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Abstract— With much research has been conducted into
trajectory planning for quadrotors, planning with spatial and
temporal optimal trajectories in real-time is still challenging. In
this paper, we propose a framework for generating large-scale
piecewise polynomial trajectories for aggressive autonomous
flights, with highlights on its superior computational efficiency
and simultaneous spatial-temporal optimality. Exploiting the
implicitly decoupled structure of the planning problem, we
conduct alternating minimization between boundary conditions
and time durations of trajectory pieces. In each minimization
phase, we leverage the algebraic convenience of the sub-problem
to escape poor local minima and achieve the lowest time con-
sumption. Theoretical analysis for the global/local convergence
rate of our proposed method is provided. Moreover, based on
polynomial theory, an extremely fast feasibility check method
is designed for various kinds of constraints. By incorporating
the method into our alternating structure, a constrained min-
imization algorithm is constructed to optimize trajectories on
the premise of feasibility. Benchmark evaluation shows that
our algorithm outperforms state-of-the-art methods regarding
efficiency, optimality, and scalability. Aggressive flight experi-
ments in a limited space with dense obstacles are presented to
demonstrate the performance of the proposed algorithm. We
release our implementation as an open-source ros-package1.

I. INTRODUCTION

Recently, our community has witnessed the development
of planning methods for quadrotors. Spline-based methods,
which decompose the spatial and temporal parameters of a
planning problem and focus on optimizing its spatial part,
are widely applied for real-time applications [1], [2], [3].

Although spline-based methods can efficiently and ac-
curately generate energy-optimal solutions for online us-
age, they usually omit temporal planning for simplicity.
A typical spatial-temporal joint planning problem has high
nonlinearity and nonconvexity coming from its objective and
constraints. Since temporal planning has underlying coupling
with spatial parameters and implicit gradients, the spatial-
temporal joint optimization cannot be solved by general
nonlinear programming (NLP) in real-time. Even though
existing methods can provide online motion planning without
temporal planning, they are often too conservative to be used
for autonomous flights with high aggressiveness. To bridge
this gap, we propose a framework to split the spatial and
temporal aspects of a trajectory optimization problem, then
solve them alternately. With our method, we can obtain the
energy-time joint optimal trajectory in milliseconds.

All authors are with the State Key Laboratory of Industrial Control
Technology, Institute of Cyber-Systems and Control, Zhejiang University,
Hangzhou, 310027, China. {wangzhepei, iszhouxin, cxu,
chuj, and fgaoaa}@zju.edu.cn

1Open-source implementation is available at: https://github.com/
ZJU-FAST-Lab/am_traj

Fig. 1. Composite image of the quadrotor aggressive flight in a limited
space. Our quadrotor is equipped with a stereo camera, an IMU and an
onboard computer. No external positioning system is used. Video of the
experiment can be viewed at https://youtu.be/ayoQ7i1Lz5s.

The proposed method is based on the naturally alternating
structure of the spatial-temporal trajectory optimization and
designed to have guaranteed optimality and efficiency. Our
method is motivated by the fact that a polynomial trajec-
tory with an odd order can be uniquely determined by its
endpoint derivatives, i.e., the boundary condition, and the
time duration. For a piecewise polynomial, once all boundary
conditions are fixed, each piece of the trajectory depends
only on its time duration, which can be optimized separately.
By utilizing the widely-adopted linear-quadratic objective
[4] of the optimization, the optimal time durations can be
updated efficiently. Moreover, inspired by [2], the closed-
form solution is adopted to update derivatives on waypoints.
Based on the above observations, the joint optimization
can be efficiently processed by an alternating minimization
(AM) procedure [5]. With our method, a large-scale joint
optimization can be done in a few milliseconds to generate
optimal trajectory with the best time allocation.

To the best knowledge of us, the proposed method is the
first one that generates trajectories for a quadrotor with the
spatial-temporal optimality, in such a limited time. Summa-
rizing our contributions in this work:
• An unconstrained alternating minimization algorithm is

proposed to generate spatial-temporal optimal trajecto-
ries efficiently, with a proven non-asymptotic rate of the
global/local convergence.

• A computationally efficient feasibility check method is
designed for a wide range of constraints in our method.

• A constrained alternating minimization algorithm is
constructed to optimize feasible trajectories in a recur-
sive fashion, with global convergence verified.

• The proposed method is integrated into an autonomous
quadrotor system then evaluated by real-world experi-

ar
X

iv
:2

00
2.

