Abstract:
Spatiotemporal data are very common in many applications, such as manufacturing systems and transportation systems. Given the intrinsic complex spatial and temporal corre...Show MoreMetadata
Abstract:
Spatiotemporal data are very common in many applications, such as manufacturing systems and transportation systems. Given the intrinsic complex spatial and temporal correlations of such data, short-term and long-term prediction for spatiotemporal data is often very challenging. Most of the traditional statistical models fail to preserve innate features in data alongside their complex correlations. In this paper, we focus on a tensor-based prediction method and propose several practical techniques to improve both long-term and short-term prediction accuracy. For long-term prediction, we propose the “tensor decomposition + 2-Dimensional Auto-Regressive Moving Average (2D-ARMA)” model, and an effective way to update prediction in real-time; For short-term prediction, we propose to conduct tensor completion based on tensor clustering to avoid oversimplification and ensure accuracy. A case study based on the metro passenger flow data is conducted to demonstrate the improved performance.
Published in: IEEE Robotics and Automation Letters ( Volume: 5, Issue: 4, October 2020)