was only adapted once to enable the incorporation of two
outlier distributions. For data collect 2, as depicted in Fig. 3b,
no covariance adaptation step was conducted – instead, only
249 observations were rejected. In contrast, if the covariance

10The localization performance presented within this section is significantly
improved from the batch implementation presented within [5]. This lo-
calization performance increase is primarily due to two modifications:
1) an accurate carrier-phase cycle slip threshold was set, 2) a static
position constraint is placed on the initial and final positions within this
implementation.

https://gtsam.org/
http://www.rtklib.com/
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TABLE I: Horizontal RSOS localization error results when low fidelity receiver tracking parameters are utilized to generate
the observations. The green and red cell entries correspond to the minimum and maximum statistic, respectively.

(a) Localization results for data collect 1.

(m.) L2 DCS MM ICE
mean 2.51 0.99 1.66 0.73
median 2.57 0.64 1.63 0.56
std. dev. 1.41 0.98 1.05 0.72
max 10.78 9.71 10.06 13.19

(b) Localization results for data collect 2.

(m.) L2 DCS MM ICE
mean 4.00 4.00 3.12 2.11
median 2.48 2.08 1.94 0.93
std. dev. 3.87 4.59 3.92 2.10
max 29.18 31.05 31.40 23.02

(c) Localization results for data collect 3.

(m.) L2 DCS MM ICE
mean 4.94 4.16 4.51 4.35
median 4.41 2.82 3.62 1.48
std. dev. 2.97 3.54 3.33 5.23
max 29.53 30.38 28.30 26.61

TABLE II: Horizontal RSOS localization error results when high fidelity receiver tracking parameters are utilized to generate
the observations. The green and red cell entries correspond to the minimum and maximum statistic, respectively.

(a) Localization results for data collect 1.

(m.) L2 DCS MM ICE
mean 0.44 0.43 0.41 0.42
median 0.37 0.36 0.35 0.35
std. dev. 0.30 0.27 0.29 0.28
max 5.38 5.33 5.35 5.22

(b) Localization results for data collect 2.

(m.) L2 DCS MM ICE
mean 0.79 0.81 0.84 0.79
median 0.82 0.81 0.84 0.83
std. dev. 0.46 0.46 0.50 0.46
max 3.97 3.93 10.77 2.95

(c) Localization results for data collect 3

(m.) L2 DCS MM ICE
mean 1.09 1.10 1.11 1.07
median 0.96 0.95 1.00 0.89
std. dev. 0.67 0.73 0.72 0.66
max 7.83 7.83 18.08 7.82

(a) Incrementally estimated measurement er-
ror covariance model for data collect 1. For
this measurement uncertainty model, approx-
imately 91% of the observations are charac-
terized by component 1.

(b) Incrementally estimated measurement
error covariance model for data collect 2.
For this data collect, only 249 observations
did not adhere to the a priori measurement
uncertainty model.

(c) Incrementally estimated measurement
error covariance model for data collect 3.
For this measurement uncertainty model,
approximately 98% of the observations are
characterized by component 1.

Fig. 3: Incrementally estimated measurement error covariance model when the observations are generated with high fidelity
receiver tracking parameters.

model was naively adapted every time the number of residuals
were greater than the residual cardinality threshold11, then data
collect 1 would have required 75 adaptations, data collect 2
would have required 57 adaptations, and data collect 3 would
have required 91 adaptations. Thus, the incorporation of the
z-test to partition the set of residuals dramatically increased
the efficiency of the proposed approach.

3) Run-time Analysis: To conclude the evaluation of the
proposed methodology, a run-time comparison12 is provided
in Fig 4. From Fig. 4, it is shown that l2-norm, DCS, and the
MM approaches all provide comparable run-time performance.

Additionally, it is clearly shown that the ICE methodology,
provides the slowest average run-time; however, this slower
run-time – which is still on average approximately 25 Hz
– could prove to be a valid comprise when considering the
significantly increase in localization accuracy granted by the
approach.

Finally, although the ICE approach does currently provide
the slowest run-time, an additional points should be made.

11For this study, the threshold for measurement uncertainty model adaptation,
was set to 1, 000 (i.e., adapt the uncertainty model if |RO| > 1, 000).

12This run-time comparison was conducted on a 2.8GHz Intel Core i7-
7700HQ processor.

For the current ICE implementation, the primary run-time
bottle-neck for the current evaluation is implementation based.
Specifically, the ICE algorithm could be implemented in such a
way to dramatically decrease run-time by simply parallelizing
the covariance adaptation and state estimation steps.

V. CONCLUSION

Within this paper, we propose a novel extension to the mea-
surement uncertainty model estimation paradigm for enabling
robust state estimation. Specifically, we propose an efficient,
incremental extension of the methodology. The efficiency of
the approach is granted by adapting the uncertainty model with
only a small subset of informative state estimation residuals
(i.e., the state estimation residuals which do not adhere to
the a priori model). The incremental nature of the approach
is granted through recent advances within the probabilistics
graphical model community, and the ability to merge GMM’s.

To evaluate the proposed ICE approach, three degraded
GNSS data sets are utilized. Based upon the results obtained
on these data sets, the proposed approach provides promising
results. Specifically, the proposed ICE approach provides
significantly increased localization performance when utilizing
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Fig. 4: Estimator update time for each of the estimation frame-
works over all data collects, where L2 is a batch estimator
with l2-norm cost function, DCS is the dynamic covariance
scaling robust estimator, MM is the max-mixtures approach
with a static measurement covariance model, and ICE is the
proposed incremental covariance estimation technique.

degraded data, when compared to other state-of-the-art robust,
incremental estimation algorithms.
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