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LIT: Light-field Inference of Transparency
for Refractive Object Localization

Zheming Zhou

Abstract— Translucency is prevalent in everyday scenes. As
such, perception of transparent objects is essential for robots to
perform manipulation. Compared with texture-rich or texture-
less Lambertian objects, transparency induces significant un-
certainty on object appearances. Ambiguity can be due to
changes in lighting, viewpoint, and backgrounds, each of which
brings challenges to existing object pose estimation algorithms.
In this work, we propose LIT, a two-stage method for trans-
parent object pose estimation using light-field sensing and
photorealistic rendering. LIT employs multiple filters specific
to light-field imagery in deep networks to capture transparent
material properties, with robust depth and pose estimators
based on generative sampling. Along with the LIT algorithm,
we introduce the light-field transparent object dataset ProLIT
for the tasks of recognition, localization and pose estimation.
With respect to this ProLIT dataset, we demonstrate that LIT
can outperform both state-of-the-art end-to-end pose estima-
tion methods and a generative pose estimator on transparent
objects. The link of supplementary material can be found at:
https://sites.google.com/umich.edu/prolit

I. INTRODUCTION

Recognizing and localizing objects has a wide range of
applications in robotics, and remains a very challenging
problem. The challenge comes from the variety of objects
in the real world and the continuous high dimension spaces
of object poses. The diversity of object materials also induces
strong uncertainty and noise for sensor observations. Existing
works and datasets [1], [2], [3] cover a variety of texture-rich
objects with distinguishable features between different types
of objects. Several other works [4], [5] cover textureless
objects with Lambertian surfaces, where robot sensors can
still perceive rich depth information. However, many of these
assumptions for objects with Lambertian surface properties
are ill-posed for transparent objects.

The challenges imposed by transparency are multidimen-
sional. First, non-Lambertian surface texture is highly reliant
on the environment lighting and background appearance.
Specifically, transparent surfaces will produce specularity
from environmental lighting and project distorted back-
ground texture on their surfaces due to refraction. Second,
transparent object depth information cannot be correctly
captured by RGB-D sensors, which are commonly used by
current object recognition and localization methods. This
limitation imposes difficulties in collecting transparent object
pose data using current labeling tools [6]. As a result,
transparent objects remain effectively invisible to robots
using the sensors.
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Fig. 1: Demonstration of our LIT pipeline. (Top row) Lytro Illum
camera is mounted on the tripod and robot arm to capture the
transparent objects in challenging environments. (Bottom row) final
estimated poses are overlapped to the center view of the observed
light-field image.

Recently, several works [7], [8] showed promising results
using light-field (or plenoptic) photography in perceiving
transparent objects. For example, Zhou et al. [9] generated
grasp poses for transparent objects by classifying local patch
features in a Depth Likelihood Volume (DLV) plenoptic
descriptor. However, capturing and labeling over light-field
images is time-consuming and computationally costly. Syn-
thetic data is an alternative for image generation and has
shown encouraging results in object recognition and localiza-
tion. Georgakis ef al. [10] rendered photorealistic images by
projecting the object texture model on the real background
for training object detectors. Tremblay et al. [3] proposed
DOPE as an end-to-end pose estimator using domain ran-
domization and photorealistic rendering [11]. We similarly
address the problem of transparency using photorealistic
rendering and light-field perception.

In this paper, we propose LIT as a generative-
discriminative method for recognition and pose estimation
for transparent objects. Within LIT, we introduce 3D con-
volutional light-field filters as the first layer of our neural
network. This neural network is trained purely with synthetic
data from a customized light-field rendering system for
virtual environments. At run time, the output of this trained
neural network is used as input to a generative inference. The
pose estimates resulting from this inference are then used
to perform grasping and manipulation tasks. We introduce


https://sites.google.com/umich.edu/prolit

(a) ProLIT Dataset

(b) Two-Stage LIT Estimator

Training Set
(Synthetic)

Light-field Filters

TR 'IDt Sub-aperture
(BealiData) Stack

Network

Center Points Depth Estimation

.............................................
K3

Decoder

Decoder

Two-stream Neural

4 0

/ CAD model

Resampling
and Diffusion

Evaluate
Hypotheses

Center Points
Prediction

Initialize

° 6D Object
particles

Pose

Hypotheses \

Particle
Optimization

cham_cup: 0.957

2».

