arXiv:2003.01851v2 [cs.RO] 3 Jul 2020

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020 1

A Distributed Pipeline for
Scalable, Deconflicted Formation Flying

Parker C. Lusk, Xiaoyi Cai, Samir Wadhwania, Aleix Paris, Kaveh Fathian, Jonathan P. How

Abstract—Reliance on external localization infrastructure and
centralized coordination are main limiting factors for formation
flying of vehicles in large numbers and in unprepared environ-
ments. While solutions using onboard localization address the de-
pendency on external infrastructure, the associated coordination
strategies typically lack collision avoidance and scalability. To
address these shortcomings, we present a unified pipeline with
onboard localization and a distributed, collision-free formation
control strategy that scales to a large number of vehicles.
Since distributed collision avoidance strategies are known to
result in gridlock, we also present a distributed task assignment
solution to deconflict vehicles. We experimentally validate our
pipeline in simulation and hardware. The results show that
our approach for solving the optimization problem associated
with formation control gives solutions within seconds in cases
where general purpose solvers fail due to high complexity. In
addition, our lightweight assignment strategy leads to successful
and quicker formation convergence in 96-100% of all trials,
whereas indefinite gridlocks occur without it for 33-50 % of trials.
By enabling large-scale, deconflicted coordination, this pipeline
should help pave the way for anytime, anywhere deployment of
aerial swarms.

Index Terms—Swarms; Distributed Robot Systems; Multi-
Robot Systems

SUPPLEMENTARY MATERIAL

Video and open-source implementation available at
https://github.com/mit-acl/aclswarm.

I. INTRODUCTION

WO main challenges in the deployment of large-scale
T swarms are the localization and coordination of vehicles.
Localization methods that rely on external infrastructure (e.g.,
GPS) are prone to systematic errors (e.g., multipath effect) and
may not always be available. Coordination strategies that are
centralized can deconflict motion plans to prevent collisions
and gridlock, but introduce a single point of failure and
are difficult to scale in swarm size due to communication
bandwidth limitations.

This paper presents a unified formation flying pipeline
for unmanned aerial vehicles (UAVs). Our pipeline uses on-
board sensors for localization, which eliminate the need for

Manuscript received: February 24, 2020; Revised: May 20, 2020; Accepted:
June 1, 2020

This paper was recommended for publication by N.Y. Chong upon evalua-
tion of the Associate Editor and Reviewers’ comments. Research supported in
part by NASA Convergent Aeronautics Solutions project Design Environment
for Novel Vertical Lift Vehicles (DELIVER), ARL DCIST under Cooperative
Agreement Number WO11NF-17-2-0181, and Boeing Research & Technology.
Computation support provided by Amazon Web Services.

P. C. Lusk, X. Cai, S. Wadhwania, A. Paris, K. Fathian and J. P. How are
with the Department of Aeronautics and Astronautics, Massachusetts Institute
of Technology. {plusk, xyc, samirw, aleix, kavehf, jhow} @mit.edu.

Digital Object Identifier (DOI): see top of this page.

Fig. 1. Six multirotors in a slanted plane formation. Vehicles communicate
with each other, make distributed decisions onboard, and use VIO for
localization.

external positioning systems, and distributed techniques for
coordination, which enable each vehicle to make decisions
independently while communicating their state to a subset of
the team. For localization, we use an off-the-shelf commercial
visual inertial odometry (VIO) package [1] that fuses inertial
measurement unit (IMU) and downward-facing monocular
camera measurements to estimate changes in the vehicle pose.
For coordination, we present distributed formation control and
task assignment strategies that run onboard the vehicles, do not
rely on a common reference frame, and use vehicle-to-vehicle
communication. Key features of our formation control strategy
include scalability to a large number of vehicles and robustness
to disturbances. The latter is crucial for reaching the desired
formations with sensing imperfections. Our task assignment
strategy uses an auction-based algorithm to guarantee conflict-
free assignments. This algorithm can deconflict vehicle grid-
locks resulting from distributed collision avoidance (type 3
deadlock [2]) and is well-suited for vehicles with limited
computational capability and low-bandwidth communication.

A. Contributions

This research extends our previous work on UAV forma-
tions [3] and presents a unified pipeline consisting of onboard
localization and distributed coordination. The three main
contributions of this work are:

1) scalable formulation of control design suitable for on-

board sensing without a common reference frame;

2) algorithms for deconfliction via distributed task assign-

ment of vehicles to desired formation points;

3) simulation- and hardware-ready open-source pipeline.
Our pipeline is tested in hardware with six multirotors (see
Fig. 1), and to our knowledge is the first demonstration of
formation flying that does not rely on external sensing, fiducial
markers for localization, a common reference frame, or a
centralized base station for coordination. The only require-
ments for the presented pipeline are that the vehicles can

https://github.com/mit-acl/aclswarm

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020

‘@
* s

(a) full alignment

¥

(b) orientation alignment (c) no alignment

Fig. 2. Required alignment of UAV frames in existing swarm strategies: (a)
the most restrictive case requiring a common reference frame, i.e., orientation
and origin of the frames must be aligned; (b) only the orientation of the frames
must be aligned; (c) no alignment restrictions (this work).

communicate, can find the transformation between their VIO
start frames, and the environment is sufficiently textured—a
standard assumption for VIO systems. As such, this framework
paves the way for future, real-world deployments of aerial ve-
hicle swarms in large numbers and without requiring external
localization infrastructure.

B. Related Work

Existing aerial swarms can be grouped based on the
coordination (centralized vs. distributed) and localization (ex-
ternal vs. onboard) methods used. It is further crucial to
distinguish these methods based on the level of alignment
required for the vehicle coordinate frames; see Fig. 2.

