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Goran Vasiljević1, Tamara Petrović1, Barbara Arbanas1 and Stjepan Bogdan1

Abstract—In this paper, we present a dynamic median con-
sensus protocol for multi-agent systems using acoustic com-
munication. The motivating target scenario is a multi-agent
system consisting of underwater robots acting as intelligent
sensors, applied to continuous monitoring of the state of a
marine environment. The proposed protocol allows each agent
to track the median value of individual measurements of all
agents through local communication with neighbouring agents.
Median is chosen as a measure robust to outliers, as opposed to
average value, which is usually used. In contrast to the existing
consensus protocols, the proposed protocol is dynamic, uses a
switching communication topology and converges to median of
measured signals. Stability and correctness of the protocol are
theoretically proven. The protocol is tested in simulation, and
accuracy and influence of protocol parameters on the system
output are analyzed. The protocol is implemented and validated
by a set of experiments on an underwater group of robots
comprising of aMussel units. This experimental setup is one
of the first deployments of any type of consensus protocol for
an underwater setting. Both simulation and experimental results
confirm the correctness of the presented approach.

Index Terms—Sensor Networks, Networked Robots, Marine
Robotics

I. INTRODUCTION

ONE of the envisioned goals of the subCULTron project
was to develop a marine multi-robot system for intel-

ligent long-term monitoring of underwater ecosystems [1].
The underwater system is comprised of 3 different types of
robots (Figure 1). Artificial mussels (aMussels) are sensor hubs
attached to the sea bottom, which monitor natural habitat,
including biological agents like algae, bacterial incrustation,
and fish. They serve as the collective long-term memory of
the system, allowing information to persist beyond the runtime
of other agents, enabling the system to continue developing
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Fig. 1: Robots of the subCULTron swarm – aMussels (left),
aFish (middle) and aPad (right)

from previously learned states [2], [3]. On the water surface,
artificial lily pads (aPads) interface with humans, delivering
energy and information influx from ship traffic or satellite
data [4]. Between those two layers, artificial fish (aFish)
move, monitor and explore the environment and exchange
information with aMussels and aPads.

An underwater swarm consisting of a large number of
units (100 aMussels, 10 aFish and 5 aPads) was developed
within the project. The ability of such a system to compute
(in a decentralized manner) common estimates of unknown
quantities (such as measurements), and agree on a common
view of the world, is critical. Consensus protocols (algorithms)
are particularly compelling for implementation in multi-agent
systems due to their simplicity and a wide range of ap-
plications. Foundation of consensus protocols in multi-agent
systems lies in the field of distributed computing. In networks
of agents, consensus means to ”reach an agreement regarding
a certain quantity of interest that depends on the state of all
agents” [5]. A consensus protocol is a series of rules that
define information exchange between an agent and all of his
neighbors on the network, as well as internal processing of
the obtained information by each agent.

A good overview of consensus protocols can be found in
[5], [6], [7]. Our primary target is subCULTron system or
more precisely, a network of underwater robots measuring
environment parameters such as oxygen or turbidity, with
sensors prone to faults/errors (outliers). Consensus protocols
can be exploited to increase the reliability of such a system by
i) developing protocols for detection of faulty agents (such as
trust consensus protocols [8], [9]), or ii) developing consensus
protocols that implicitly account for and nullify the influence
of outlier values.

In this paper we apply the later approach - the goal is
for each agent to reach a consensus on the real value of
the measuring signal. The most common type of consensus
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problems - average consensus ([10], [11]) - is not appropriate
for this application since even one faulty agent with abnormal
values might skew the consensus to incorrect values, which do
not represent the real value of the measuring signal. On the
other hand, authors in [12] and [13] use median as the chosen
measure, which is inherently robust to outliers, and we follow
upon their work in this paper.

Further, due to the time-varying nature of environment
parameters and requirement for spatial distribution of sensors,
measurements are performed by a multi-robot system applying
the dynamic median consensus protocol, where agents track
the median of locally available time-varying signals, execut-
ing local computations and communicating with neighboring
agents only [14]. Dynamic protocol for the average case is
available, for both static and varying communication topology
([15]).