Glass Segmentation
and Object Detection

Final Estimation

Fig. 2: An overview of the LIT framework with the ProLIT dataset. (a) ProLIT contains 75,000 synthetic light-field images in training
set and 300 real images with 442 object instances in testing set. (b) LIT estimator is a two-stage pipeline. The first stage takes light-field
images as input and outputs transparent material segmentation and object center point prediction. The segmentation results are passed
through a detection network to obtain object labels. In the second stage, for each predicted center point, we predict point depth likelihood
by local depth estimation using Depth Likelihood Volume. The particle optimization samples over center points and converge to the pose

that best matches the segmentation results.

the ProgressLIT light-field dataset (ProLIT) for the task of
transparent objects recognition, segmentation, and pose esti-
mation. The ProLIT dataset contains 75,000 synthetic light-
field images and 300 real images from Lytro Illum light-field
camera labeled with segmentation and 6D object poses. We
show the efficacy of LIT with respect to state-of-the-art end-
to-end methods and a generative method on our proposed
ProLIT transparent object dataset. We additionally present a
demonstration of using LIT for a purposeful manipulation
task of building a champagne tower in a sparsely textured
environment.

II. RELATED WORK

A. Pose Estimation for Robot Manipulation

6D pose estimation remains a central problem in robot
perception for manipulation in recent years. Deep learning
methods have been a prevalent approach to perform accurate
and fast inference for this problem. Xiang et al. [12] pro-
posed PoseCNN to recognize and estimate objects and their
6D poses by decoupling translation and rotation separately in
a neural network structure. Other end-to-end method methods
have explored using synthetic data in training [3], [13],
pixel-wise voting over keypoints [14], [15], and residual
networks to iteratively refine object poses [5], [2]. Hybrid
(or generative-discriminative) methods can achieve better
performance by using deep networks to give hypotheses
of object poses followed by a second stage of refinement.
To get the final pose estimates, a variety of methods have
been proposed for the second stage, including probabilistic

generative inference [1], [16], template matching [17], and
point cloud registration [4], [18].

Most deep learning methods for pose estimation are
focused on texture-rich objects or those with texture-less
but Lambertian surfaces [17], [4]. Transparent objects bring
challenges in two main aspects, where there is: 1) no reliable
depth information, and 2) no distinguishable environment-
independent color textures. Prior works [19], [20] have used
invalid readings from depth camera to extract object contours
for pose estimation. However, these methods rely on the
Lambertain reflections of the background surface to establish
reliable contour of transparent objects. We take inspiration
from these ideas for perception from light-field observations
in two ways. First, a decent detection or segmentation
intermediate result plays an important role in restricting the
search area of the 6D object pose. Further, a deep network
trained on a large, elaborately designed synthetic dataset can
reach similar performance with those trained on real world
data.

B. Light-field Perception for Transparency

The foundation of light-field image rendering was first
introduced by Levoy and Hanrahan [21] for the purpose
of sampling new views from existing images. Since the
seminal work, light-field cameras have shown advancement
in performing visual tasks in challenging environments with
transparency and translucency. Maeno et al. [22] proposed
the light-field distortion features from epipolar images for
recognizing transparent objects. Recent work by Tsai et
al. [23] further explored the light-field features to distinguish
transparent and Lambertian materials. The result showed that



the distortion features in the epipolar images can be used
to distinguish materials with different refraction properties.
Apart from refraction, specular reflection is another unique
property carried by transparent materials. Tao et al. [24]
investigated the line consistency in the light-field images with
a dichromatic reflection model that removes the specularity
from the images. Alperovich et al. [25] proposed fully
convolutional networks to separate specularity in light-field
images. In robotics, Zhou et al. [7], [9] created a plenoptic
descriptor called DLV to model the depth uncertainty in
a layered translucent environment. Based on this DLV, the
object poses and grasp poses for robot manipulation are esti-
mated using generative inference. Our proposed LIT method
is built on these ideas above and leverages the power of
discriminative and generative methods with data generation
using photorealistic rendering.

