1906.03812v4 [cs.RO] 20 Apr 2020

arxXiv

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2020 1

Data-Efficient and Safe Learning for Humanoid
Locomotion Aided by a Dynamic Balancing Model

Junhyeok Ahn?, Jaemin Lee!, and Luis Sentis?

Abstract—In this letter, we formulate a novel Markov Decision
Process (MDP) for safe and data-efficient learning for humanoid
locomotion aided by a dynamic balancing model. In our previous
studies of biped locomotion, we relied on a low-dimensional robot
model, commonly used in high-level Walking Pattern Generators
(WPGs). However, a low-level feedback controller cannot pre-
cisely track desired footstep locations due to the discrepancies
between the full order model and the simplified model. In this
study, we propose mitigating this problem by complementing a
WPG with reinforcement learning. More specifically, we propose
a structured footstep control method consisting of a WPG, a
neural network, and a safety controller. The WPG provides
an analytical method that promotes efficient learning while the
neural network maximizes long-term rewards, and the safety
controller encourages safe exploration based on step capturability
and the use of control-barrier functions. Our contributions
include the following (1) a structured learning control method
for locomotion, (2) a data-efficient and safe learning process
to improve walking using a physics-based model, and (3) the
scalability of the procedure to various types of humanoid robots
and walking.

Index Terms—Humanoid and Bipedal Locomotion, Deep
Learning in Robotics and Automation, Model Learning for
Control

I. INTRODUCTION AND RELATED WORK

UMANOID robots are advantageous for mobility in
tight spaces. However, fast bipedal locomotion requires
precision control of the contact transition process. Many
studies have successfully addressed agile and versatile legged
locomotion. Analytic approaches have employed differential
dynamics of robots to synthesize locomotion controllers. Data-
driven approaches have leveraged the representational power
of neural networks and designed locomotion policies in an
end-to-end manner. Our work combines the advantages of
these approaches to achieve locomotion behaviors both safely
and efficiently.
Analytic approaches decouple the problem into two sub-
problems: (1) reducing the complexity of full-body dynamics
via simplified models, such as the inverted pendulum [1]-[4]

Manuscript received: December, 19, 2019; Revised March, 9, 2020; Ac-
cepted, April 5, 2020.

This paper was recommended for publication by Editor Abderrahmane
Kheddar upon evaluation of the Associate Editor and Reviewers’ comments.
This work was supported by the Office of Naval Research, ONR Grant
#N000141512507 and the National Science Foundation, NSF Grant #1724360.

1J. Ahn and J. Lee are with the Department of Mechanical Engi-
neering, the University of Texas at Austin, Austin, TX, 78712, USA
{junhyeokahn9l, jmlee87}@utexas.edu

2L. Sentis is with the Department of Aerospace Engineering and Engineer-
ing Mechanics, the University of Texas at Austin, Austin, TX, 78712, USA
lsentis@austin.utexas.edu.

Digital Object Identifier (DOI): see top of this page.

state E (a) Analytic Approach (c) Our Approach

i Footstep
Controller i —{TVR IWBC| TVR Safe Footstep
tor ucE 7 Projecgon -WBC
que; (b) End-to-end Learning NN

[Robot] | NN — —

Proposed Footstep Policy

Fig. 1. The left figure illustrates the control structure of a robot, where a
controller takes the robot’s states and computes joint torques in an end-to-end
manner. (a) Analytic approaches compose the controller with a WPG (e.g., a
TVR Planner) and a feedback controller (e.g., WBC), whereas (b) end-to-end
learning methods train a neural network to compute the joint torques. (c) Our
controller includes the footstep policy learning algorithm and WBC, where
the footstep policy has three components.

or the centroidal model [5]—[7], to generate high-level walking
patterns, and then (2) computing feedback joint commands
at every control loop so that the robot tracks the behavior
of the simplified models. In our recent studies [8], [9], we
achieved unsupported passive ankle dynamic locomotion via
two computational elements: (1) a high-level footstep planner,
called the Time-to-Velocity-Reversal (TVR) planner, based
on the Linear Inverted Pendulum Model (LIPM) and (2)
a low-level Whole Body Controller (WBC) that tracks the
desired trajectories. Although abstractions based on simplified
models enable Walking Pattern Generators (WPGs) to provide
computational efficiency and tools for stability analysis, they
have a limited ability to incorporate complicated physical
effects, such as angular momentum and limb dynamics. As a
result, using WPGs cause significant footstep tracking errors,
requiring arduous parameter tuning [10]. In this letter, we
propose and train a policy that compensates for the limited rep-
resentation accuracy of WPGs and generates practical walking
patterns by incorporating simple physical models.

On the other hand, data-driven approaches have demon-
strated the possibility of robust and agile locomotion control
through Reinforcement Learning (RL). Model-free RL learns
a walking policy via explicit trial and error without using
knowledge of the dynamics of the robots. In [11], [12],
locomotion policies were trained for various environments
and achieved robust locomotion behaviors. In contrast, model-
based RL learns a model of a robot through interactions
with the environment and leverages the constructed model
for planning. The approach in [13] iteratively fitted a local
model for a planar walker and performed trajectory opti-
mization, which demonstrated the ability to learn a walking
policy efficiently. However, most data-driven approaches for
locomotion do not consider the underlying physics of the robot
nor prior knowledge and instead train policies from sensor data
to joint commands in an end-to-end manner. Therefore, they

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2020

require substantial training data and often result in unnatural
jerky motions, which make the methods challenging to deploy
in real hardware. In contrast to these end-to-end methods,
our framework learns a policy from sensor data to footstep
locations (instead of joint torques) and utilizes a whole-body
controller to track the desired trajectories. In the footstep
decision making, we rely on a LIPM and a TVR planner to
encourage safe and efficient exploration in policy training.