Work presented in this paper is based upon [12] and [13],
where authors present a dynamic median consensus protocol.
In this paper we modify their approach so that protocol is
functional under scheduled communication protocol, like the
one using acoustics for underwater communication. Systems
with such a communication scheme are called switching sys-
tems and their analysis is more complex compared to analysis
of static systems. Our previous work [2] and [3] deals with
consensus using switching systems, but the work presented in
this paper reaches the median value rather than the average.
Another difference, compared to our previous work, is addition
of the dynamic component to the consensus protocol. To
conclude, the main contribution of the paper is analysis
of novel consensus protocol that is dynamic, works on a
switching communication topology and converges to median
value, a combination that (to the best of our knowledge) no
other papers study.

There have not been many advancements in the area of
underwater consensus protocols. As far as we know, the only
underwater consensus applications include formation control
of tethered and untethered underwater vehicles [16], [17],
[18] and tracking of underwater targets using acoustic sensor
networks (ASN) [19]. Both of those approaches have been
validated only in the simulation environment, using ideal
communication channels. Among other things, this paper
contributes to the field by providing the first experimental
application of a consensus protocol in an underwater multi-
agent system, acting as a distributed sensor network.

The paper is organized as follows. In the next section, we
define some preliminary definitions and notations regarding
the systems we study. We present the implemented method
for dynamic median consensus over scheduled acoustic com-
munication in Section III. Simulation results and analysis
are presented in Section IV, while the section V describes
the robotic platform we used for experiments and shows the
achieved results. Finally, we give a conclusion in Section VI.

II. PRELIMINARIES

A. Problem description
We consider a network of n agents communicating over

a single communication channel. The underlying communi-
cation graph is defined as a directed graph G = (V,E),

TABLE I: List of variables used

Variable Explanation

xki internal state of ith agent at step k
(communicated over the network)

yki additional internal state of ith agent at step k
(not communicated over the network)

zki measurement of agent i at step k
aij 1 if agent i is neighbour of agent j, 0 otherwise

β, α, γ, κ algorithm tuning parameters
n number of agents
ri number of neighbours of agent i

where the set of nodes V = {1, 2, .., n} corresponds to
agents, and the set of edges E ⊆ V × V corresponds to
communication links between agents. E is usually described
with a corresponding adjacency matrix A such that aij = 1
if there is a communication link from agent j to agent i, and
aij = 0 otherwise.

Each agent i has a local reference signal, denoted zi ∈
R, z = [z1z2..zn]. In this paper this signal is a measurement
made by the agent, but in general it could be the value of some
other internal or external variable. Internal state of agent i in
step k is denoted as xki ∈ R. Let us introduce the following
notations.

A median value of vector z = [z1z2...zn], where elements
are listed in ascending order, can be defined as ([13]):

m(z) ∈

{
{zn+1

2
} if n is odd

[zn
2
, zn

2 +1] if n is even
(1)

Agent dynamics in discrete-time domain can in general be
written as:

xk+1
i = xki + uki , i ∈ {1, 2, . . . , n} (2)

where uki ∈ R takes into account both agent’s internal states
as well as states of neighbouring agents, which are obtained
through communication. We say that the system running (2)
converges to consensus value c (denoted xki −→ c) iff:

∃δ > 0,∃k0 > 0, |xki − c| < δ, ∀i ∈ {1, 2, . . . , n},∀k > k0
(3)

The most common type of such consensus protocols are
designed to converge to the average value of local reference
signals (zi) of all agents. In this paper we deal with median
consensus protocol, that is, we propose and analyse a protocol
such that all the agents converge to the same value, corre-
sponding to the median of their measurements, xki −→ m(z),
which means that internal states of all agents xki will converge
to the median of their current measurements z. Further, since
the proposed protocol allows individual agents to track a
time-varying median of reference signals (measurements), it
belongs to a class of dynamic consensus protocols.

B. Communication scheme

A communication scheme is such that agents, due to the
characteristics of acoustic signals, must take turns transmitting
messages. In other words, in order to avoid interference of
acoustic signals, one must ensure that agents do not transmit



messages in the same time. We opt for the simplest solution,
which is a sequential assignment of time-slots to agents, re-
peated cyclically (round-robin [20]). Each time-slot is reserved
for sending of messages of one agent.
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Fig. 2: Scheduled acoustic communication - graph Gi for each
time-slot and the underlying graph G. Sending agent (blue),
receiving agents (green).