IIT. LIT ESTIMATOR

Given an input light-field image L, the objective of LIT
estimator is to infer the objects label [ and their poses ¢
in SE(3). The pose ¢ represents the transformation from
object local coordinate frame to the camera coordinate frame.
For a light-field image L with spatial resolution Hg x Wy
and angular resolution H, x W,, we assume the camera
coordinate frame overlaps with the center view image’s
coordinate frame. The object pose q is defined in center view
and parameterized into 3D translation and 3D orientation in
quaternion.

A. LIT Pipeline

The two-stage LIT pipeline is shown in Figure 2. The first
stage consists of a two-stream neural network that outputs
pixel-wise image segmentation and 2D object center point
locations. This output is followed by a detection network
that classifies object labels [ and clusters the corresponding
center points. A light-field based object depth estimator
gives object center depth distributions. The second-stage is a
particle optimization initialized based on network and depth
estimates, that converges to the final 6D poses.

There are several insights incorporated in the pipeline de-
sign. First, the segmentation decoder branch in the first neural
network performs transparent material segmentation rather
than object-class or instance segmentation. This distinction
means it only decides whether a pixel belongs to a transpar-
ent material or not. The rationale for this classification is that
pixel values within transparent object areas highly depend
on the background and material property, rather than object
types. Thus, it is difficult for a single network to distinguish
different objects from raw pixel values. In addition, the center
point estimation branch does not regress multiple keypoints
which is common in texture-rich object pose estimation
networks [14], [15]. The further rationale is that transparent
objects lack features that are independent to object poses and
environmental changes, such as background and lighting. In
our work, we only predict the 2D object center point location.

AF Concatenated

LF Features

Fig. 3: Illustration of three light-field filters. Angular filter (AF) has
dimension 1 x 1 x (H, x W) to capture features in angular pixels.
sEPI and tEPI filters have sizes of n x n X W, and n X n X H,
respectively, here n refers to kernel size. tEPI also has a dilation
W,. All features will be concatenated together after passing filters.

B. Network Architecture

As shown in Figure 2, the input light-field image is first
decomposed into sub-aperture image stacks. This structure
gives a 3D matrix with size Hs x Wy x (H, x W,) replicated
for each of the R, G, B channels. The stacks are then going
through three light-field filters: angular filter [26], 3D sEPI
filter, and 3D tEPI filter.

o Angular Filter. The angular filter aims to capture the
reflection property of 3D surface points in the direction
space of light ray. For instance, a non-Lambertian
surface will establish different colors in a single angular
patch while it will be nearly identical for a Lambertian
surface. The angular filter can be expressed as an
operation over each pixel (x,y) in spatial space (for
the jth filter):

9> wl(s,t)Li(z,y, (s,1))) (1)

where g(-) is the activation function, s and ¢ are the
angular indices, w] is the weight in the angular filter,
i € {r,g,b} is the color channel, and L;(z,y, (s,t)) is
the 4D light-field function.

o 3D EPI Filters. Transparent surfaces will produce
distortion features because of refraction. In the epipolar
image plane, it will produce polynomial curve patterns
which can be distinguished from the background texture
without distortion. To capture distortion features, we
propose the epipolar filters using 3D convolution layers
along the two angular dimensions s and ¢ respectively.
The 3D EPI filters can be expressed as:

g( Z 7503 (u’ v, S)Ll(w +u,y+v, (S’ t)))
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where (u, v) is the index of convolution kernel in spatial
space, w, w are weights in sEPI and tEPI filters, and we



assume the input and output have the same dimension
in spatial space by proper paddings.

Passing through the three customized filters, the embedded
features of light-field images are concatenated. The result
goes into an encoder-decoder structure with two branches
for image segmentation and object center point regression.
The output of the segmentation branch is a pixel-wise
segmentation of the center view image. Each center view
pixel is then predicted to be on a transparent surface, in
the background, or on the boundary between a transparent
object and background in the image. The output of the center
point branch are the 2D pixel offsets from each pixel to their
estimated center position on the image, as well as a pixel-
wise confidence values.