10
62

9v
1 

 [
cs

.R
O

] 
 2

5 
Fe

b 
20

20

https://github.com/ZJU-FAST-Lab/am_traj
https://github.com/ZJU-FAST-Lab/am_traj
https://youtu.be/ayoQ7i1Lz5s


ments as well as extensive benchmarks. The source code
is released for the reference of the community.

In what follows, we discuss related literature in Sec. II.
Preliminaries of this paper are given in Sec. III. The
proposed spatial-temporal trajectory generation method for
unconstrained and constrained planning cases are detailed in
Sec. IV and V, respectively. Experiments and benchmarks
are given in Sec. VI. The paper is concluded in Sec. VII.

II. RELATED WORK

For quadrotor planning, polynomial splines have long been
used for trajectory parametrization since [1], because of
their flexibility and analytical convenience. In [1], the min-
imization of squared derivatives is used as the objective of
quadratic programming (QP), which can be solved efficiently
and accurately. Based on this formulation, intensive works
have been recently proposed. A method for obtaining a
closed-form solution of the above QP program is proposed
in [2], where a safe geometric path guides the generation
of the trajectory to ensure its safety. By recursively adding
intermediate waypoints to the path, a safe trajectory is finally
generated after solving the minimum-snap problem several
times. In [6], [7], [8], safe and dynamically feasible trajecto-
ries are online generated within a safe flight corridor, which
excludes all obstacles in complex environments. However,
in these methods, the time allocation of the piece-wise
trajectory is pre-defined or online adjusted by heuristics. Al-
though these heuristics are cheap to compute, the trajectories
generated are often far less optimal and over-conservative,
making them incapable of high-speed flights.

To address the time allocation problem, Mellinger et al.
[1] compute the projected gradient with respect to durations
on a hyperplane where the sum is fixed. They optimize time
allocation through backtracking gradient descent. Temporal
scaling is applied on the solution until dynamical feasibility
is achieved. Both the finite difference and scaling used in this
method are expensive operations when the number of trajec-
tory pieces is large. Liu et al. [6] propose a way to calculate
the proper scaling factor such that a single scaling operation
suffices, while it only applies for rest-to-rest trajectories. Sun
et al. [9] formulate the problem as a two-level optimization.
They estimate the projected gradient analytically through
the dual solution of the low-level QP, which improves
accuracy compared with the numerical gradient. Nonetheless,
the projected gradient is still inconvenient to compute and
inefficient for nonlinear optimization. To avoid this situation,
Richter et al. [10] use total duration as a regularization term,
thus making each duration an independent variable. The
time allocation is optimized through gradient descent, while
actuator constraints are also fulfilled by scaling. However, the
optimal ratio of time allocation under the constrained case
may differ a lot from the unconstrained case. Consequently,
scaling can ruin a trajectory where constraints are violated on
a very short piece. Burri et al. [3] optimize the squared total
duration instead. They soften all constraints by penalizing
them in the objective and optimize durations through an NLP
solver, while the pieces number is limited.

Gradient-based direct optimization is not satisfactory when
computational overhead or solution quality is critical. To ad-
dress this, Gao et al. [11] propose a method which decouples
geometrical and temporal information of a trajectory. They
use QP to generate a spatial trajectory with guaranteed safety
in a virtual domain. A temporal trajectory is then optimized
through second-order conic programming (SOCP) based on
direct collocation [12], which maps time to the virtual
domain. Their method achieves near real-time. The drawback
is that the spatial trajectory can restrict the aggressiveness in
consequent optimization, resulting in slow motions. In [13],
they improve the above method by alternating minimization
between coefficients of the two-layer parametrization. Time
durations of the optimized temporal trajectory is used to
re-generate a spatial trajectory, on which the optimization
is applied again. Although high-quality trajectories can be
obtained by this process, several rounds of QP and SOCP
make it unapplicable to use online. Moreover, this method
lacks theoretical convergence analysis and only works in
the rest-to-rest case. Almeida et al. [14] propose a machine
learning method to train a supervised neural network offline,
thus online application is able to refine good initial guesses
in real-time. However, the neural network has to be trained
case by case.

In this paper, we adopt the time regularized objective [10]
as well as the alternating minimization framework [13]. For
efficiency, the spatial and temporal parameters are alternately
updated in separate phases. Each minimization phase exploits
the objective structure and is solved algebraically, making
it free from gradient estimation and step-size choosing. To
handle various constraints, we also design a simple yet
solid feasibility checker. The proposed framework is able to
generate aggressive trajectories at extremely high frequency
and not limited to the rest-to-rest case.