There have been few works that incorporate physical insight
and stable feedback control to learn biped locomotion. In [[14],
an RL agent learns a set of trajectory parameters instead of
joint commands, followed by a feedback controller to stabilize
the robot along the resulting trajectory. However, the policy
is trained in a model-free manner and can yield infeasible
trajectories that make the robot explore unsafe state-space
regions. In contrast, our work proposes a structured policy
with a safety mechanism as well as a TVR planner and a
neural network to foster safe and efficient policy search.

Previous works have explored the idea of learning residual
actions combined with analytical models. In [[15]], a ball-
throwing action is adjusted by a trained neural network to
mitigate model discrepancies for a ball-tossing robot. In [[16],
swing foot trajectories generated by a feedback controller
are modulated to improve performance and data efficiency
for a quadruped. Our proposed algorithm can be seen as an
extension of these ideas to bipedal robots that also includes
safety considerations. Compared to robot manipulators or
quadrupeds, biped robots fall more often and benefit from the
use of physics-based models to guide the learning process.

In this paper, we devise a Markov Decision Process (MDP)
that combines analytic models and data-driven approaches to
achieve agile and robust locomotion. In contrast to end-to-
end learning such as in [11]], [13], [17]], [18], whose learning
techniques take joint information and map them to joint torque
commands, our method learns a policy to make high-level
decisions in terms of desired footstep locations. It then uses
a feedback whole-body controller to generate locomotion be-
haviors and the desired reward signals. Our structured footstep
control methods includes a TVR planner, a neural network, and
a safety controller. The TVR planner provides feasible sub-
optimal guidance, the neural network maximizes the long-term
reward, and the safety controller encourages safe exploration
during the learning process. This safety controller learns the
residual dynamics of the LIPM and projects the action onto
safe regions considering a walking capturability metric. The
overall structures of our method and those of related works
are shown and compared in Fig. [T}

The proposed MDP formulation has the following advan-
tages: (1) it bridges the gap between analytic and data-driven
approaches, which mitigates the limited effect of using simple
models; (2) it allows data efficiency and safe learning; and
(3) it can be used for different types of locomotion and in
different types of robots.

The remainder of this paper is organized as follows. Sec-
tion[[T|describes an analytic approach for biped locomotion and
RL with safety guarantees. Section [IlI| proposes an MDP for-
mulation for humanoid locomotion tasks. /btSection [V] shows
the design of a footstep policy that allows safe exploration and

(a) (b) Abstraction with LIPM
i

fk +1,a

Pk+1
— T
kthapex kthswitching k+1 th apex
moment moment moment

Fig. 2. (a) shows the SM for locomotion behaviors. The blue and pink stars
represent the kth and k + 1th Apex Moments. (b) shows the walking motion
with the SM and its abstraction using the LIPM.

data-efficient training. Section |V| evaluates the effectiveness
and generalization of the proposed framework in simulation,
and Section [VI] concludes the paper.

II. PRELIMINARIES
A. An Analytic Approach to Locomotion

We define a Locomotion State and a state machine with
simple structures to represent general locomotion behaviors.

Definition 1. (Locomotion State) A locomotion state is de-
fined as a tuple, £ := (L, Ty).

o L represents a semantic expression of locomotion behav-
iors: L € {EDS[r/lh LLF[r]y LLF[Z]; ELN[r]a ﬁLN[l]}-

o The subscripts (')DS/r/l/y (~)LF[r/l]» and (~)LNIr/l/ describe
locomotion states for double support, lifting the right/left
leg, and landing the right/left leg, respectively.

o T is a time duration for L and can be chosen based on
the desired stepping frequency.

Definition 2. (State Machine) We define a state machine as
a sequence of Locomotion States:

SM = {Lpspays Lrrpmy, Lonpmy b

o The list above is sequential in the order shown.
o The Locomotion State £, |,y terminates when a contact
is detected between the swing foot and the ground.

Definition 3. (Apex Moment and Switching Moment) Given
the SM defined above, an Apex Moment defines the switch
between SLF[T/” and Linjyy, and we label it as t,. A
Switching Moment defines the middle of Lps;yj, and we label
it as tg.

Let us consider the LIPM for our simplified model. We
define the LIPM state as the position and velocity of the
Center of Mass (CoM) of the robot on a constant height
surface with an expression, x = [z, y,%,9] " € R*. The LIPM
stance is defined as the location of the pivot and represented
by p = [pupy]T € R2 We define the LIPM input as
the desired location of the next stance with an expression
a = [az,a,]T € R% We use the subscript k to represent
properties in the kth step, for example, xi = [T, Yk, Tk, Ui | »
Pk = [Pk.z,Pry] > and ay, = [ak,, ar] . We further use the
subscripts k,a, and k, s to denote the properties of the robot

AHN et al.: DATA-EFFICIENT AND SAFE LEARNING FOR HUMANOID LOCOMOTION 3

at the Apex Moment and the Switching Moment at the kth
step. For example, X .« = [Tk s, Yk s, Thos Uk | = Xpe (B i)
where * € {a,s} represents the LIPM state evaluated at the
Apex Moment and Switching Moment at the kth step. Because
the LIPM stance and LIPM input are invariant during the
step, Pk,. and ay , are interchangeable with p; and a;. We
also use these subscripts to describe the properties of a robot.
For instance, ¢, € SO(3) and ws, € R3 represent the
orientation and ahgular velocity of a base link, respectively,
and gva € SO(3) represents the orientation of a stance foot
(a pivot) with respect to the world frame at the Apex Moment
at the kth step. Fig. [2] illustrates the SM and the abstraction
of the locomotion behavior with the LIPM.