The result of the described scheme is a switching com-
munication topology, as given in Figure 2. The underlying
communication graph G is an union of communication graphs
Gi, i ∈ {1, . . . , n} over one cycle of described round-robin
schedule. The same communication scheme was used in [2]
and [3], where it was more thoroughly elaborated. Other
approaches might be used as well and do not affect the
outcome of the proposed protocol.

III. DYNAMIC MEDIAN CONSENSUS

We propose the following decentralized protocol, defined
using a local update rule of each agent:

xk+1
i = xki + akij(β(x

k
j − xki ) +

α

ri
sign(zki − xki ) + yki )

yk+1
i = yki + akij(γ((x

k
j − xki )− κyki ))

(4)

where β, α, γ and κ are tuning parameters, yki is an
additional internal state of agent i in step k, xkj is the value of
agent j which is transmitting information over communication
channel in step k (when akij 6= 0) and ri is total number of
neighbours of agent i, obtained from graph G (including agent
i itself). List of the variables used is shown in Table I. Initial
value is x0i = z0i . With respect to other median-reaching algo-
rithms ([12], [13]), the novelty is introduction of the internal
state variable yi, which is needed to ensure convergence for
the underlying switching topology. The signum component of
the local rule, characteristic for median-reaching consensuses,
is here specified to account for number of neighbor agents (ri),
which is as well needed to ensure stability due to switching
nature of the system.

Theorem 1. For a local rule of each agent defined as (4), and
if yi ∈ [− 2α

ri
, 2αri ], γ < β< 1

n2 , and κγ < 1, all of the agents
converge to the value m(z).

Proof. In order to simplify the equations, let us introduce the
following notation max

i∈V
xki = xkmax, min

i∈V
xki = xkmin, Similar

as in [13], we consider a discrete non-smooth Lyapunov
candidate:

V (xk,yk) = xkmax − xkmin + ykmax − ykmin (5)

In order for a system to be stable, the following conditions
need to be met:

V (0) = 0

V (xk,yk) > 0,∀xk,yk 6= 0

dV = V (xk+1,yk+1)− V (xk,yk) ≤ 0,∀xk,yk
(6)

The first two conditions in (6) are always satisfied. The second
equation could have value 0 in case when all xi and all yi have
the same value. However, this case will never occur, because
in equation (4), for xi to be in consensus, all yi cannot have
the same value. The third condition in (6) yields:

dV =xk+1
max − xk+1

min + yk+1
max − yk+1

min−
−(xkmax − xkmin + ykmax − ykmin)

(7)

By taking into account local interaction rule (4), the worst
case, from the stability point of view, can be written as:

xk+1
max = xkmax + β(xkj − xkmax) +

α

rmin
+ ykmax

xk+1
min = xkmin + β(xkj − xkmin)−

α

rmin
+ ykmin

yk+1
max = ykmax + γ((xkj − xkmin)− κykmax))
yk+1
min = ykmin + γ((xkj − xkmax)− κykmin))

(8)

By substituting (8) in (7), we obtain the following:

dV = (1−γκ)(ykmax−ykmin)−(β−γ)(xkmax−xkmin)+2
α

rmin
(9)

For a system to be asymptotically stable dV < 0 has to be
satisfied. Given β > γ, and, as stated in Theorem 1, ymax and
ymin are limited to [− 2α

rmin
, 2α
rmin

], with κγ < 1, we get:

xkmax − xkmin >
6α− 4κγα

rmin(β − γ)
(10)

The condition (10) is the worst possible case, that is, the
right side of the inequality is the lowest theoretical bound on
the values of xkmax − xkmin.

When (10) is true, the energy in the system will dissipate
until the condition in (10) becomes false. In that moment
xmax−xmin will start increasing until equation (10) becomes
true. By getting closer to the consensus, yki will converge to
either αi

ri
or −αi

ri
.