III. PRELIMINARIES

Differential flatness of quadrotor dynamics is validated by
Mellinger et al. [1]. It means the trajectory planning for
a quadrotor can be done solely in the translational space.
The kinodynamic feasibility is implicitly transformed into
smoothness of the trajectory. Then, actuator constraints can
be enforced by restricting norms on high-order derivatives.

In this paper, we employ the piece-wise polynomial tra-
jectory, with each piece denoted as an N -order polynomial:

p(t) = cTβ(t), t ∈ [0, T ], (1)

where c ∈ R(N+1)×3 is the coefficient matrix, T is the
duration and β(t) = (1, t, t2, · · · , tN )T is a basis function.

It is worth noting that we only consider odd-order poly-
nomial trajectories. Since N is odd, the mapping is bijective
between the coefficient matrix and the boundary condition.
To further explain this, consider derivatives of p(t) up to
d(N − 1)/2e order:

d(t) = (p(t), ṗ(t), · · · , p(d(N−1)/2e)(t))T, (2)

we have d(t) = B(t)c where

B(t) = (β(t), β̇(t), · · · , β(d(N−1)/2e)(t))T. (3)
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Fig. 2. A trajectory P(t) contains M pieces. Each piece is fully determined
by its duration Tm and boundary condition dm = (dTm, dTm+1)

T.

We denote dstart and dend by d(0) and d(T ), respectively.
The boundary condition of this polynomial is described by
the tuple (dT

start,d
T
end)

T. The following mapping holds:

(dT
start,d

T
end)

T = A(T )c, (4)

where A(T ) = (BT(0),BT(T ))T is the mapping matrix.
A(T ) is a non-singular square matrix only if N is an odd
number. Otherwise, A(T ) becomes over-determined, which
means for any given dstart and dend, there may not exist
polynomial whose c satisfies (4).

Moreover, the inverse A(T )−1 can be implemented with
zero overhead when N is an odd number. Burri et al. [3]
explore the structure of A(T ) and find that A(T )−1 can be
computed more efficiently through its Schur-Complement,
which only involves submatrix inverse. We take things one
step further. Actually, all entries of A(T )−1 are power
functions of T , thus Gaussian-Elimination is applied to get its
analytic form. Consequently, time-consuming operation is no
longer needed when A(T )−1 is computed online. To achieve
this, we pre-compute matrices E,F,G,U,V,W ∈ RS×S
offline, where S = (N + 1)/2:

Eij =


i−1∏
k=1

k if i = j,

0 if i 6= j.

, Fij =


j−1∏

k=j−i+1

k if i ≤ j,

0 if i > j.

Gij =

S+j−1∏
k=S−i+j+1

k, Uij =

1/
i−1∏
k=1

k if i = j,

0 if i 6= j.

W = G−1,V = −WFU.

Following mapping matrices are computed online:

A(T ) =

(
E 0(

FijT
j−i)

S×S

(
GijT

S−i+j)
S×S

)
,

A(T )−1 =

(
U 0(

VijT
j−i−S)

S×S

(
WijT

j−i−S)
S×S

)
.

Therefore, provided with an odd order, we show the practical
equivalence between the tuple (dstart,dend, T ) and (c, T )
in the sense of polynomial representation.

Consequently, we consider an M -piece trajectory P
parametrized by time allocation T = (T1, T2, · · · , TM )T as
well as boundary conditions D = (dT1 , d

T
2 , · · · , dTM+1)T of

all pieces, as shown in Fig. 2. The trajectory is defined by

P(t) := dT
mA(Tm)−Tβ(t−

m−1∑
i=1

Ti), (5)

where t lies in the m-th piece and dm = (dTm, d
T
m+1)T

is a boundary condition of the m-th piece. This definition
implicitly involves (N −1)/2 order continuity at boundaries
of each piece. Normally, some entries in D are fixed, such as
the position of waypoints [2]. We split D into two parts, the
fixed part DF which is viewed as constant, and the free part
DP which is to be optimized. Then, the whole trajectory can
be fully determined by P = Φ(DP ,T).

IV. SPATIAL-TEMPORAL TRAJECTORY OPTIMIZATION:
Unconstrained Case

In this section, we describe our method for jointly opti-
mizing spatial and temporal parameters of a trajectory, for
the Unconstrained Case, where no constraint is considered.