The goal of the WPG is to generate a; and the CoM
trajectory based on xy, , and py, at the Apex Moment. From the
walking pattern, the low-level WBC provides the computation
of sensor-based feedback control loops and torque command
for the robot to track the desired location of the next stance
and the CoM trajectory. Note that the WPG designs the pattern
at the Apex Moment at each step, while the WBC computes
the feedback torque command at every control loop.

B. TVR Planner

The differential equation of the LIPM is represented as
follows:

0 0 1 0 0 0
o o 0 01 0 0
0 g/h 0 0 0 g/h

where ¢ is the gravitational constant and h is the constant
height of the CoM of the point mass.

At the kth step, given an initial condition x;(0) = Xy
and a stance position pg, the solution of Eq. yields a state
transition map ¥, with the expression

Xp(t) = V(t; Xp0,Pr) = fo(t)Xro + gu(t)Pr, ()

where
[Cy(t) 0 Co(t) 0
| 0 Ciut) 0 Cat)
Fe®=1cuey 0o @ o |
L 0 C3(t) 0 Ci(t)
[1—Cy(t) 0
. 0 1-Ci(t)
gu(t) = —C4(t) 0)
L 0 —Cs(t)
Cy(t) = cosh(wt), C2(t) = sinh(wt)/w, and Cs(t) =

wsinh(wt), and w := \/g/h, respectively.

Because the TVR planner determines the desired location
of the next stance at the Apex Moment (i.e., t = 14), We
set the initial condition as x;(0) = xy .. With pre-specified
time duration T, we compute the state at the Switching
Moment as

r/1]°

Xk,s = Xk(TﬁLN[r/z]) = \II(T‘CLN[T/L]) Xk(tk’a)’pk) (3)

From xj ,, the TVR planner computes aj, such that the
sagittal velocity @ (and lateral velocity gy, respectively) of the

CoM is driven to zero at the predefined time intervals 7}s (and
T, respectively) after the LIPM switches to the new stance.
These constraints are expressed as

0="{&, Y(T}; xpsar), Jje<{zy}, “

where &,; = [0,0,1,0]7 and &, = [0,0,0,1]T. From
Eq. @), ay is computed with an additional bias term &, and
Ky as

agVR = (I)(Xk,s) = f@(Tx/aTy/)Xk,s + 9%, (5)

where
1—k 0 C4(T /) 0
Tp, Ty = v ‘ :
fo(Tw Ty) [0 1-k, 0 CuTy)
ke 0] [ad
go = 0 Ky yd)

Cy(T) = % and [z%,y% " € R? represents a

desired position for the CoM of the robot. Note that Eq. (B) is a
simple proportional-derivative controller and that T/, T, k,
and k, are the gain parameters used to keep the CoM
converging to the desired position. A more detailed derivation
of the LIPM was described in [19].

C. Reinforcement Learning with Safe Exploration

Consider an infinite-horizon discounted MDP with
control-affine, deterministic dynamics defined by the tuple
(S, A, T,r, po,7), where S is a set of states, A is a set of
actions, 7 : S +— S is the deterministic dynamics, in our
case affine in the controls, » : & x A — R is the reward
function, pg : S — R is the distribution of the initial state,
and v € (0,1) is the discount factor. The control affine
dynamics are written as

sk+1 = f(sk) + g(sg)ag + d(sk), (6)

where s, € S C R"s, and a;, € A C R"= represent a state and
input, respectively. f : S — S, and g : S — R™*"a are the
analytic underactuated and actuated dynamics, respectively,
while d : § — &S is the unknown part of the system dynamics.
Moreover, let 7g(als) represent a stochastic control policy
parameterized by a vector 6. mg : S X A — R>(maps states to
distributions over actions, and V,,(s) represents the policy’s
expected discounted reward with the expression

o0
Vio (5k) = Ermng [Z 717(5k+i7ak+i)] , (7
i=0
where 7 ~ g is a trajectory drawn from the policy 7g (e.g.,
T =[Sk, @k, Sktn, Akin))-

For safe exploration in the learning process under uncertain
dynamics, the work in [20] employed a Gaussian Process (GP)
to approximate the unknown part of the dynamics from the
dataset by learning a mean estimate p1,4(s) and an uncertainty
o2(s) in tandem with the policy update with probability
confidence intervals on the estimation,

pa(s) — ksoa(s) < d(s) < pa(s) + ksoa(s), (8)

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2020

where k; is a design parameter indicating a confidence. Then,

the control input is computed to keep the following state within

a given invariant set C = {s € S| h(s) > 0} by computing
sup, [h(f(sk) +g(sk)ar +d(sk)) +(n—1)h(s)] >0, (9)

axc€A

where 1 € [0, 1].