Works with centralized coordination and external localiza-
tion include [4]-[6], which are based on lightweight UAVs
with limited onboard computational capability and therefore
rely on an external motion capture system and a base station.
Works with distributed coordination and external localization
include [7], [8], where robots execute distributed controls
based on external localization by motion capture and ultrasonic
beacons, respectively. Works with centralized coordination and
onboard localization include [9], [10], which use a ground
station for task assignment among vehicles. In [11], formation
flying based on VIO is demonstrated, where motion planning
and assignment are run on a base station to ensure collision-
free trajectories. The coordination strategies used in aforemen-
tioned works require a common reference frame (Fig. 2a).

Despite the large body of work on formation control [12],
and the variety of onboard sensing solutions for localization
(e.g., VIO [13]), few frameworks demonstrated formation
flying with distributed coordination and onboard localiza-
tion. A key reason is reliance of many distributed control
and assignment algorithms on aligned frames (Fig. 2a, 2b),
which require computation-expensive and/or communication-
intensive synchronization/consensus steps for frame alignment.
Equally important, dependence on alignment in existing meth-
ods [2], [14]-[16] diminishes robustness to inherent noise and
unobservable errors that cannot be corrected (e.g., disparities
between the actual and estimated body frame orientation
caused by VIO drift). Leveraging coordination methods that
are robust to misaligned frames is hence crucial and a focus
of this work.

Examples of other pipelines with distributed coordination
and onboard localization include [17], [18]. Both works
demonstrated formation flying on three UAVs, required in-
formation from an external motion capture system due to
hardware limitations, did not incorporate collision avoidance,

K K
i v
11 [T i 1 T

A
t
3
¥

I [———

TN

| =+ 0

Pose updatcs|—— Task assignment | Formation
control

Localization Coordination

Modules of our formation flying pipeline. The desired formation

Desired
formation

T AVN

Fig. 3.
is used to design required gains for formation control. The localization
framework provides self and relative pose measurements. The coordination
framework assigns each UAV to a formation point and plans its motion to
attain formation flying.

and required frame alignment. Note that while [17], [18] can
achieve formations with arbitrary headings as illustrated in
Fig. 2c, knowledge of relative orientations is still required;
therefore, they belong to the category of Fig. 2b.

II. SYSTEM OVERVIEW

A schematic representation of our pipeline is depicted
in Fig. 3 for a swarm of n multirotor UAVs. The key
components of this pipeline include modules for localization
and coordination of the vehicles, which require exchanging
information between a subset of UAV peers referred to as
neighbors. The main goal of the pipeline is formation flying.
We assume a desired formation shape is specified by an
operator. This desired formation is used to design the required
gains for formation control and both are given as input to the
vehicles.

With onboard localization, the pose of a UAV with respect
to its own start frame, which is fixed at its initial pose,
is estimated using VIO. These self pose estimates provide
feedback to the low-level controller, which stabilizes the UAV
and tracks a reference velocity specified by the high-level
formation control strategy. Through inter-vehicle pose updates,
a UAV acquires relative pose estimates of its neighbors by
transforming their poses into its own start frame. This process
requires knowledge of the transformations that relate the
UAVs’ start frames. Several methods can be used to obtain
these transformations. For instance, if two vehicles have a
common field of view, once the correspondence among the 3D
landmarks reconstructed by VIO is determined, the relative
pose between the UAVs’ start frames can be found using
Arun’s method [19]. For simplicity, the transformations are
obtained in our experiments by initializing the UAVs at pre-
specified locations. Note that the UAVs do not require the
transformations to non-neighboring vehicles.

The coordination framework handles formation flying of
the UAV swarm. This framework consists of the task assign-
ment and formation control modules, as depicted in Fig. 3.
Formation control is concerned with finding collision-free
trajectories that bring the UAVs to a desired formation. A
desired formation is defined by a graph G with vertices
located at 3D points pi,...,p, and edges connecting the
vertices to indicate neighbors. Graph G is used in designing
the formation control and is also broadcasted to the UAVs
from the base station. The vehicles aim to achieve the overall
geometric shape specified by the points p; (rather than the
exact location and orientation of this point configuration in

LUSK et al.: A DISTRIBUTED PIPELINE FOR SCALABLE, DECONFLICTED FORMATION FLYING 3

the space). Throughout this paper, we assume that G is
undirected, connected, and universally rigid [20]. Informally,
rigidity implies that G cannot be deformed without violating
the desired distances between formation points.

The goal of task assignment is to uniquely allocate each
UAV to a point in the desired formation. Each UAV i is
assigned to a formation point p; using a one-to-one assignment
map o with o(i) = j (see Section IV). The set of neighbors
of UAV 4, denoted by N;, is defined as the set of UAVs j such
that p(; is connected to p,(;) by an edge in G. UAV i and its
neighbors communicate to attain relative pose measurements
using the localization framework. We emphasize that N
is defined according to the current assignment map o and
formation graph G, and that these neighbors are used for both
formation control and communication. As tasks are reassigned,
the set of neighbors, and therefore communication links, may
change.

III. DISTRIBUTED FORMATION CONTROL

To achieve a given desired formation, we require a dis-
tributed strategy in which the UAVs execute their motions
independently and are robust to misalignments of UAV frames.
To make the paper self-contained, we first review a candidate
strategy and then present a solution to address the scalability
issue that arises for large-scale formations.

A. Overview of Formation Control

The framework for achieving a formation using only relative
and local position measurements is based on [21], [22] and our
previous work [3], [23]. For each UAV, the key steps in this
strategy can be summarized as follows.

1) The UAV calculates the position vectors from itself to
each of its neighbors in its own body frame.

2) Each vector is scaled and rotated about the z-axis of the
UAV’s body frame. The amount of scaling and rotation
is pre-specified and depends on the desired formation.

3) These scaled and rotated vectors are then summed to
obtain a resultant velocity vector command.