A. Optimization Objective

We use the time regularized quadratic cost over the whole
trajectory, as the objective of the optimization:

J(P) =

∫ ∑M
m=1 Tm

0

(
ρ+

Dmax∑
i=Dmin

wi

∥∥∥P(i)(t)
∥∥∥2)dt, (6)

where Dmin and Dmax are the lowest and the highest
order of derivative to be penalized respectively, wi is the
weight of the i-order derivative and ρ is the weight of time
regularization. The weight ρ adjusts the aggressiveness of the
trajectory [3], which allows total duration varies adaptively.
For now, we consider the unconstrained optimization:

min
DP ,T

J(DP ,T) (7)

where free boundary conditions and durations are decision
variables. J(DP ,T) := J(Φ(DP ,T)) is used for brevity.

The cost Jm for the m-th piece can be calculated as

Jm = ρTm+Tr
{
dT
mA(Tm)−TQ(Tm)A(Tm)−1dm

}
, (8)

in which Q(Tm) is a symmetric matrix [10] consisting of
high powers of Tm, and Tr {·} is trace operation which only
sums up diagonal costs produced in three dimensions. The
overall objective can be formulated as

J = ρ ‖T‖1 + Tr

{(
DF

DP

)T

CTH(T)C

(
DF

DP

)}
, (9)

H(T) =

M⊕
m=1

A(Tm)−TQ(Tm)A(Tm)−1, (10)

where H(T) is the direct sum of its M diagonal blocks,
and C is a permutation matrix. We make sure that the
setting for J is legal by assuming that the α-sublevel set of
J(DP ,T) for any finite α is bounded and only consists of
positive time allocation. For example, consecutive repeating
waypoints with identical boundary conditions fixed in DF

are not allowed.



Algorithm 1: Unconstrained Spatial-Temporal AM

Input: D0
P ,K ∈ Z+, δ > 0

Output: D∗P ,T
∗

begin
T0 ← arg minT J(D0

P ,T);
Jl ← J(D0

P ,T
0), k ← 0;

while k < K do
Dk+1
P ← arg minDP

J(DP ,T
k);

Tk+1 ← arg minT J(Dk+1
P ,T);

Jc ← J(Dk+1
P ,Tk+1);

if |Jl − Jc| < δ then
break

Jl ← Jc, k ← k + 1;

D∗P ← Dk
P ,T

∗ ← Tk;
return D∗P ,T

∗;

B. Unconstrained Trajectory Optimization

To optimize Eq. (9), we propose an AM-based algorithm,
as shown in Alg. 1. Initially, T0 is solved for the provided
D0
P . After that, the minimization of the objective function

is done through a two-phase process, in which only one of
DP and T is optimized while the other is fixed.

In the first phase, the sub-problem

D∗P (T) = arg min
DP

J(DP ,T) (11)

is solved for each Tk. We employ the unconstrained QP
formulation by Richter et al. [10], and briefly introduce it
here. The matrix R(T) = CTH(T)C is partitioned as

R(T) =

(
RFF (T) RFP (T)
RPF (T) RPP (T)

)
, (12)

then the solution is be obtained analytically through

D∗P (T) = −RPP (T)−1RFP (T)DF . (13)

For efficiency, we solve the sparse linear system

RPP (T)X = −RFP (T)DF (14)

through Sparse LU Factorization to get D∗P (T) since H(T)
and C are both sparse.

In the second phase, the sub-problem

T∗(DP ) = arg min
T

J(DP ,T) (15)

is solved for each Dk
P . In this phase, the scale of sub-problem

can be reduced into each piece. Due to our representation
of trajectory, once DP is fixed, the boundary conditions D
isolate each entry in T from the others. Therefore, Tm can
be optimized individually to get all entries of T∗(DP ). As
for the m-th piece, its cost Jm in (8) is indeed a rational
function of Tm. We show the structure of Jm and omit the
deduction for brevity:

Jm(T ) = ρT +
1

T pn

pd∑
i=0

αiT
i, (16)

where pn = 2Dmax−1 and pd = 2(Dmax−Dmin)+N−1
are orders of numerator and denominator, respectively. The
coefficient αi is determined by dm. Due to positiveness of
Jm(T ), we have Jm(T ) → +∞ as T → +∞ or T → 0+.
Therefore, the minimizer exists for

T ∗m(DP ) = arg min
T∈(0,+∞)

Jm(T ). (17)

To find all candidates, we compute the derivative of (16):

dJm(T )

dT
= ρ+

1

T 1+pn

pd∑
i=0

(i− pn)αiT
i. (18)

The minimum exists in solutions of dJm(T )/dT = 0, which
can be calculated through any modern univariate polynomial
real-roots solver [15]. In this paper, we utilize the Continued
Fraction method [16] to isolate all positive roots of any high
order (≥ 5) polynomial. The second phase is completed by
updating every entry T ∗m(DP ) in T∗(DP ).