Hence, the system is stable under the given condition,
however, the system (4) does not reach a steady state in the
classical sense. We assume that the steady state is reached
when the values over one communication cycle of length n
become stationary, that is, when xk+ni = xki , y

k+n
i = yki , ∀i,

∀k > k0. From (4) we get:

xk+ni = xki + β

n∑
j=1

aij(x
k+j
j − xk+ji ) +

n∑
j=1

aijy
k+j
i

+
α

ri

n∑
j=1

aijsign(zi − xk+ji )

yk+ni = yki + γ

n∑
j=1

aij(x
k+j
j − xk+ji )− γκ

n∑
j=1

aijy
k+j
i

(11)



By summing the expressions for yk+ni in (11) for all agents
i in stationary state we get:

n∑
i=1

n∑
j=1

aij(x
k+j
j − xk+ji ) =

κ

n∑
i=1

−α
ri(1 + βκ)

n∑
j=1

aijsign(zi − xk+ji )

(12)

In equation (12) if we assume that during n steps, the value
of sign(zi − xk+ji ) doesn’t change for any i, the following
must hold:

n∑
i=1

n∑
j=1

aij(x
k+j
j − xk+ji ) =

−ακ
1 + βκ

n∑
i=1

sign(zi − xki ) (13)

Under the assumption that the system reaches consensus of
all agents, the following holds:

n∑
i=1

n∑
j=1

aij(x
k+j
j − xk+ji ) ≈ 0 (14)

which in turn gives:

n∑
j=1

sign(zi − xk+ji ) ≈ 0 (15)

In the case when all agents have exactly the same value,
c = xki ∀i, it is clear from (15) that c must be the median value
of vector z. However, according to the definition of consensus
(3), not all xki need to have exactly the same values. For that
reason there is a need for further analysis.

Without the loss of generality we can sort the elements
under the sum in the equation (15) in the ascending order
of their elements zi:

n∑
i=1

sign(zl(i) − xkl(i)) ≈ 0 (16)

where l(i) rearranges indices from (15) in such a way that
zl(i) < zl(i+1),∀i. It is important to note that each element
in the sum in equation (15) has corresponding element in the
sum in the equation (16).

After that we can split the sum into two sums:

n/2∑
i=1

sign(zl(i)− c+ δ)+
n∑

i=n/2+1

sign(zl(i)− c− δ) ≈ 0 (17)

where xkl(i) ∈ [c− δ, c+ δ], as defined in (3).
The exact value of c depends on the values in vector z, but

it is clear that for

c ∈ [m(z)− δ,m(z) + δ] (18)

the system will converge to the median values of measure-
ments z.

Finally, since matrix A is symmetrical, every element
(xk+j1j − xk+j1i ) in the sum in (12) has its pair element
(xk+j2i − xk+j2j ), except elements in the diagonal which by

default have value 0. Hence, from equations (11) and (12),
one can determine β from the worst case scenario:

1

2

n∑
i=1

n∑
j=1

βκα− (−βκα)
1 + βκ

<
κα

1 + βκ
(19)

which leads to:
β <

1

n2
(20)

IV. SIMULATION RESULTS

A. Convergence Analysis

In this section we present simulation results of the proposed
dynamic median consensus protocol. We conducted simula-
tions for system with 3, 5 and 31 agents. In the experimental
section, we conducted tests with 3 and 5 agents. A more
extensive network of 31 agents is chosen to illustrate the
algorithm’s performance on a larger scale. For each number
of agents, two different communication topologies were used,
a complete and chain topology, as given in Figure 3. These
topologies correspond to the best and worst case, since in order
to propagate information from agent i to agent j we need only
one step for Figure 3a (best case) and n steps for Figure 3b
(worst case). Graphs given in this figure correspond to the
overall communication topology, while topology in each step
behaves as given in subsection II-B.
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(a) Complete topology

G2

21 43 5

(b) Chain topology

Fig. 3: Communication topologies used in simulation

Adjacency matrices for the above topologies are:

A1 =


1 1 ... 1
1 1 ... 1
... ... ... ...
1 1 ... 1



A2 =


1 1 0 0 0 ... 0 0
1 1 1 0 0 ... 0 0
0 1 1 1 0 ... 0 0
... ... ... ... ... ... ... ...
0 0 0 0 ... 1 1


Table II shows the number of agents, consensus tuning

parameters (as given in Eq. (4)) and results, for six different
simulation setups. The numerical results are presented with 3
parameters: ts settling time (the number of steps needed for
all agents to reach value that is within 5% of measurements
median value), tc convergence time (the number of steps
needed for maximal distance between two agents to reach
value that is within 5% of measurements median value) and
εss error in steady state (value of maximal distance of agents
from measurements median value with respect to the median