III. MDP FORMULATION

We define a set of states S and a set of actions A associated
with the Apex Moment at each step:

S — { Xka;pkav(pkaﬂwka?
= {agq | Vk € [1,m]n},

where m can be set as 400 when considering the infinite
steps of the locomotion. Recall from the nomenclatures in
Section that x4, Pk, and ay, are the expressions of
the LIPM state, LIPM stance, and LIPM input evaluated at the
Apex Moment. Note that py, and azq are interchangeable
with p, and aj. Moreover, ',jfa and wk ', represent the
orientation and angular velocity of a base link and o,
expresses an orientation of the stance foot at the Apex Moment.
We divide the state into two parts as

}T

I];Ya) |Vk € [Lm]N}a

l
Sk+1 = [Sk41 Skl
pv T
k+1,a }
(10)
and define a transition function for the upper part of the state
based on Eq. (@) as

bs bs
:[Xk+1,a Pr+1 ¢k+1,a Witi,a

siy1 =f(Xk,a, Pr) + 9k + d(Xk 0, Pr),
_ | fo(Tor)Y(TLN; Xk a; Pr)
f(xk,a7pk?) — |: 02><1 3 (1])
_ | 9v(TLr)
Lo ’

d(Xk,q, Pr) represents the unknown part of the dynamics
fitted via Eq. (@[l The uncertainties are attributed to the
discrepancies between the simplified model and the actual
robot. Note that the dynamics of the lower part of the states,
sﬁc 41, cannot be expressed in closed form. Therefore, we
optimize our policy in a model-free sense, but utilize the LIPM
to provide safe exploration and data efficiency in the learning
process.

To train a policy for a locomotion behavior, we adapt a
reward function from [18]], widely-used for locomotion tasks:

r(sk,ag) =rq + rp(sk) + re(sk) + rs(sk) + re(ak). (12)

Given w}gfa = [Wk 2, Why, Wk»] |, the Euler ZYX representa-
tion | };’fw, }f’y, E?z]T of ',35 and [@} k o ¢k " k. Z] of ¢PY,
rq is an alive bonus, 7y(sg) = —ws||(}5,, oy)||2 penalizes

the roll and pitch variation to keep the body upright, r¢(sy) =
—wil| (@, 0 B2 BEY) — (wh, gk, P, B penal-
izes dlvergence from the desired CoM positions and the
heading of the robot, r4(s¢) = —wsl/(&f 4, U1 o wi.) —
(%k.a, Uk, Wk,2)||* is for steering the robot with a desired
velocity, and 7.(ay) = —w.||ag||* penalizes excessive control
input.

'We use a squared exponential kernel for GP prior to implementation.

IV. PoLICY REPRESENTATION AND LEARNING

Our goal is to learn an optimal policy for desired foot loca-
tions. We use the Proximal Policy Optimization (PPO) [17] to
learn the policy iteratively. PPO defines an advantage function
Ang(Sk,ar) = Qro(Sk,ar) — Vi (sk), where Qr,(sk,ar)
is the state-action value function that evaluates the return
of taking action aj at state s; and following the policy 7
thereafter. By maximizing a modified objective function

Lppo(0) =Errory [min (TkAk, cip(rg, 1 —e, 1+ e)Ak)} ,

% is the importance resampling term
that allows us to use the dataset under the old policy 7g,,,
to estimate for the current policy mg. Ay is a short notation
for Ay, (sk,ar). The min and clip operator ensures that the
policy mg does not change excessively from the old policy
o

where 7 =

old *

A. Safe Set Approximation

The work in [21] introduced an instantaneous capture point
that enables the LIPM to come to a stop if it places and
maintains its stance there instantaneously. Here, we consider
i-step capture regions for the LIPM at the Apex Moment:

lOl/w 0 -1 0] [xka
0 1w 0 -—1| |pk

where

‘ <CP;, (13)

TELN[T'/Z]’

CPq = lpmaxe

—T, —T,
CPgy = lpaxe LLN[r/1) (1 + e TFLN/)’

w = y/g/h, and I is the maximum step length that the
LIPM can reach. Both w and [, are achieved from the
kinematics of a robot. T, ., 1s a predefined temporal
parameter that represents the time period until the robot lands
its swing foot. We conservatively approximate the ellipsoid of
Eq. (I3) with a polytope and define a safe set of states as

C = {(Xk,a>Pr) | h(Xk,a, P) > O4x1,Vk € [1,m]n}, (14)
where
Xk,a
h(Xk,a; =A 1+ be,
(Xk,a> Pk) c[pk] C
-1 -1 —ljw -l/w 1 1
Ao L1 e w1 -1)
cTepi 1 -1 1w 1w -1 1|7
1 1 1w 1w -1 -1
be = 1ax1.

The safe set of states in Eq. represents the set of the
LIPM state and LIPM stance pairs that could be stabilized
without falling by taking ¢-step. In other words, if an LIPM
state and LIPM stance pair is inside the safe set at the kth
step, there is always a location for the next stance aj, (and the
following stance ay4; in the case of two-step capture region)
that stabilizes the LIPM. The projection onto the = and & plane
of capture regions is represented in Fig. [3[b).

AHN et al.: DATA-EFFICIENT AND SAFE LEARNING FOR HUMANOID LOCOMOTION 5

Safety Projection

0
Eq. (19)
* |:;:+ alVR
+

Pk| Oy

tanh

[:1-step safety region
[:2-step safety region

a;[“\’ R

Fig. 3. (a) The design of the safety-guaranteeing policy, a. (b) The projection
onto the x and & plane of the one- and two-step capture regions of the LIPM.