The loss in segmentation branch L., is defined as the
cross-entropy loss normalized by class pixel probabilities
[27]. The loss of center point regression is mainly following
design in [14], although we only regress the center point
positions. The learning goal for each pixel p inside the
segmentation area M is to regress the offset h, from its
location ¢, to the object center g, on 2D image. In this way,
the loss L, is expressed as:

»Cpos = Z ||gp - (cp + hP)”l (3)
peEM

where |[|-||, denotes L' loss. Each pixel’s estimation is
associated with a confidence value b,, and the confidence
loss Leony is defined as:

['conf = Z ||bp — €xp (_T ”gp - (CP + hP)HQ)Hl S
peEM

where 7 is a modulating factor and |[|-||, denotes L? loss.
The overall loss £ is calculated as:

L= acseg + 6[:])08 + ’Y‘Cconf (5)

where «, 3,7 modulates the importance of segmentation,
regression and regression confidence respectively. In practice,
we select « = 1, 8 = 8,y = 2 from initial experimentation.
An object detection network is appended to differentiate
object types based on geometry shapes from segmentation
results. Specifically, the network takes the result of segmen-
tation decoder branch as input and gives bounding boxes with
object labels. Detected bounding boxes also play the role of
clustering object center points. The overall output of the first
stage is a set of bounding boxes, each with an object label
and a set of object center points, which serves as the initial
distribution of object center locations for the next stage.
Directly regressing the depth of center points without
depth observation is difficult for neural networks. Instead,
we deploy a DLV plenoptic descriptor [7] to describe the
depth of a single pixel as a likelihood function rather than
a deterministic value. The advantage of using a DLV is that
depth likelihood can be naturally leveraged into generative
inference framework in a sample initialization step. The
likelihood D(z.,y.,d) of a given center point located at

(¢, y.) in center view image plane I, can be calculated as:

1
D(ze,ye,d) = 5 D, Taalteye) ©6)
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where A is a set of sub-aperture views, T}, 4(x.,y.) is the
function to calculate the color intensity and gradient cost of
pixel (z,y.) on a specific depth d. + is a normalization
term that maps cost to likelihood. Detailed implementation

can be referred in [7], [9].

C. Farticle Optimization

The second stage of pipeline estimates the 6D pose of
transparent objects in a sampling-based iterative likelihood
reweighting process [28]. Object pose samples are initialized
based on the center point locations from the first stage.
During the iterations, rendered samples are projected to 2D
image and their likelihoods are calculated as the similarity
between the projected rendered samples and segmentation
results.

1) Sample Initialization: Each sample is a hypothesis of
object 6D pose. Its 3D location can be derived from 2D
image coordinate (u,v), depth d and camera parameters.
In this way, the probability distribution of 3D center point
locations is formed by leveraging center point candidates and
depth likelihood volume results:

T
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)

where b is the confidence value of object center point estima-
tion from neural network, fz, fy,cs,c, are camera intrinsic
parameters, and D is likelihood from DLV in Equation (6).
We perform importance sampling over this distribution to
initialize the pose sample locations. The initial orientations
of samples are randomly selected in SO(3) space.

2) Likelihood Function: The probability of each sample
during iterations is calculated using the likelihood function,
represented as the similarity between the projected rendered
object point cloud and segmentation results from neural
network. Specifically, the object points in its local frame
are transformed by the sample pose and then projected to
2D image plane. The likelihood function is composed of
intersection over union scores of projected rendered point
clouds and segmentation masks on transparent material and
its boundary:

|Spcd n Sseg‘
|Spcd U Sseg‘
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1 _
) 58, US|
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where Sp.q is the silhouette of projected rendered point
cloud, Ss.4 is the pixels segmented as transparent materials,
0Speca and 0S4 are the sets of boundary pixels of Spcq
and S,y respectively. n is set to modulate importance of
boundaries.



(a) Training Set

(b) Testing Set

(c) Result

Fig. 4: (Left) example synthetic light-field images rendered in three different environments. (Middle) example test images in different
backgrounds and different pose configurations. (Right) results visualization by overlaying estimated poses to the original test images.