TABLE II: Tuning parameters and results in each simulation
run

Parameter Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6
n 3 3 5 5 31 31
α 9 9 3 3 2 2
β 0.08 0.08 0.04 0.04 0.001 0.001
γ 0.003 0.003 0.0015 0.0015 0.0005 0.0005
κ 0.1 0.1 0.1 0.1 0.1 0.1
A A1 A2 A1 A2 A1 A2

ts 51 238 110 729 26856 342520
tc 53 230 111 753 11811 440231
εss 2.25% 2.46% 0.39% 0.63% 0.04% 1.6%

value) Influence of each of the tuning parameters on the system
behaviour is analysed later in this section.

We set an initial measured value for each agent, and
then make a step change of individual measurements so that
the overall median changes stepwise. Results for 3 agents
are shown in Figures 4 and 5. Figures show responses of
individual agent values x and their additional internal states
y for different communication topologies. Results for 5 and
31 agents are given in Figures 6 - 9. Results show that, after
a transient period, the system converges to correct values of
median, and is able to dynamically track changes in median
values. Convergence time is almost seven times shorter for a
complete topology, than for a chain topology. Stationary values
of y for each agent i are ± α

ri
, as given in Eq. (4).
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Fig. 4: Simulation results for 3 agents (complete topology)
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Fig. 5: Simulation results for 3 agents (chain topology)

Results for higher number of agents show that settling
(convergence) time increases for higher number of agents.
Range of values around the median will also influence the
convergence time. In general, larger range leads to slower
convergence, which is a consequence of the existence of the
sign part in the equation for local interaction rule.
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Fig. 6: Simulation results for 5 agents (complete topology)
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Fig. 7: Simulation results for 5 agents (chain topology)

Fig. 8: Simulation results for 31 agents (complete topology)
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Fig. 9: Simulation results for 31 agents (chain topology)

The method was also tested for the case of the lost com-
munication packages. Table III shows influence of random
loss of transmitted packages on settling time ts. Results were
obtained by simulation for 5 agents with complete topology.
For each percentage of lost packages, 100 simulations were
run and the table presents mean settling time tsavg and its
standard deviation σ(ts), as well as mean steady state error
εavg and its standard deviation σ(ε). The results show that



TABLE III: Influence of the random loss of transmitted
packages on the settling time, tested on 100 simulation for
the case of 5 agents with complete topology

Lost packages tsavg σ(ts) εavg σ(ε)

0% 110 0 0.43% 0%
10% 964 1942 0.39% 0.035%
20% 1527 2627 0.38% 0.037%
30% 1982 3303 0.38% 0.034%
40% 2773 3831 0.37% 0.038%
50% 4587 5508 0.38% 0.041%

the system converges to the median of measured values, but it
takes longer time with a higher percentage of lost messages.
Simulations have shown that even with higher percentage of
lost communication packages, the system converges towards
the median of the measurements. Simulations have also shown
that lost messages have no influence on the steady state error.

System was further tested for sine-shaped measurements
of each agent, representing a more dynamical measurement
signal. Results (x, y), together with measurements for each of
the 5 agents (z), are shown in Figure 10. After a transient
period the system reaches consensus on the median value
and is able to continuously track the median value of all
measurements. The second half of the response shows the case
of faster changing sinus function. The results show that the
system is still able to track the median, but with a delay.

Results are given for an odd number of agents. For an even
number, the convergence value is in the interval defined with
(3), and exact value depends on the protocol parameters and
values of measured signals. The presented method works for
both odd and even number of agents. However, results were
presented only for an odd number of agents, since in this case
the median is a single value, as opposed to system with even
number of agents where median is a range of values.
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Fig. 10: Simulation results for sine measurements

B. Analysis of tuning parameters
Each of the algorithm tuning parameters in Table I influ-

ences the behaviour of the system:
• Increase of parameter α causes faster convergence, but

according to the equation (10) increases the area of
instability around the median value.

TABLE IV: Influence of tuning parameters to responses

Parameter tc ts εss

α = 1 1082 949 0.36%
α = 3 753 729 1.12%
β = 0.01 2659 1669 1.07%
β = 0.08 660 463 1.12%
γ = 0.0015 753 729 1.12%
γ = 0.01 1415 1044 1.12%
κ = 0.02 1047 679 0.69%
κ = 0.4 1639 794 4.12%

• Increase of parameter β shortens the time needed for
agents to reach a common value (which initially does
not have to correspond to the median).