B. Safety Guaranteeing Policy Design

For data-efficient and safe learning, we design our control
input with three components:

TVR

aj, = al TVR

+a? +af(af VR 1+ a?), (16)
where al VR = CIJ(\IJ(TLN,O; xk,pk)) is computed by the
TVR planner and az is drawn from a parameterized Gaussian
distribution, N' (g, og), where pg and og denote a mean vec-
tor and covariance matrix parameterized by Gﬂ respectively.
ajf : A — A is the safety projection that takes the sum of
a] VR and a¥ and computes a compensation to make the action
safe. Given arbitrary aEVR and a‘z, the safety-guaranteeing
controller agF ensures the following LIPM state and LIPM
stance pair (Xi41,q, Pk+1) steered by the final control input
(ay) stays inside the safe set C. In our problem, Eq. (9 is
modified as

sup [A(Xkt1,05 Pry1) + (1 = Dh(Xka, Pr)] = Oax1. (17)
ax

Substituting Eq. and Eq. into Eq. (T7), and choosing
the worst case for the uncertain dynamics in Eq. yields the
following inequality constraint:

Ac (f(Xk;,a, pr) +glag R+ ag + agF) + pa(Xk,a, Pk)

Xk,a
—|kwd(xk,a,pk)|) +be = (1-n)(Ac Ll’ﬂk } + bc).
(18)
Considering the safety constraint in Eq. (I8) and input
boundaries, the optimization problem is summarized in the
following Quadratic Programming (QP) and efficiently solved
for the safety compensation as
min [|a?F|| + K.e
R e
11 12
AR AT
st. | AZD AR [k] <| by |,
31 32
Ag) AGY

19)

2In the implementation, we choose two fully connected hidden layers with
the tanh activation function.

Algorithm 1: Policy Learning Process

Data: M episodes, K data samples

Result: g

Initialize 7o, s¢p ~ po, data array D ;

for m=1: M do

for k=1: K do

al ~me, aj 'R« Eq. @) ;

ayF « Eq. (19) ;

a, «+ Eq. (16) ;

rr < Eq. (12) ;

Sk+1,a < WBC stabilizes the robot and brings it
to the next Apex Moment;

store (Sg, &k, Sk+1,7k) in D ;

end

mp < Optimize Lppo with D w.rt 0 ;
Update GP model with D ;

clear D ;

end

where ¢ is a slack variable in the safety constraint, and K. is
a large constant to penalize safety violation. Here,

A = ~Aes A =i, AL ~Ta
AéQpQ) = O2x1, Aé?ﬁl) = —Iaxa, AE;?;?) = 0251,

and

bl =Ac(f (X, Pr) + Ba(Xk,a. Pr) + 9(at ' * + af)
Xk,a
—(1-n)Ac [;k } — ks|Acoa(X,q, Pr)| + nbc,
b(%) =_ (aEVR + ag) + amax
b((f;) :(aEVR + ag) — anin.

The first segment of the inequality represents a constraint
for the safety, and the last two are for the input constraints.
The design of the safety-guaranteeing policy is illustrated in
Fig. [3fa). Based on the MDP formulation and the policy

design, the overall algorithm for efficient and safe learning
for locomotion behaviors is summarized in Alg. [T}

C. Further Details

It is worth taking a look at each of the components in
the final action described by Eq. (T6). afV® + a provides
a “feedforward exploration” in the state space, where the
stochastic action explores the TVR planner and optimizes the
long-term reward. ay" projects af 'R + af onto the safe set
of policies and furnishes “safety compensation”.

Particularly, aEVR in the feedforward exploration provides
learning guidance and resolves two major issues in the safety
projection: (1) inactive exploration and (2) the credit as-
signment problem. Consider, for example, two cases with
different feedforward explorations, as illustrated in Fig.
whose final control policies are: (a) a; = az + aEF(aZ) and
(b) ar = af VR + a% + afF (al VR + af).

In the case of (a) (and (b), respectively), the cyan area rep-
resents feedforward exploration expressed by a Gaussian dis-
tribution N (pe, o) (and N(af VR + pg, og), respectively),

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2020

[: Set of Safe Actions e —o: Projection onto the Safe Set

(a)

V479

() A

Fig. 4. The safety compensation process. a;, denotes an optimal control input
and the orange area represents a set of safe actions that ensures that the state
at the next time step stays inside the safe set C. (a) and (b) represent two
different instances of feedforward exploration.

and the green dots are its samples. The pink arrow represents
the safety compensation aj¥ (af) (and aff (afVE + a9), re-
spectively). The black striped area is a distribution of the final
action ay, and the yellow dots are its sample.

As Fig. [i(a) shows, there is no intersection between the
set of safe actions and the possible feedforward exploration
and the feedforward explorations are all projected onto the
safe action set. The projection does not preserve the volume
in the action space, and it hinders active explorations in the
learning. However, Fig. [4[b) leverages the TVR planner as
learning guidance and retains the volume in action space to
explore over. When it comes to computing a gradient of the
long-term reward, the projected actions make it difficult to
evaluate the resulting trajectories and assign the credits in the
0 space. In other words, as Fig. [da) shows, three compensated
samples (yellow dots) do not roll out different trajectories,
which prevents the gradient descent and results in a local
optimum.