3) Update Process: We follow the procedure of iterative
likelihood reweighting to produce pose estimations. The
initialized samples are assigned the same weights. Then the
process of calculating likelihood values, resampling based on
weights, and sample diffusion is repeated in every iteration.
During diffusion step, each pose sample is randomly diffused
in SE(3) space in translation and rotation with Gaussian
noise. The algorithm terminates when the maximum sample
weight reaches a threshold, or the iteration number reaches
the limit.

IV. PROLIT LIGHT-FIELD DATASET

We propose the ProLIT light-field image dataset for the
task of transparent object recognition, segmentation, and
6D pose estimation. This dataset contains a total of 75,000
synthetic images and 300 real-world images with 442 object
instances, each labeled with pixel-wise semantic segmen-
tation and 6D object poses. Figure 4 shows examples of
synthetic images, real-world images and estimation results
from LIT. There are 5 instances of objects included in
the dataset: wine cup, tall cup, glass jar, champagne cup,
starbucks bottle with different geometric shapes. The images
are captured using a Lytro Illum camera which is calibrated
by the toolbox described in [29]. The spatial resolution of
the calibrated image is 383 x 552, and the angular resolution
is 5 x 5 (extracted from 9 x 9 sub-aperature images with
stride 2). The object poses in testing data are labeled by
reprojecting objects directly into the center view image and
matching with observations.

The light-field rendering pipeline is built on NDDS [11]
synthetic data generation plugin in Unreal Engine 4 (UE4).
The created virtual light-field capturer has an angular reso-
lution 5 x 5 and spatial resolution 224 x 224. The baseline
between the adjacent virtual camera is set to 0.1cm. We gen-
erate data in three UE4 world environments: room, temple,
and forest. In each environment, we highly randomized the
lighting conditions including color, direction, and intensity.

The target objects are rendered using the transparent material.
Objects move in two ways in the environment: flying in the
air with random translation and rotation, or falling freely
with collision and gravity enabled. When the objects move,
the virtual light-field capturer will track and look at them
with arbitrary azimuths and elevations. Ray tracing is enabled
when capturing images.

V. EXPERIMENTS

We choose 64 light-field filters as the first feature ex-
traction layer. The LIT network uses VGG16 [30] as back-
bone architecture and initialized with pre-trained model
on ImageNet [31]. The segmentation branch outputs pixel-
wise labels from over three classes: background, transparent,
boundary. The center points prediction branch outputs pixel-
wise offset for each segmented pixels. The detection network
is a Faster R-CNN network [32] with VGG16 backbone. The
input to the network is the binary masks of transparent object
segmentation and the output is bounding boxes with object
labels.

A. Evaluation of Light-field Filters on Image Segmentation

Segmentation is taken as the optimization target in our
second stage which is critical to LIT pipeline. We first
compare with two baseline methods to show the advantage of
using light-field images with three light-field specific filters.
One baseline takes input of 2D center view image, which
passes through the same neural network structure as LIT
except for light-field filters, the other is an ablation study
with only the angular filter. All three networks are trained on
the synthetic dataset containing 75,000 images. Table I shows
segmentation accuracy results, where LIT achieves better
performance than baseline methods in all metrics. Through
the comparison with single RGB input, we show that lighting
direction information captured inside light-field images helps
distinguish transparent pixels from the background. Through
the comparison with only an angular filter, LIT also achieves



Method | gAcc | mAcc [ mloU | wioU [ mBFS

2D 0.871 | 0.500 | 0.228 | 0.397 | 0.140
AF only | 0917 | 0.501 | 0.318 | 0.582 | 0.197
LIT 0.954 | 0.520 | 0.455 | 0.854 | 0.390

TABLE I: Comparison of LIT and baseline methods on transpar-
ent material segmentation. The performance is quantified through
global accuracy (gAcc), mean of class accuracy (mAcc), mean of
Intersection over Union (mloU), weighted IoU (wloU), and mean
BF (Boundary F1) contour matching score (mBES). The definitions
are detailed in [33]. ‘AF only’ here refers to the baseline method
with only angular filters.

higher accuracy, showing that both angular features and
EPI features are important in contributing to segmenting
transparent objects.