We emphasize that the above strategy does not rely on
a common reference frame (Fig. 2a) and the scaling and
rotation are performed in each respective UAV body frame.
To formulate and analyze this framework mathematically,
however, we consider a common reference frame, in which
we express the position of UAV i by ¢; € R? and the vector
connecting UAV ¢ to its neighbor j € N; by ¢; — ¢;. The
scaling and rotation of this vector is expressed as A;;(q; —¢;),
where A;; € A(3) is called a gain matrix and belongs to the
set of scaled rotation matrices along the z-axis denoted by

A(3)d:”{[§_é)8} :a,b,cER}.)
Consequently, the motion of UAV i can be expressed as
Gi= Y Aiylg—a), 2
JEN;

where ¢; is the velocity vector that encapsulates the desired
speed and direction of motion for the vehicle. While we

consider single-integrator dynamics for simplicity of motion
planning, higher-order dynamics can be utilized [23].

In (2), we assume that the z-axes of UAVs’ body frames
(and the reference frame used for the analysis) are aligned.
In practice, the direction of gravity can be used to align
these axes, and, as we will discuss in Section III-C, small
misalignments caused by measurement errors or acceleration
effects do not affect the convergence. Note that we do not
require that the z-y axes be aligned; the UAVs can have ar-
bitrary yaw orientations (Fig. 2¢). This point distinguishes (2)
from the consensus-based [24], bearing-based [25], or similar
distributed control [26], in which convergence guarantees rely
on orientation alignment or consensus of the UAV body frames
(Fig. 2b).

To analyze the trajectory of the swarm, we define

a =22, A Az Ain
def | G2 def Ao =30 Agy - Azn
q = [: 9 A = . ! . . 9 (3)
an Ana An2 e =20 Ang

where ¢ is the aggregate vector of UAV positions and A
consists of gain matrices. Here, if UAVs ¢ and j are not
neighbors, the corresponding A;; is defined as a zero matrix.
Based on (2) and by using the notation in (3), swarm motion
can be expressed by ¢ = A ¢, which determines the trajectories
that the UAVs traverse.
Given a desired formation expressed via the set of points
pi = [4, yi, 1] € R3, we define
Py pzij pz e” e¥ e;

def z e’ e¥ e 3nx6
N E 117.2 P.Q P2 ' c R n X , (4)

Py pY Py e eV e

where p¥ = w4, i, 0], P! = [—yi, 23, 0],
prE00,0, 2], e =[1,0,0T, e =10,1,0T, and
e* = 0,0,1]T. Convergence to the desired shape is
guaranteed if AN = 0 (i.e., columns of N are null vectors of
A) and if all remaining eigenvalues of A not associated with
N are strictly negative. For such an A to exist, each UAV
should have a sufficient number of neighbors. Specifically, if
vertices and edges represent the UAVs and their neighboring
relations in the formation graph G, A exists if G is universally
rigid (see [22, Thm. 3.2]).

Our approach consists of design and execution phases. In
the design phase, a gain matrix A as in (3) is computed offline
based on the specification of a formation graph G and serves
as an input to the distributed algorithms that run onboard
the UAVs. The execution phase is entirely distributed, where
the UAVs plan their trajectories independently using relative
translation measurements to their neighboring UAVs.

B. Scalable Gain Design

Given a desired formation, the gain matrix A that meets the
aforementioned constraints can be computed from

minimize Apax (QTA Q)
Aes;,
subjectto AN =0
Aij € A(3) Vi ®)
Aij =0 Vi Vign;

tr(A) = constant

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020

where Anx denotes the largest eigenvalue of a matrix, Q) €
R37%(37=6) i5 the orthogonal complement of N (i.e., N'Q =
0), which is found from the singular value decomposition of
N, and S;, is the space of symmetric negative semidefinite
matrices of dimension 3n. The objective of (5) is to make
the nonzero eigenvalues of A as negative as possible (Q " A Q
is the restriction of A on the subspace () and eliminates the
zero eigenvalues associated with V). By doing so, stability
and robustness of the formation to noise, measurement errors,
and disturbances is increased. We note that the last constraint
in (5) sets the trace of A to a constant value to ensure that the
problem is bounded (without this constraint, if A € S, is a
solution, so is ¢ A for any ¢ > 0 with a better objective value).
The universal rigidity assumption on the formation graph [22,
Thm. 3.2] is sufficient to ensure that (5) is feasible and that all
remaining eigenvalues of A not associated with N are strictly
negative.

The formulation (5) was presented in our earlier work [3]
and can be solved relatively quickly using existing SDP
solvers for small number of vehicles. However, for large-scale
problems (e.g., more than 50 UAVs) it becomes challenging, or
even impossible, to solve. We address this issue by exploiting
the problem structure to derive a solution based on the
alternating direction method of multipliers (ADMM).

We observe from (1) that A;; € A(3) has a block diagonal
structure, which can be expressed by A;; = blkdiag(D;;, ¢;j),
where the 2 x 2 matrix D;; consists of the first two rows and
columns, and the scalar ¢;; is the entry in the last row and
column of A;;. Due to this structure, we conclude from (2)
that vehicle trajectories along the z-y and z components are
decoupled and depend only on D;; and ¢;;, respectively. This
observation allows us to split (5) into two subproblems with
lower dimensions, leading to reduced computational effort. By

defining
=22, c1 c12 Cin 21
e >A“ﬂ?ﬂ7@
ent Cnz e — ZJ Cnj Zn 1

which correspond to the z components of A in (3) and N in
(4), the problem of finding c;; is formulated as

minimize Apax (RTB R)
BeS,
subjectto BM =0 (7)
cij =0 Vi Vign,

tr(B) = constant

where R € R™*("=2) is the orthogonal complement of M €
R™*2, The optimization problem for finding D;; is formulated
similarly to (7), with an additional constraint that the diagonal
entries of D;; must be equal and the off-diagonal entries must
have the same absolute value with different signs. With this
point in mind, we henceforth focus our attention on (7). The
following proposition brings (7) into the standard form suitable
for applying ADMM.