V. SIMULATION RESULTS

We execute a series of experiments with our 10-DoF
DRACO biped [9] and the 23-DoF Boston Dynamic’s ATLAS
humanoid using the DART simulator [22] to evaluate the
proposed MDP formulation and policy design. The parameters
used in the simulations are summarized in the Table[l] The goal
of the experiments is three-fold: (1) How does the proposed
method learn locomotion better than the baseline approaches
(i.e., end-to-end policy search in [17], DeepLoco in [12], and
the TVR planner) in terms of data-efficiency, safety, and the
quality of the walking behavior? (2) How does each policy
component in Eq. (T6) contribute to the learning process? (3)
Could the proposed approach be generalized to various types
of walking (e.g., turning, walking over irregular terrain, and
walking given random disturbances)?

A. Forward Walking

1) Experiment Setup: We include eight MDPs with differ-
ent states and actions, and train policies for forward walking to
demonstrate the effectiveness of our method. As baselines, two
MDPs are based on an end-to-end model free learning: each
policy learns joint torques 7y either from joint positions and
velocities qg, ¢y or from the LIPM described in Eq. (I0). We
implement and adapt another baseline MDP from DeepLoco
[12], where a walking policy is composed of a high-level
footstep planner and a low-level feedback controller. Note
that DeepLoco trains the networks to generate footsteps and
joint commands in an end-to-end manner, whereas our method
incorporates a simplified model to train footstep policy effi-
ciently. Another difference is that we consider a model-based
feedback controller (i.e., WBC) to compute joint commands.
The other baseline MDP is set up based on the deterministic
policy shown Eq. (3) that maps LIPM information to footstep
locations. Finally, we formulate four variations of our proposed
MDP by alternating the components of the actions shown
in Eq. (I6). Fig. [summarizes different states and actions
for our experiments. We solve the MDPs using the policy
search method described in [17]] with the reward defined in
Eq. (12) except for the DeepLoco baseline where we follow the
reward function and the actor-critic method described in [12].
Experiments whose policy is a footstep location are followed

Experiments State Action
End-to-end Eq. (10) (7) %
learning Ak, Qi (21) 7%
Ak, Ak (high-level)
Deeploco q*“q*“ﬂ (lfw-level)
Analytic method Xk,a> Pk (iv) Eq. (5)
(v) Eq. (16) with CP»
Proposed MDP with | .(10) (i) E“l (1(_5) with CPy
different components 4 (vii) af VR 4+ a8
(wvii) ﬂf + a‘:l} with CP4

Fig. 5. Eight MDPs with different states and actions for the forward walking.

by a low-level WBC. For example, a cubic spline trajectory
is generated with a footstep decision made by the MDPs and
converted to an operational space task. At the same time, a
CoM position and torso orientation task are also specified with
different priorities to maintain the robots upright.

2) Analysis: Multiple policies are trained in each setup
to regulate forward walking. The learning processes of the
proposed MDP, as well as the baseline performance of the
TVR and end-to-end learning, are illustrated in Fig. @ with
some useful metrics.

TABLE I
SIMULATION PARAMETERS

LIPM SM aTVR a? aSt Reward Behavior

[h, Imax] [ToN,TLF] [Ty, Tyt K, iy Layer [Ke,n] e Wy W Ws Wwe |27, wd]

%‘Zﬁﬁﬁ (0.93,0.7] [0.16,0.16] [0.22,0.22, —0.18,—0.18] [64,64] [10%,0.8] 50 3.0 3.0 1.0 1.0 [0.3,0]
@Zﬁ(ﬁlsg [0.82,0.55] [0.23,0.23] [0.15,0.15,—0.16, —0.16] [64,64] [10°,0.8] 50 3.0 3.0 1.0 1.0 [0.15,0]
ATLAS =1 09 0.55] [0.23,0.23] [0.15,0.15,—0.16,—0.16] [64,64] [10°,0.8] 50 50 50 30 1.0 [0,0.09]

Turning

AHN et al.: DATA-EFFICIENT AND SAFE LEARNING FOR HUMANOID LOCOMOTION 7

Fig. 6. Learning curves for the experiments are shown here demonstrating
learning performance for forward walking. The average return, the number
of terminations per episode are shown throughout the training. Each of the
curves is plotted with its mean and standard deviation across five runs. Note
that in the average return plot, the green and gray curves use the green vertical
axis, and the purple curve uses the purple vertical axis on the right side. At
the bottom, we run an episode with trained policies from different setups and
show the travel distance, walking speed, walking stride, and the average of
the two-norm of the ZMP in the local frame.

In the average return plot, the end-to-end learning with the
LIPM information (gray curve) cannot achieve the motion
of walking, whereas the other end-to-end learning with the
joint information (green curve) shows a convergence of the
walking behavior to unnatural motions. This shows that the
LIPM information itself is not informative enough to calculate
joint torques in an end-to-end manner. It is worth mentioning
that the end-to-end learning with joint state information takes
a more substantial dataset (denoted by A) to generate desired
locomotion behavior than using the proposed MDP. DeepLoco
(purple curve) shows a faster convergence rate than the end-to-
end learning in the case of DRACO thanks to the hierarchical
policy structure. However, DeepLoco requires more data than
our approach since it has to train the low-level feedback
controller instead of using the WBC. Furthermore, DeepLoco
does not scale well to ATLAS in our implementation.