C. Convergence Analysis

Alg. 1 is globally convergent. Moreover, it is faster than
conventional gradient descent used in time allocation refine-
ment, under no assumption on convexity.

Theorem 1. Consider the process described in Algorithm
1. Provided with any D0

P , the following inequality always
holds for the K-th iteration:

min
0≤k≤K

‖∇J(Dk
P ,T

k)‖2F ≤Mc
J(D0

P ,T
0)− Jc

K
,

where Mc and Jc are both constant, ‖·‖F is Frobenius norm.
It shows the process globally converges to a stationary point
with non-asymptotic sublinear rate O(1/

√
K).

Proof. See [17] for details.

Thm. 1 shows that our algorithm shares the same global
convergence rate as that of gradient descent with the best
step-size chosen in each iteration [18]. The best step-size
is practically unavailable. In contrast, our algorithm does
not involve any step-size choosing in its iterations. Sub-
problems in Eq. (11) and Eq. (15) both are solved exactly
and efficiently due to their algebraic convenience. Therefore,
Alg. 1 is faster than gradient-based methods in practice.

Another key advantage of our algorithm is its capability
of escaping from a local minimum in the time optimization.
Watching Eq. (9), despite J(DP ,T) is convex in DP as
proved in [17], it is a rational function which can have
multiple local minima in Tm. Therefore, a case may occur
where the initial time allocation falls into one of these
local minima instead of the global minimum in (0,+∞).
Under this situation, naturally, the global minimum in time
allocation cannot be attained by gradient-based methods.
However, with our method, all local minima are compared
directly. Thus, the situation can be avoided.

It is worth noting that, here the global optimality is not
guaranteed because our algorithm still exploits local structure
of the problem. Although convergence to a stationary point
is ensured, we argue that strict saddle points are theoretically



and numerically unstable for our first-order AM method [19].
Moreover, when the stationary point is a strict local mini-
mum, we show that the convergence rate is faster.

Theorem 2. Let (D̂P , T̂) denote any strict local minimum of
J(DP ,T) to which Alg. 1 converges. There exist Kc ∈ Z+

and γ ∈ R+, such that

J(DK
P ,T

K)−J∗ ≤ 1

γ(K −Kc) + (J(DKc

P ,TKc)− J∗)−1
,

for all K ≥ Kc, where J∗ = J(D̂P , T̂).

Proof. See [17] for details.

Thm. 2 shows that a faster convergence rate O(1/K) can
be attained for a strict local minimum than the general case
in Thm. 1. Note that it is possible to accelerate our method
to attain the optimal rate O(1/K2) of first-order methods
or use second-order methods to achieve better performance.
However, we still employ the first-order AM process because
of its simplicity in implementation and its good performance
when the trajectory is far from optimum.

The non-asymptotic property implies that the convergence
is bounded strictly by the rate, rather than approximated. This
property, along with the monotone decrease of the objective,
shows guaranteed progress in each iteration, while gradient-
based methods may try bad step-size thus making no/negative
progress.

V. SPATIAL-TEMPORAL TRAJECTORY OPTIMIZATION:
Constrained Case

In this section, we present our method to incorporate safety
and dynamical feasibility constraints into our optimization
process. To begin with, we introduce a computationally
efficient feasibility check method that applies to a wide range
of constraints. Then this method is used in a constrained
trajectory optimization process.

A. Computationally Efficient Feasibility Check

A piece of the trajectory is denoted by

p(t) = (p1(t), p2(t), p3(t))T. (19)

Constraint G(p
(i)
1 (t), p

(i)
2 (t), p

(i)
3 (t)) < 0 over [0, T ] should

be satisfied by the i-order derivative of the piece. It is
required that G has the form of a multivariate polynomial:

G(a, b, c) :=

dc∈R,ej∈N∑
e1+e2+e3≤dg

dc · ae1be2ce3 , (20)

where dg is the highest degree. Many kinds of constraints
can be expressed by G, such as the safe distance constraint
to keep away from an obstacle located at (0, 0, 0)T:

Gp(p1(t), p2(t), p3(t)) < 0,

Gp(a, b, c) := r2safe − (a2 + b2 + c2),

or maximum speed constraint:

Gv(ṗ1(t), ṗ2(t), ṗ3(t)) < 0,

Gv(a, b, c) := a2 + b2 + c2 − v2max.