Proposition 1. Problem (7) can be formulated as
minimize (C, X)
Xest, ., 8)
subject to A(X) =10

where (C, X) = tr(CTX), C = [L0] with T as the identity
matrix of size n — 2, and b € R™. The operator A(X)
represents a set of linear constraints on X and enforces it
to have the block diagonal structure X = ['YII é} where
v>0and Z € 8272. The solution of (7) is obtained from X

as B=-MZMT.

Proposition 1 is proved in the appendix of [27]. We now
leverage the ADMM technique in [28] to solve (8). From [28],
the augmented Lagrangian associated with (8) is

def].
L= =) HA W) +5-C X)+ o A (W) +5-C, ©)

where S € S3,,_, and y are dual variables associated with
constraints X € S5, _, and A(X) = b, respectively, A* is the
adjoint of A, and p > 0 is a penalty parameter that balances
the standard Lagrangian and the augmented term. ADMM
then proceeds by alternatively optimizing each primal and
dual variable with others fixed, which results in a closed-form
solution for each subproblem. Denoting by the superscript k
the iteration number, the ADMM iterative update procedure is
given as

y* T = (AA") T (AC = SF — pXP) + b)),
R A R

Sk =P (Wk+1) 7

Xk+1 _ i (Sk+1 o Wk+1))

(10)

In (10), the operator P,sq denotes the projection onto the
positive semidefinite cone ST, and is computed via eigende-
composition (see [28] for details). ADMM typically converges
in a reasonable time to a solution with acceptable accuracy.
The number of ADMM iterations required for convergence
depends on the desired accuracy as well as the formation
graph (e.g., when the formation graph is complete, it is
straightforward to show that ADMM converges to the optimal
solution in a single iteration). The time comparisons between
an existing SDP solver for (5) and the presented ADMM
method (10) are given in Section V.

C. Robustness, Collision Avoidance, and Formation Size

Gain matrices are recomputed only when a new desired
formation is specified. During execution, vehicles use the gains
and the relative position of their neighbors to compute the
velocity vector u; in (2) at each time instance. Having u;
computed, the vehicle’s low-level controller is tasked with
tracking the direction and speed specified by this vector.

One can show that 1) any positive scaling; and 2) any
rotation less than 90 degrees of the velocity vector wu; does
not void the convergence guarantees of the formation control
strategy (see [3, Thm. 2]). These key properties indicate
extreme robustness to errors and disturbances. For example,
discrepancies between the actual and desired velocity of a
vehicle caused by imperfect tracking, unmodeled dynamics,
or small misalignments in z-axes of UAV body frames can
be modeled as a positive scaling and small rotation of the
nominal u;, for which convergence to the desired formation
is unaffected. The aforementioned properties can be further

LUSK et al.: A DISTRIBUTED PIPELINE FOR SCALABLE, DECONFLICTED FORMATION FLYING 5

used for collision avoidance, where velocity vectors that lead
vehicles to close proximity are modified to prevent collisions.
More specifically, (2) can be modified as

u; = ¢; R; Z Aij (a5 — ai),
JEN;
where the rotation matrix R;, which is limited to 90 degrees,
is chosen to rotate any velocity vector that brings two vehicles
closer than a specified distance. If there is no feasible direction
of motion within this range, the scalar c¢;, which is normally
set to one, is set to zero to stop the vehicle.

The collision avoidance strategy (11) runs onboard, but
comes at the cost of losing convergence guarantees since vehi-
cles can become gridlocked due to the unavailability of motion
directions (allowing ¢; = 0 in (11) violates the aforementioned
property in which ¢; > 0 is required to ensure convergence).
Optimal assignment of vehicles to target formation points
guarantees non-intersecting lines from their current positions
to their assigned points (see [14, Thm. 3.1]). Since the vehicle
body frames can be nonaligned and the control is distributed,
vehicles are not expected to move perfectly in a straight line
under our control strategy. However, assignment can still help
deconflict the swarm by increasing the availability of motion
directions. The impact of assignment on resolving gridlocks
is shown in Section V.

Finally, note that (11) leads to achieving the desired for-
mation shape, but the formation size is not regulated and
depends on the initial position of the vehicles. To control
the size, (11) can be augmented to contract (or expand) the
formation when the vehicles are farther (or closer) than the
desired distance. This augmented strategy, and its theoretical
convergence guarantees, is discussed in our earlier work for
2D formations (see (74) in [23]). Since the extension to 3D
formations considered in this work is straightforward, we omit
this discussion for brevity.

Y

IV. DISTRIBUTED TASK ASSIGNMENT

The goal of task assignment is to uniquely allocate each
UAV to a point in the desired formation. A natural objective for
this task is to minimize the overall distance from the UAVs to
their assignments in the desired formation. We are interested in
the final 3D geometric shape rather than the exact location and
yaw of the end formation. To this effect, we allow a rotation
R around the z-axis, and translation ¢ of the desired formation
coordinates that minimize the overall distance from the UAVs
to the rotated and translated desired formation. More precisely,
our objective is to find the assignment map o that solves

minimize
RER., teR®
o€S,

Z lai — (Rpoy +)17, (12)
i=1
where ¢; denotes the UAV positions, S,, is the symmetric group
of all permutations from the set {1,...,n} to itself, and R,
is the set of rotation matrices around the z-axis. Recall that
the z-axes of UAV body frames are assumed to be aligned, as
per Section III.