The proposed MDP using the conservative one-step capture
region (blue curve) helps to accelerate the learning at the
beginning phase, but the one using the relaxed two-step
capture region (orange curve) eventually achieves a better
walking policy in terms of the average return. Training with a
heuristic bound (0.1m) instead of using the safety projection
(red curve) exhibits relatively good performance, whereas the

Turning Irregular Terrain

()

Disturbance

Terminat
(a) (b) Bcl’orc/ipcx Moment After Apex ermmer
- 0.6 I Moment —_J
500 | = - - Turning) { ! x: 600 () | i
— - - Irregular terrain | | y: =600 (N3
o - 0.4 H i
400 Disturbance — 1 xt 2300 %) 1IH
S~ Vi
S 50_2 | :;. 300 (N) 1 :
1 [
& 3004 H TX:600(N) | 11
P 0.0 1y:600(N) | i1
& 1 1 LUl
22004 031 g
5 I Stabilized : :
> [~
@ 0.1 / 1
< 100 = i |
_____ =01 Y AV
01 - g YIS TR TN QNI M ! 1
-0. 1l
10° 10 10° 109 13 135 14 145 15 155

Number of Data Samples time (sec)

Fig. 7. Various types of locomotion behaviors: turning, walking over irregular
terrains, and walking with random disturbances. (a) The average return is
shown throughout the training. (b) The trained policy for the disturbance
experiments is evaluated. The CoM velocities are plotted when three different
disturbances occur. Note that the background colors represent the locomotion
states in Fig.

one without the TVR planner (pink curve) rarely improves
throughout the updates. The results reflect the issues addressed
in Section [[V-C] The number of terminations per episode
decays as the uncertain parts of the dynamics are revealed
throughout the training.

We evaluate the quality of walking resulting from different
setups. In Fig. [6] the trained policy from the blue curve uses
conservative safety criteria, which results in smaller strides and
slower walking speed than for the other methods. The walking
behavior resulting from the green curve policy takes longer
strides with faster walking speeds. However, as we can infer
from the ZMP graph, the policy from the green curve shows
unnatural walking motions and yields a short travel distance
per episode.

B. Generalization to various types of locomotion

1) Experiment Setup: We consider three additional exper-
iments in simulation to show that our proposed formulation
can be generalized to various types of locomotion: turning,
walking over irregular terrain, and walking given random
disturbances. For the turning experiment, the low-level WBC
controls the robot’s torso, pelvis, and feet orientation. We
consider irregular terrains including tilted ground at angles
of between —10° and 10°. In addition, random disturbances
are applied at intervals of 0.1sec in the lateral and sagittal
directions with a magnitudes between —600N and 600N. Note
that we apply the disturbances both before and after the Apex
Moment. For all experiments, the states, actions, and reward
function are identical to the MDP formulation we described
in Section [l We train the policies using the policy search
method described in [17].

2) Analysis: The learning processes for each experiment,
as well as the baseline performance of the TVR planner, are
illustrated in Fig. [7(a). Our proposed approach succeeds in
achieving locomotion behaviors based on average returns. The

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2020

stance foot orientation captures the heading of the robot and
the terrain information, and the neural network used in the
learning process adapts to walking in new environments.
The experiment of walking with random disturbances shows
an increment of the average return with high variance. It
demonstrates robust walking under mild disturbances, but the
average return is not as high as the return without disturbances
shown in Fig. @ For further analysis, we evaluate a trained
policy in the presence of three different types of disturbances:
(1) a disturbance with a magnitude of 600N on both the
sagittal and the lateral directions before the Apex Moment
(i.e., in £rr), (2) a disturbance with a magnitude of 300N
on both the sagittal and the lateral directions after the Apex
Moment (i.e., in £1,n), and (3) a disturbance with a magnitude
of 600N on both the sagittal and the lateral directions after
the Apex Moment (i.e., in £1,). The velocity profiles of the
CoM are shown in Fig. [/(b). The first type of disturbance is
dealt with by the robot using a single footstep. In the figure,
one can see the CoM velocity in the lateral direction (¢)
being directed back to near zero in the next double support
phase, even with the large disturbances. The second type of
disturbance cannot be rejected by using a single step because
that footstep is determined at the Apex Moment that precedes
the disturbance. However, this can still be compensated for in
future walking steps, unless the magnitude of the disturbance
is significant enough to make the robot fall immediately. In the
last case, the magnitude of the disturbance is 600N and makes
the robot fall right away. Future work includes incorporating
a disturbance observer and continuous disturbance detection
during the swing motion as described in [21]]. In such a case,
the policy described in Eq. (16) will re-calculate new footstep
locations to reject all disturbance within the first footstep.

VI. CONCLUDING REMARKS

In this letter, we describe an MDP formulation for data-
efficient and safe learning for locomotion. Our formulation
combines analytic and data-driven approaches to make high-
level footstep decisions based on the LIPM. The proposed
policy includes a TVR planner, a neural network, and a
safety controller. The TVR planner computes achievable sub-
optimal guidance, the neural network modulates the guidance
to maximize the long-term reward, and the safety controller
facilitates safe exploration during the learning process. The
safety controller learns the unknown part of dynamics in
tandem with the policy updates and compensate for unsafe
actions from the neural network based on the capturability
metric and the use of control-barrier function. We thoroughly
evaluate the effectiveness of the proposed method show how
it could be generalized for various types of walking with two
humanoids. Our contributions include: (1) a structured learning
control method that mitigates the limited effect of using simple
models and generates agile and robust locomotion, (2) a data-
efficient and safe learning process to reinforce walking using
a physics-based model, and (3) the scalability of the method
to various types of humanoid robots and walking. In the near
future, we plan to implement this framework into a real bipedal
robot called DRACO. In the past, we have encountered many

problems using the LIPM without a learning process causing
complicated tuning procedures. We believe that the policy
learning technique presented here will automatically determine
the gap between the model and reality and will adjust the
policy accordingly with minimal tuning.