Provided with any piece p(t), we check whether con-
straint G is fulfilled for all t ∈ [0, T ]. We define G(t) :=

G(p
(i)
1 (t), p

(i)
2 (t), p

(i)
3 (t)) which is indeed a polynomial of t.

The procedure is as follows: Firstly, check the sign of G(0)
and G(T ). Then, If both two endpoints satisfy the constraint,
we have to make sure the constraint is not violated inside the
interval (0, T ). Instead of locating all extrema of G(t) and
checking their values, we only need to check the existence of
root of G(t) = 0 in the interval. If the equation has any root
in (0, T ), then p(t) is infeasible. Fortunately, it is convenient
for a polynomial to achieve this leveraging Sturm’s Theory
[20]. Now that neither 0 nor T is the root of G(t) = 0, we
compute the Sturm sequence g0(t), g1(t), g2(t), · · · by

g0(t) = G(t),

g1(t) = Ġ(t), (21)
−gk+1(t) = Rem(gk−1(t), gk(t)),

where Rem(gk−1(t), gk(t)) is remainder in the Euclidean
division of gk−1(t) by gk(t) [20]. When gk(t) becomes con-
stant, we stop expanding this sequence. Let Vsign(τ) denote
the number of sign variations of Sturm sequence at t = τ ,
in which zero values should be ignored. Then the number of
distinct roots inside (0, T ) equals Vsign(0)−Vsign(T ). Here
the feasibility check is done for G(·, ·, ·) < 0. Sometimes,
constraint has the form G(·, ·, ·) ≤ 0. In practice, it can
be equally handled by checking G(·, ·, ·) < ε, where ε is
a small positive real number. What’s more, non-polynomial
constraint can also be efficiently checked through its Taylor
series within acceptable approximation error.

In conclusion, our method converts the feasibility check
into the root existence check for polynomial, without com-
puting the root itself. Our method is straightforward and in-
volves no redundant operations, in comparison with methods
used in [21] and [3].

B. Constrained Trajectory Optimization

For the Constrained Case, we enforce constraints on
norms of derivatives of the trajectory:

min
DP ,T

J(DP ,T) (22)

s.t. ‖P(n)(t)‖ ≤ σn, n = 1, · · · , N (23)
P = Φ(DP ,T) (24)

Generally, the constraint does not have to be like (23).
If only a constraint is representable in (20) and its fea-
sible solution can be constructed, then it can be handled
in our optimization. With a slight abuse of notation, we
use G(DP ,T) ≤ 0 to denote that Φ(DP ,T) is feasible.
G(dm, Tm) ≤ 0 is used to denote that the m-th piece is
feasible. We say G(dm, Tm) ≤ 0 is tight by meaning that,
at least one constraint is tight at a t on the m-th piece.

The constrained version of our method is shown in Alg. 2.
An initial feasible trajectory P0 can be constructed from
conservative time allocation. The spatial-temporal parameters
(D0

P ,T
0) are then recovered from the trajectory, which is

used in the consequent two-phase constrained minimization.
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Fig. 3. Illustration for the two phases in constrained optimization.

In the first phase, Tk is fixed. An illustration is provided in
Fig. 3(a), where the unconstrained minimum D̃P is obtained
as is done in Alg. 1. The trajectory Φ(D̃P ,T

k) may not be
feasible. Since the feasibility of (Dk

P ,T
k) is ensured in last

iteration, a line search is done as

min
λ∈[0,1]

J(D(λ),Tk), s.t. G(D(λ),Tk) ≤ 0, (25)

where D(λ) is the convex combination of D̃P and Dk
P .