Three challenges arise in finding a distributed solution
for (12). First, the objective of (12) includes the positions

B

@ UAV assigned to p;
0 Formation point p;

— Graph edges

Fig. 4. Illustrative 2D alignment example with four vehicles from UAV 1’s
perspective. UAV 4 is not shown because it does not communicate with
UAV 1. (left) New formation graph, UAV 1 and its neighbors before the
alignment. (right) Aligned formation based on UAV 1, its neighbors and
their corresponding formation points. The formation point associated to UAV
4 is faded to indicate that UAV 1 does not have information about it.

of all UAVs, whereas each UAV only obtains the positions
of its neighbors. Second, the UAV body frames are not
aligned and the UAVs only know the transformations between
their body frames and their neighbors. Lastly, (12) is a non-
convex mixed integer program, for which finding the global
optimizer becomes intractable for large n. As computational
efficiency and scalability are of utmost concern for UAV
platforms, we settle with obtaining a suboptimal answer via
a coordinate descent approach and an auction assignment
strategy. This approach is inspired by [29], which in contrast
uses a centralized Hungarian algorithm for assignment. Every
iteration of our algorithm consists of an alignment stage and
an assignment stage, where the assignment is fixed as we solve
for an alignment, and vice versa.

A. Alignment
Given an assignment o* (e.g., identity assignment o* (i) = i
for every new formation, or prior assignment computed for
the same formation), UAV ¢ solves a distributed formulation
of (12) given by
minimize

Linimize Z lg; — (Ri poe () +)17,

JEN!

13)

where N/ = A U {i}, and positions ¢; are in UAV i’s
start frame. In (13), UAV ¢ aims to align the desired for-
mation to minimize the distance to its own and neighbors’
positions based on the given assignment o*. Fig. 4 gives an
illustrative example of this stage. Problem (13) is the well-
known point cloud alignment problem, for which the optimal
solution (R},t}) is obtained from Arun’s method [19] using
the projection of ¢; and p,-(;) on the x-y plane for the
rotation.

B. Assignment

In this stage, the UAVs aim to collaboratively find an
assignment based on the results obtained from their alignment
stage. The assignment problem is formulated as

(14)

n
mic?éggze Z; lgi — (B poiy +)17
P

Problem (14) is a linear sum assignment problem that can be
solved optimally by methods such as the distributed Hungarian
algorithm [30], [31], which converges in O(n®) iterations.
Due to onboard resource constraints, we trade optimality
for computational efficiency by using our prior work, the

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020

consensus-based auction algorithm (CBAA) [32]. CBAA is
guaranteed to converge in at most nd iterations, where d is
the diameter of the formation graph, G.

To bring (14) into the standard form for applying
CBAA, let binary variables x;; represent the assignment
o, where z;; =1 if o(i) = j and O otherwise. Further, let
cij =1/ |lgi — (Rfpj +t5)||* denote the positive score for
assigning UAV ¢ to formation point j. In practice, a small
positive number can be added to the denominator of ¢;; to
avoid division by zero. It is straightforward to show that (14)
can be expressed as the integer program

n
maximize Cii Lii
32”'6{0,1} izz:l R
. 5] . (15)
subject to > " x5 =1,V

2?21 Tij = 1, VZ
where the constraints on x;; enforce conflict-free and one-to-
one assignment captured by o € .S, in (14), and maximiz-
ing (15) is equivalent to minimizing the overall distance from
the UAVs to the rotated and translated formation in (14).

In executing CBAA, UAV 1 stores and updates its own
assignment and a list of winning bids (initialized as zeros)
for all formation points. Each iteration of CBAA consists of
an auction phase and a consensus phase. In the auction phase,
UAV i determines which formation point it would like to be
assigned to in three steps: (1) check if any formation point p;
produces a score c¢;; higher than its current winning bid; (2)
of those formation points, set x;; = 1 for the p; that produces
the highest score; (3) update the bid for the winning p; with
new score c¢;;. In the consensus phase, vehicles converge on
a common winning bid list. UAV 7 exchanges its winning bid
list with its neighbors and updates its list with the highest
values from its own and all received lists. It sets z;; = 0 if
the new winning bid for p; is higher than c;;, implying that
a different vehicle has been assigned to p;.

Since CBAA is distributed, no central authority exists to
affirm convergence. Therefore, we enforce a synchronous
execution to terminate the algorithm in nd iterations, which
is the maximum number of iterations required to guarantee
convergence. The final assignment is recovered by letting
o*(i) = j for each z;; = 1. CBAA guarantees a conflict-free
assignment even though UAVs do not have a common ref-
erence frame and may have inconsistent position estimates or
different R; and ¢; for alignment. We emphasize that although
cij is calculated by each UAV using only local knowledge,
CBAA assigns UAVs to formation points without conflict.
Further, it retains at least 50% of the optimal performance;
that is, given the optimal overall score C* of (15) and the C'
resulted from CBAA, C/C* > 0.5.

V. EXPERIMENTAL RESULTS

This section shows that our distributed formation con-
trol and distributed task assignment solutions scale with the
number of UAVs, resolve gridlocks resulting from collision
avoidance, and reduce the total distance traveled.

First, we investigate scalability by comparing the runtime of
our ADMM-based solver (10) with the interior-point method

TABLE 1. Execution time of the CVX solver used for (5) vs. our ADMM
solver (10) for obtaining formation gains for different number of vehicles.
Reported times are in seconds and rounded to two decimals.

Algorithm Number of Vehicles

5 20 50 100 200
CVX-SDP time 0.54 3248 8684.24 OOM OOM
ADMM time (ours) 0.01 0.03 1.31 1226 134.67

OOM: Out of memory

TABLE II. Simulation results for 30 vehicles over 100 Monte Carlo trials.
Using our distributed assignment algorithm, we obtain results closer to the
optimal, but centralized, Hungarian approach.