REFERENCES

[1] Kuindersma et al., “Optimization-based locomotion planning, estima-
tion, and control design for the atlas humanoid robot,” Autonomous
Robots, vol. 40, no. 3, pp. 429-455, Mar 2016.

[2] Rezazadeh et al., “Spring-Mass Walking With ATRIAS in 3D: Robust
Gait Control Spanning Zero to 4.3 KPH on a Heavily Underactuated
Bipedal Robot,” in ASME 2015 Dynamic Systems and Control Confer-
ence. Columbus: ASME, Oct. 2015, p. VOO1T04A003.

[3] S. Caron et al., “Stair climbing stabilization of the HRP-4 humanoid

robot using whole-body admittance control,” in IEEE International

Conference on Robotics and Automation, May 2019.

S. Kajita et al., “Biped walking pattern generation by using preview

control of zero-moment point,” in 2003 IEEE International Conference

on Robotics and Automation, vol. 2, Sep. 2003, pp. 1620-1626 vol.2.

[5] J. Carpentier and N. Mansard, “Multicontact locomotion of legged
robots,” IEEE Transactions on Robotics, vol. 34, no. 6, pp. 1441-1460,
Dec 2018.

[6] A. Herzog et al., “Structured contact force optimization for kino-
dynamic motion generation,” in 2016 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Oct 2016, pp. 2703—
2710.

[71 D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a
humanoid robot,” Autonomous Robots, vol. 35, no. 2, pp. 161-176, Oct
2013. [Online]. Available: https://doi.org/10.1007/s10514-013-9341-4

[8] D. Kim et al., “Dynamic locomotion for passive-ankle biped robots
and humanoids using whole-body locomotion control,” Accepted to the
International Journal of Robotics Research, 2020.

[9] J. Ahn, D. Kim, S. Bang, N. Paine, and L. Sentis, “Control of a high

performance bipedal robot using viscoelastic liquid cooled actuators,”

in 2019 IEEE-RAS 19th International Conference on Humanoid Robots

(Humanoids), Oct 2019, pp. 146-153.

Y.-M. Chen and M. Posa, “Optimal reduced-order modeling of bipedal

locomotion,” arXiv preprint arXiv:1909.10111, 2019.

Heess et al., “Emergence of locomotion behaviours in rich environ-

ments,” arXiv preprint arXiv:1707.02286, 2017.

X. B. Peng, G. Berseth, K. Yin, and M. van de Panne, “Deeploco: Dy-

namic locomotion skills using hierarchical deep reinforcement learning,”

ACM Transactions on Graphics, vol. 36, no. 4, 2017.

S. Levine et al., “Guided policy search,” in Proceedings of the 30th

International Conference on Machine Learning, ser. Proceedings of

Machine Learning Research, vol. 28, no. 3, 17-19 Jun 2013, pp. 1-

9.

G. A. Castillo et al., “Hybrid zero dynamics inspired feedback control

policy design for 3d bipedal locomotion using reinforcement learning,”

arXiv preprint arXiv:1910.01748, 2019.

A.Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Tossingbot:

Learning to throw arbitrary objects with residual physics,” arXiv preprint

arXiv:1903.11239, 2019.

A. Iscen et al, “Policies modulating trajectory generators,” arXiv

preprint arXiv:1910.02812, 2019.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘“Prox-

imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,

2017.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-

man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint

arXiv:1606.01540, 2016.

J. Ahn et al., “Fast kinodynamic bipedal locomotion planning with

moving obstacles,” in 2018 [EEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Oct 2018, pp. 177-184.

R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end

safe reinforcement learning through barrier functions for safety-critical

continuous control tasks,” arXiv preprint arXiv:1903.08792, 2019.

T. Koolen, T. de Boer, J. Rebula, A. Goswami, and J. Pratt,

“Capturability-based analysis and control of legged locomotion, part 1:

Theory and application to three simple gait models,” The International

Journal of Robotics Research, vol. 31, no. 9, pp. 1094-1113, 2012.

J. Lee et al., “Dart: Dynamic animation and robotics toolkit,” The

Journal of Open Source Software, vol. 3, no. 22, p. 500, 2018.

[4

=

[10]
[11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

https://doi.org/10.1007/s10514-013-9341-4

	I Introduction and Related Work
	II Preliminaries
	II-A An Analytic Approach to Locomotion
	II-B TVR Planner
	II-C Reinforcement Learning with Safe Exploration

	III MDP Formulation
	IV Policy Representation and Learning
	IV-A Safe Set Approximation
	IV-B Safety Guaranteeing Policy Design
	IV-C Further Details

	V Simulation Results
	V-A Forward Walking
	V-A1 Experiment Setup
	V-A2 Analysis

	V-B Generalization to various types of locomotion
	V-B1 Experiment Setup
	V-B2 Analysis

	VI Concluding Remarks
	References