B. Evaluation of Pose Estimation

We compare the 6D pose estimation results of LIT against
a state-of-the-art general-purpose end-to-end object pose
estimator, DOPE [3], a state-of-the-art textureless object pose
estimator, Augmented Autoencoder (AAE) [4], and a gen-
erative light-field based transparent object pose estimation
method, PMCL [7].

0.08) in translation and A(0, 0.4) in orientation. PMCL is
a generative method which requires object labels and 3D
search space. We initialize PMCL with ground truth object
labels and a search volume with size 40 x 40 x 40 cm® around
the ground truth object locations. The convergence threshold
of particle weights is set to 0.7. We use ADD-S metric [12] to
evaluate the pose results of symmetric objects. We then show
the accuracy curves in Figure 5 with a distance threshold of
0.1m. The Area Under accuracy-threshold Curve (AUC) and
algorithm computation time per object are shown in Table II.

From the result plots, we find that LIT performs much
better than DOPE and AAE, and better than PMCL. For
DOPE, we believe directly regress the eight 3D bounding
box vertices and their relations is not an optimal strategy
for transparent objects. First, DOPE’s object recognition
is embedded in the network but the transparent object’s
texture is not informative to distinguish different objects.
Secondly, the eight vertices of 3D bounding boxes are
ambiguous for networks to learn the features because of
the object symmetry and lack of distinguishable features
for transparent objects. For AAE, it is possible that it is
difficult for the latent variable to learn the embedded features
to distinguish different orientations of transparent objects.

All Objects 1 Glass Jar Also, it is difficult for the first stage detector to provide
os | |—PweL oe | — et accurate location of the transparent objects, which heavily
g, |l=x g, | l=n influences the second stage translation and orientation esti-
gw g mation. Since PMCL is provided with ground truth labels
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Fig. 5: Comparison of 6D pose estimation results with respect to
ADD-S and Accuracy Under Curve metric.

For the fair comparison with DOPE and AAE, we make
both methods compatible with light-field inputs. We add the
three light-field filters in Section III before the first encoder
layer of DOPE network as well as AAE encoder network.
We adopt Faster R-CNN network as the first stage object
detector for AAE. All of the methods are trained with 75,000
synthetic images for 5 objects. In the second stage of LIT
pipeline, we diffuse the particles with Gaussian noise N0,

for the last, refers to the area under the curve (AUC) for accuracy-
threshold values for the symmetric objects metric (ADD-S), shown
in Figure 5.

C. Champagne Tower Demonstration

LIT is also integrated into a robotic manipulation pipeline
for a purposeful manipulation task of building a champagne
tower in a sparsely textured environment, as shown in Fig-
ure 6. In the initial setup, the champagne cups are randomly
placed on a textureless white table. The Lytro Illum camera
takes a light-field image and transfer the image with on-chip
wifi. The Lytro camera’s extrinsic matrix is calibrated with



Fig. 6: The robot is building a champagne tower by successfully
picking and placing champagne cups on the table. The first row
shows light-field observation (left) and pose estimation result from
LIT (right). The following five rows show pick and place actions
to finish the champagne tower.

robot world frame. LIT then performs pose estimation over
the scene, and the results are then adopted to transform the
pre-defined grasp poses from the object’s local coordinate
frame to the robot world frame. With the accurate pose
estimates, the robot is able to pick up all champagne cups
from the table and arrange them into a champagne tower.

VI. CONCLUSIONS

We introduce LIT, a two-stage generative-discriminative
object and pose recognition method for transparent objects
using light-field observations. LIT employs the learning
power of deep networks to distinguish transparent objects
across light-field sub-aperture images. We show that the
network trained only on synthetic data can deliver a good
segmentation on transparent materials, which is served as
matching target for second stage pose estimation. Along with
the method, we propose the light-field transparent object
dataset including synthetic and real data for the tasks of
object recognition, segmentation, and 6D pose estimation.
We demonstrate the use of LIT for a purposeful robot ma-
nipulation task over transparent cups. However, our method
still has limitations in cluttered environments where the first
stage segmentation results cannot provide distinguishable
object shapes for second stage refinement. Possible future
works built on LIT could be instance-level segmentation
based on transparent objects and single-view light-field depth
estimation directly predicted by neural network.
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