Distance Traveled (m) Convergence Time (s) Success

mean std mean std
NA nc 28.2 4.1 131.0 30.0 58 %
c 28.6 3.6 134.0 25.2 66 %
A nc 10.9 2.2 64.7 38.6 98 %
c 9.9 2.0 68.1 43.7 96 %
H ¢ 5.1 1.0 40.6 53.5 100 %

NA: no assignment A: distributed assignment (ours) H: centralized Hungarian
c: complete graph nc: non-complete graph

used in CVX (http://cvxr.com/cvx) to solve the SDP
formulation (5). These results are shown in Table I, and
are generated in MATLAB using an Intel Core i7-7700K
with 32 GB RAM. While the interior-point method becomes
intractable for formations with more than 50 vehicles, our
ADMM approach can solve for the control gains in seconds.
Second, we use software-in-the-loop simulations and hard-
ware demonstrations to highlight how task assignment leads
to quicker formation convergence with nearly 100 % success.
Our pipeline is implemented in C++ using Robot Operating
System (ROS) [33]. Hardware demonstrations use a team of
custom-built hexarotors, each with a diameter of 0.5m and
an all-up-weight of 1.1kg. Code runs onboard the Qualcomm
Snapdragon Flight board that includes a platform-optimized
VIO package that outputs odometry at 30 Hz [1]. For simplic-
ity of the implementation and the safety of the vehicles, we use
our localization module (see Fig. 3) to inform each vehicle of
every other vehicle’s position. However, the information about
non-neighbors is only used for collision avoidance and could
alternatively be found using, for example, onboard cameras.

A. Simulations

We perform Monte Carlo trials to measure the impact of
distributed task assignment on a large team of vehicles. A
trial consists of randomly initializing 30 UAVs in a 20 x 20 m
area, where the minimum distance between initial positions
is 1.5m. A random formation is generated for each trial
within a 15 x 15 X 2m volume, with a minimum distance
between formation points of 2m. A trial is completed once
the swarm has successfully reached the formation from the
random initialization. If the swarm is trapped in a gridlock for
more than 90s, the trial is considered indefinitely gridlocked
and is aborted.

For each trial, our pipeline is tested in three main con-
figurations: with centralized assignment, with distributed as-
signment, and without assignment. Except for centralized

http://cvxr.com/cvx

LUSK et al.: A DISTRIBUTED PIPELINE FOR SCALABLE, DECONFLICTED FORMATION FLYING 7

11

o I L I S
6 -(c/sr"ﬂ\ﬁ:5 # :(‘ {: EN N N
e i ¥R E OB ¥
1r ®oF ¥ Eoxow ¥ R ¥ ¥
Al § ® LI T
w® o ¥ 8w, x ¥ %
E o
> % % ® %
-14- 5 w % f
&
19— ¥ L f *f ¥ ¥
24 f % £ ® % & x{ T ®
o ‘f x £ | :»:‘ ‘ ® ® ‘x %
% S0 45 40 35 30 25 20 15 10 5 0 5

x (m)

Fig. 5. Large-scale simulation with 100 UAVs. The last 40s of motion are
shown and UAVs are depicted at 2x scale for better visibility.

assignment, each configuration is further tested with both
a complete and randomly generated non-complete formation
graph. Centralized assignment provides an optimal baseline
for comparison and is performed using the Hungarian algo-
rithm with a complete graph. The assignment algorithms are
executed at a period of 2s, allowing the swarm to resolve
gridlocks by enabling new collision-free motion directions.

Table II shows the comparison results, where for successful
trials the average distance traveled and average flying time to
converge to the desired formation are reported. As expected,
the centralized Hungarian approach obtains 100 % success rate
with the shortest distance traveled and only an average of
2.0 reassignments to converge to the formation. However, this
approach has a computational cost of O(n?) in the number
of vehicles and relies on a centralized coordinator in a com-
mon reference frame with complete knowledge of the swarm
(Fig. 2a). On the other hand, our CBAA-based assignment
algorithm is a more scalable deconfliction strategy that is
executed in the non-aligned frames of the UAVs (Fig. 2c) and
is nearly optimal in practice as confirmed by the 97 % average
convergence rate in Table II, with an average of 11.6 reassign-
ments. Compared to formation control without assignment, our
algorithm allows the swarm to achieve formation convergence
in nearly every case and in half the amount of time, on average.
The results also show that, on average, there is no significant
performance decrease between complete and non-complete
formation graphs. Thus, non-complete formation graphs can
be used to reduce communication overhead without sacrificing
the convergence rate or ability to reach the desired formation.

We remark that symmetric formations may lead our task
assignment strategy (12) to exhibit momentary swapping be-
havior. However, noise in each UAV’s sensing is included in
the simulation and we have not observed convergence failure
of (12) in simulation or hardware. We believe this swapping
behavior is caused by ignoring the vehicle dynamics in (12)
and consider this in future work.

To demonstrate scalability, we performed a large-scale sim-
ulation with 100 UAVs randomly initialized in a 60 x 30 m
area. This simulation was performed using Amazon Web
Services. Vehicles achieve the MIT ACL formation using a
sparse formation graph with only 24 % of the edges in a

2 (m)
o = n
f > @~
NN =3
= o™
_N
©
z(m)
< s

2 x (m)
y(m) y (m) y (m)

(a) Pentagonal pyramid (b) Triangular prism (c) Slanted plane

Fig. 6. Non-complete formation graphs used in the hardware experiments.
¥ %

Fig. 7. Without assignment, UAVs attempting to achieve the pyramid for-
mation are gridlocked due to collision avoidance.

Trajectory
A Desired velocity
Keep-out region

complete graph, which is beneficial for bandwidth-limited
communication. The last 40s are shown in Fig. 5, where the
motion traces indicate deconfliction due to reassignment.

B. Hardware Demonstrations

We demonstrate formation flight with six UAVs by cycling
through the three formations illustrated in Fig. 6. The min-
imum distance between desired formation points is 2m for
each formation. Because the time required to calculate the
formation gains from (10) is small, in our experiments each
UAV independently calculates the formation gains onboard in
20 ms. In this case, the base station is used only to dispatch
the desired formation graph to the UAVs.