Convexity of J(·,Tk) implies the convexity of J(D(·),Tk).
Moreover, λ = 0 is a feasible solution, while λ = 1 is the
unconstrained global minimum. We simply take λ∗ = 1 if
it is feasible. If not, a bisection procedure is done on the
interval [0, 1]. In this procedure, the feasibility check method
described in Sec. V-A is employed to shrink the interval.
The procedure stops at an acceptable interval length, with
λ∗ taking the feasible lower bound. After that, we update
Dk+1
P by D(λ∗). Meanwhile, a set ∆ is maintained to store

indices of tightened pieces.
In the second phase, Dk+1

P is fixed. An illustration is given
in Fig. 3(b). Each entry in Tk is updated by solving

min
T∈(0,+∞)

Jm(T ), s.t. G(dk+1
m , T ) ≤ 0. (26)

As stated in Alg. 1, all extrema of Jm(T ) can be computed
exactly. However, the constrained minimum may not exist in
them. It can be any T̃ at which some constraints are exactly
tightened. When infeasible extremum exists, T̃ must be lo-
cated between any infeasible extremum and the neighboring
feasible one or T km. A bisection procedure with feasibility
check suffices to compute T̃ . After that, we compare Jm(T )
on those feasible extrema together with T̃ .

When all iterations are done, the set ∆ indicates pieces
stuck by active constraints. If ∆ is not empty, we recur-
sively apply Alg. 2 on split sub-trajectories, while boundary
conditions of pieces indexed by ∆ should be totally fixed.
Finally, P∗ is updated and returned. The recursive process
is essential, since it ensures that pieces with no room for

Algorithm 2: Constrained Spatial-Temporal AM

Input: Feasible P0, K ∈ Z+, δ > 0
Output: P∗

begin
(D0

P ,T
0)← Φ−1(P0);

Jl ← J(D0
P ,T

0);
k ← 0,∆← {};
while k < K do

D̃P ← arg minDP
J(DP ,T

k);
D(λ) := λD̃P + (1− λ)Dk

P ;
λ∗ ← arg minλ∈[0,1] J(D(λ),Tk)

s.t. G(D(λ),Tk) ≤ 0;
Dk+1
P = D(λ∗);

Recover T km from Tk and dk+1
m from Dk+1

P ;
for m← 1 to M do

if G(dk+1
m , T km) ≤ 0 is tight then

∆← ∆ ∪ {m};
else

∆← ∆ \ {m};

for m← 1 to M do
Construct Jm(T ) from dk+1

m ;
T k+1
m ← arg minT∈(0,+∞) Jm(T )

s.t. G(dk+1
m , T ) ≤ 0;

Construct Tk+1 from T k+1
m ;

Jc ← J(Dk+1
P ,Tk+1);

if |Jl − Jc| < δ then
break

Jl ← Jc, k ← k + 1;

Pk ← Φ(Dk
P ,T

k);
if ∆ is not empty then

Split Pk by removing pieces in ∆;
Call this Algorithm on sub-trajectories;
Update sub-parts of Pk;

P∗ ← Pk;
return P∗;

optimization do not prevent other pieces to decrease the
objective. Alg. 2 is globally convergent to a solution set
where constraints are tight or local minimum is attained,
which can be checked by Zangwill’s theorem [22].

VI. RESULTS

A. Comparison of Feasibility Check Methods

Firstly, we compare our feasibility check method with
Mueller’s recursive bound check [21], Burri’s analytical
extrema check [3], as well as the widely used sampling-
based check. In each case, 1000 trajectory pieces are ran-
domly generated along with velocity constraints to estimate
average time consumption. As is shown in Fig. 4, our
method outperforms all other methods in computation speed
because of its resolution independence and scalability with
higher polynomial orders. The recursive check and sampling-
based check may have false positives under rough temporal



 

Fig. 4. Computation time for feasibility check of speed constraint, under
different temporal resolution (upper) and different polynomial order (lower).

UnconstrainedUnconstrainedUnconstrained ConstrainedConstrainedConstrainedUnconstrained Constrained

Fig. 5. Process of unconstrained/constrained minimization with the same
initial guess. Dashed line indicates optimal trajectory in respective case.
Constraint on maximum acceleration rate is set to 2.5m/s2. The optimized
total durations are 10.37s (left) and 23.74s (right), respectively.

resolution. The efficiency of analytical check and recursive
check deteriorates with higher polynomial orders, because
both of them involve roots finding which has closed-form
solution only for low order (≤ 4). In comparison, our method
is able to do a solid feasibility check within 1µs.