The UAVs are initialized at pre-specified locations so that
the transforms between vehicles’ VIO start frames are known.
After taking off and hovering, an operator dispatches each de-
sired formation to the swarm. Four configurations are tested by
cycling through the formations twice. For each configuration,
a total of six trials are recorded and averaged over, where a
trial is the transition from the current swarm state to the next
desired formation. When assignment is used, the period of
reassignment is 1.2s.

Consistent with the simulations, the results in Table III
indicate that without our assignment strategy, the vehicles fail
to achieve the desired formation in up to 50 % of the trials,
while every trial using assignment was successful. An example
of convergence failure is shown in Fig. 7.

The supplementary video provides insights into the qualita-
tive behavior of our system. Note that the achieved formations
in the video are occasionally inverted from the desired forma-
tions shown in Fig. 6. Recall that our formation control aims
to achieve the desired shape. The inverted formations seen
in experiments are due to negative scaling in the z-axis. We
also point out that the formations shown in Fig. 6 are not
universally rigid. Universal rigidity is a sufficient condition
for our gain design, but not necessary. In practice, formations
with sparser graphs can be used, so long as the recovered gain

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020

TABLE III. Hardware results. Our distributed assignment algorithm success-
fully breaks gridlock and converges to every desired formation.

Distance Traveled (m) Convergence Time (s) Success

mean std mean std
nc 0.8 0.5 15.5 9.2 50 %
NA c 0.9 1.0 11.3 3.0 67 %
A nc 14 0.8 14.3 8.7 100 %
c 0.8 0.6 10.1 4.8 100 %

NA: no assignment A: distributed assignment (ours)

c: complete graph nc: non-complete graph

matrix leads to a negative objective (8). This helps to alleviate
communication load across the swarm.

The transmission requirements for localization and assign-
ment are 5.2 kbps per neighbor and 0.064nd(n + 1) kb per
neighbor at the reassignment period, respectively. For example,
in our experiments with non-complete graphs, the theoretical
bandwidth between each vehicle is approximately 9 kbps.
Using a sparse graph, a reassignment period of 30s, and mid-
grade WiFi connectivity, the expected upper bound before
channel saturation is 800 UAVs. These numbers are supported
by our simulation of 30 UAVs in a non-complete formation
graph, where we measured 2161 kbps of communication
between a UAV and its neighbors.

VI. CONCLUSION AND FUTURE WORK

We presented a unified formation flying pipeline with
distributed formation control and task assignment solutions
that run onboard the vehicles and uses VIO for localization.
Our ADMM solver addressed the scalability issue of general
solvers for obtaining formation gains and the auction-based
algorithm generated non-conflicting assignment solutions in
a computationally efficient manner. Simulation and hardware
tests demonstrated formation convergence in 96-100% of
cases that gridlocked when assignment was not used. Note-
worthy future extensions include incorporating an assignment
strategy that considers vehicle dynamics to minimize the total
predicted distance traveled, and addition of distributed pose
graph optimization to obtain consistent VIO pose estimates.

REFERENCES

[1] https://developer.qualcomm.com/software/machine- vision-sdk.

[2] L. Wang, A. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE TRO, vol. 33, no. 3, pp. 661—
674, 2017.

[3] K. Fathian, S. Safaoui, T. H. Summers, and N. R. Gans, “Robust 3D

distributed formation control with collision avoidance and application to

multirotor aerial vehicles,” IEEE ICRA, pp. 9209-9215, 2019.

J. Preiss, W. Honig, G. Sukhatme, and N. Ayanian, “Crazyswarm: A

large nano-quadcopter swarm,” in JEEE ICRA, 2017, pp. 3299-3304.

[5] W. Hoénig, J. A. Preiss, T. S. Kumar, G. S. Sukhatme, and N. Ayanian,
“Trajectory planning for quadrotor swarms,” IEEE TRO, vol. 34, no. 4,
pp. 856-869, 2018.

[6] X. Du, C. Luis, M. Vukosavljev, and A. Schoellig, “Fast and in sync:
Periodic swarm patterns for quadrotors,” in IEEE ICRA, 2019, pp. 9143—
9149.

[7]1 S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote,

and M. Egerstedt, “The Robotarium: Globally Impactful Opportunities,

Challenges, and Lessons Learned in Remote-Access, Distributed Control

of Multirobot Systems,” IEEE CSM, vol. 40(1), pp. 26—44, 2020.

J. Enright, M. Hilstad, A. Saenz-Otero, and D. Miller, “The SPHERES

guest scientist program: Collaborative science on the ISS,” in IEEE

Aerospace Conference Proceedings, vol. 1, 2004.

[4

[8

=

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza, “Collaborative
monocular SLAM with multiple micro aerial vehicles,” in IEEE/RSJ
IROS, 2013, pp. 3962-3970.

G. Loianno, Y. Mulgaonkar, C. Brunner, D. Ahuja, A. Ramanandan,
M. Chari, S. Diaz, and V. Kumar, “A swarm of flying smartphones,” in
IEEE/RSJ IROS, 2016, pp. 1681-1688.

A. Weinstein, A. Cho, G. Loianno, and V. Kumar, “Visual inertial
odometry swarm: An autonomous swarm of vision-based quadrotors,”
IEEE RA-L, vol. 3, no. 3, pp. 1801-1807, July 2018.

K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent
formation control,” Automatica, vol. 53, pp. 424-440, 2015.

J. Delmerico and D. Scaramuzza, “A benchmark comparison of monocu-
lar visual-inertial odometry algorithms for flying robots,” in JEEE ICRA,
2018, pp. 2502-2509.

M. Turpin, N. Michael, and V. Kumar, “Capt: Concurrent assignment
and planning of trajectories for multiple robots,” IJRR, vol. 33, no. 1,
pp. 98-112, 2014.

J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-
body collision avoidance,” in Robotics research. Springer, 2011, pp.
3-19.

D. Morgan, G. P. Subramanian, S.-J. Chung, and F. Y. Hadaegh,
“Swarm assignment and trajectory optimization using variable-swarm,
distributed auction assignment and sequential convex programming,” The
International Journal of Robotics Research, vol. 35, no. 10, pp. 1261—
1285, 2016.

E. Montijano, E. Cristofalo, D. Zhou, M. Schwager, and C. Saguees,
“Vision-based distributed formation control without an external posi-
tioning system,” /IEEE TRO, vol. 32, no. 2, pp. 339-351, 2016.

R. Tron, J. Thomas, G. Loianno, K. Daniilidis, and V. Kumar, “A dis-
tributed optimization framework for localization and formation control:
Applications to vision-based measurements,” IEEE CSM, vol. 36, no. 4,
pp- 2244, Aug 2016.

K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of
two 3-D point sets,” IEEE TPAMI, no. 5, pp. 698-700, 1987.

S. J. Gortler and D. P. Thurston, “Characterizing the universal rigidity of
generic frameworks,” Disc. & Comp. Geom., vol. 51, no. 4, pp. 1017-
1036, 2014.

Z. Lin, L. Wang, Z. Han, and v. Minyue Fu, “A Graph Laplacian
Approach to Coordinate-Free Formation Stabilization for Directed Net-
works,” IEEE TAC, vol. 61, no. 5, pp. 1269-1280, May 2016.

Z. Lin, L. Wang, Z. Chen, M. Fu, and Z. Han, “Necessary and sufficient
graphical conditions for affine formation control,” IEEE TAC, vol. 61,
no. 10, pp. 2877-2891, 2016.

K. Fathian, S. Safaoui, T. H. Summers, and N. R. Gans, “Robust
distributed planar formation control for higher-order holonomic and
nonholonomic agents,” arXiv preprint, arXiv:1807.11058, 2018.

W. Ren, “Consensus strategies for cooperative control of vehicle forma-
tions,” IET CTA, vol. 1, no. 2, pp. 505-512, 2007.

S. Zhao and D. Zelazo, “Bearing rigidity theory and its applications
for control and estimation of network systems: Life beyond distance
rigidity,” IEEE CSM, vol. 39, no. 2, pp. 66-83, 2019.

E. Montijano, D. Zhou, M. Schwager, and C. Sagues, ‘“Distributed
formation control without a global reference frame,” in IEEE ACC, 2014,
pp- 3862-3867.

P. C. Lusk, X. Cai, S. Wadhwania, A. Paris, K. Fathian, and J. P. How,
“A distributed pipeline for scalable, deconflicted formation flying,” 2020,
https://arxiv.org/abs/2003.01851.

Z. Wen, D. Goldfarb, and W. Yin, “Alternating direction augmented
lagrangian methods for semidefinite programming,” Mathematical Pro-
gramming Computation, vol. 2, no. 3-4, pp. 203-230, 2010.

E. A. Macdonald, “Multi-robot assignment and formation control,”
Master’s thesis, Georgia Institute of Technology, 2011.

S. Giordani, M. Lujak, and F. Martinelli, “A distributed algorithm for
the multi-robot task allocation problem,” in /EA/AIE. Springer, 2010,
pp- 721-730.

S. Chopra, G. Notarstefano, M. Rice, and M. Egerstedt, “A distributed
version of the hungarian method for multirobot assignment,” [EEE TRO,
vol. 33, no. 4, pp. 932-947, 2017.

H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE TRO, vol. 25, no. 4, pp. 912—
926, 2009.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

https://developer.qualcomm.com/software/machine-vision-sdk
https://arxiv.org/abs/2003.01851

LUSK et al.: A DISTRIBUTED PIPELINE FOR SCALABLE, DECONFLICTED FORMATION FLYING 9

APPENDIX

Proof of Proposition 1. Consider problem (7). The facts that
BM = 0and R € R"*("~2) i5 the orthogonal complement of
M imply that B can be factored as B = —RZ R, where Z €
S;" . Substituting B with —RZ R in (7) and simplifying
yields

maximize Amin(2)

+
Z€S7172

(16)

subject to [RZRT] =0 VY Ve,

ij

tr(Z) = constant

which reduces the dimension of the optimization variable from
n to n — 2. Note that the constraint BM = 0 in (7) is
automatically satisfied in (16) as R" M = 0 by orthogonality.
The objective of (16), i.e., maximizing the smallest eigenvalue
of the positive semidefinite matrix Z, can be expressed equiva-
lently as finding Z and the smallest v > 0 such that Z — v~ 171
remains positive semidefinite (this statement can be proved by

diagonalizing Z). Hence, (16) can be expressed as

minimize -y
Zest

n—2
subjectto v>0, Z—~"'I>=0
[RZR"], =0
ij
tr(Z) = constant

7)
Vi Vign

Let C = [[9]and X = [L], where the size of the identity
matrix [is the same as Z. The Schur complement condition
for positive semidefinite matrices states that X > 0 if and only
if yI = 0and Z — I (yI)~'I = 0. The latter implies that
~v>0and Z — 'y*II > 0, which are the constraints in (17).

Consequently, (17) can be written concisely as
minimize (C, X)
Xesg’nfél
subject to A(X)=1b
where (C, X) is the Frobenius inner product, and A(X) =b
captures the linear constraints on both the structure of X, i.e.,
the identity blocks and the last two constraints in (17).]

(18)

	I Introduction
	I-A Contributions
	I-B Related Work

	II System Overview
	III Distributed Formation Control
	III-A Overview of Formation Control
	III-B Scalable Gain Design
	III-C Robustness, Collision Avoidance, and Formation Size

	IV Distributed Task Assignment
	IV-A Alignment
	IV-B Assignment

	V Experimental Results
	V-A Simulations
	V-B Hardware Demonstrations

	VI Conclusion and Future Work
	References
	Appendix