B. Benchmark for Trajectory Optimization Methods

Secondly, we conduct the benchmark comparison of our
trajectory optimization method against state-of-the-art meth-
ods. The benchmark is done as follows: We generate a
sequence of waypoints by random walk, of which the step
is uniformly distributed over [−3.0m, 8.0m] for each axis.
The maximum speed and acceleration rates are set to 5.0m/s
and 3.5m/s2, respectively. The derivatives on the first and
the last waypoints are set to zero. The objective function is
set as ρ = 512.0, Dmax = Dmin = 3, w3 = 1.0 and N = 5.
For a given number of pieces, each method is applied to 1000
sequences of waypoints. The optimization process stops until
the relative decrease of objective is less than 0.001. The cost
is then normalized by the cost of Alg. 1. An illustration in
Fig. 5 shows that the minimized cost in unconstrained case
can be used as a baseline. All comparisons are conducted on
an Intel Core i7-8700 CPU under Linux environment.

We compare our method with Richter’s method [2] and
Mellinger’s method [1]. Richter’s method optimizes tra-
jectory derivatives on waypoints through an unconstrained
QP while time allocation is adjusted by gradient descent
and scaling. To use it in constrained case, we soften the
constraints by penalizing them in objective function as
suggested in [3] and directly optimize the time allocation
through NLopt [23]. Mellinger’s method optimizes the time
allocation with total duration fixed first, using backtracking
gradient descent (BGD). Then dynamical feasibility is en-
sured through time scaling, of which the ratio is properly
calculated using Liu’s method [6].

Proposed Constrained

BGD + Time Scaling

QP + NLOPT

(a) Trajectories in a random map.

 

(b) Benchmark in computation time (solid) and normalized cost (dotted).

Fig. 6. Comparisons of trajectory optimization methods. In Fig. 6(a),
trajectories are generated in a random map with fixed waypoints. Lap
times for blue, green and red trajectories are 46.54s, 62.07s and 66.08s
respectively. In Fig. 6(b), the performance of different methods are provided.
Dashed lines indicate standard deviation.

As is shown in Fig. 6(b), our Alg. 2 has the fastest
speed and the lowest cost when constraints are taken into
consideration. Our method is capable of computing trajec-
tories with 60 pieces within 5ms, i.e., 150Hz at least.
However, both benchmarked methods fail to accomplish real-
time computing for trajectories with more pieces. Moreover,
our Alg. 2 always obtains better trajectories in terms of
the cost function, while benchmarked methods cannot fully
utilize the capability of system dynamics.

C. Aggressive Flight Experiment

To validate the performance of our method in real-world
applications, we deploy it on a self-developed compact
quadrotor platform. The proposed method is implemented
with C++ 11, and all tasks are conducted on an onboard
computer with Intel Core i7-8550U CPU. The pose of
our quadrotor is obtained through a robust visual-inertial
state estimator [24]. Besides, no external positioning system
nor offboard computing is used. A geometric controller is
employed for trajectory tracking control [25].

The experiment is conducted in a complex indoor scene,
which is shown in Fig. 1. A globally consistent map of the
scene is pre-built, from which some compulsory waypoints
are selected offline. At the beginning of each flight, an
optimal path is produced by RRT* [26], which starts from
an initial position and passes all compulsory waypoints.
Our method generates an optimal trajectory online based
on this path within milliseconds. Immediately, the quadrotor
starts its aggressive flight. Different from parameters used in
benchmark, we set vmax = 4.0m/s, amax = 4.5m/s2 and
ρ = 1024.0. The aggressive flight along with the generated



(a) Aggressive flight experiment.

(b) Trajectory of the experiment.

(c) Velocity and acceleration against time.

Fig. 7. Details of our aggressive indoor flight. Fig. 7(a) shows some
snapshots of our experiment, where the speed is up to 4.0m/s. In Fig. 7(b),
the map along with compulsory waypoints is constructed offline. The
optimal trajectory is online computed and applied. In Fig. 7(c), veloc-
ity/acceleration profiles are provided. The trajectory fully employs capability
of the quadrotor in terms of maximum velocity/acceleration rate.

trajectory is shown in Fig. 7. More details are included in
the attached video.

VII. CONCLUSION

In this paper, we propose an efficient trajectory generation
method for quadrotor aggressive flight, which has guaranteed
convergence and feasibility. Benchmarks for components in
our method show its superior computation speed, trajectory
quality as well as scalability against state-of-the-art methods.
Aggressive flight experiments in limited space with dense
obstacles validate the practical performance of our method.
Currently, in the proposed framework, positions of way-
points are fixed during optimization. However, the method
is underlying compatible with waypoints as part of decision
variables. Our feasibility checker also supports various safety
constraints. In the future, we plan to apply and improve our
method in time-critical large-scale motion planning scenarios
where complex spatial constraints exist.
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