• With parameter γ we influence the rate of change of the
state y, which then influences the convergence speed of
x. At the same time, its increase towards β increases the
instability of the system.

• κ is the forgetting factor of the state y, too large values
cause instability of the system, and with too small values,
system converges to the wrong value.

The influence of parameters on system response is shown
in Figure 11, which shows two graphs for each parameter
change: i) initial start of response, which presents the way the
agents converge towards the median value and ii) steady state
response, which presents the influence of the parameter to the
steady state. Numerical results are shown in Table IV. These
results were obtained with 5 agents, using tuning parameters
Sim 4 from Table II, where only one parameter changed its
value.
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Fig. 11: Influence of tuning parameters to response

V. EXPERIMENTAL RESULTS

In this section we present the results of experiments per-
formed with aMussels (Fig. 12). The aMussel platform (de-
scribed in [21]) is a robotic unit intended for long-term moni-
toring of underwater areas. It is designed for low power opera-
tions on sea-bed, where it takes measurements in regular inter-
vals and goes to low power mode in between. It is equipped
with various sensors used to perceive the environment, and
two underwater communication devices to share acquired data
and control signals with other robots. It is capable only of
1D movement, as it can change its depth using simple yet



Fig. 12: Experiment setup using aMussel platforms

effective buoyancy system. The aMussel is powered from two
single-cell LiPo batteries, where each of them powers different
elements of the system. As a communication channel between
agents (aMussels) in presented experiments, we have used a
nanomodem acoustic unit. For a successful communication,
only one of the aMussels in the group is allowed to transmit
data using a nanomodem at single moment. For these reasons
we have developed a time scheduling scheme, where each of
the aMussels has an assigned timeslot in which it is allowed
to transmit information using acoustics. Detail about time-
scheduling implementation are described in [21] and in section
II-B.

When on surface, aMussels can communicate either us-
ing WiFi, for data transfer, using Bluetooth, for diagnostics
purposes, and using SMS, for sending short messages (like
GPS coordinates) to greater distances. Each aMussel is also
equipped with two underwater communication devices: green
light, short-range communication device based on modulated
light, and nanomodem, long-range acoustic communication
device. In this work, we use only the later.

A. Experiment Setup

We have executed three experiments, one with 3 aMussels
and two with 5 aMussels with the corresponding parameters in
Table II. Since aMussels were close to each other, it is assumed
that the graph is complete, corresponding to the connection
matrix A1, but it is possible that some individual messages did
not reach all the agents. In all experiments one communication
step lasts for 5 seconds.

For the purpose of the experiment with 3 aMussels, mea-
surements are kept constant until moment kStep when aMus-
sel3 changes its measured value from 100 to 180, making
a change in system median. This experiment was conducted
with aMussels next to each other where for each aMussel,
the measured value is a preprogrammed number that does not
correspond to any physical value.

Experiments with 5 aMussels were conducted in Jarun lake
in Zagreb. Each aMussel was tied to a rope with different
length, so each of them was on different depth (Figure 12).
Since aMussels were placed close to each other on different
depths, a significant loss of communication packages was

expected. During the experiment, aMussels measured pressure
in hPa, where one hPa corresponds approximately to one cm
of depth. The surface pressure is around 1000 hPa. To enforce
a change in measured values, the aMussel with the longest
rope was moved towards the surface in the middle of the
experiment, and thus became the aMussel with the smallest
depth. The experiment goal was for aMussel to agree on the
median of their depths (which corresponds to their measured
pressure).

Additional experiment with 5 aMussels was conducted to
show the influence of communication loss on the results. Same
as in the previous experiments, aMussels were tied to a rope
on different depths. After they reached consensus, one of them
was removed from the water for 5 minutes and then returned
to the same depth. After that, two aMussels were removed
from the water and left to communicate between each other.
After some time, they were returned to the water and placed
on different depths.

B. Results

Results of experiments with 3 aMussels (Figure 13) show
that values of individual aMussels converge towards the me-
dian values. After the measurements of the aMussel3 change,
the median value of the group changes, which leads to
convergence of individual aMussel values towards the new
median value. The results are slightly oscillatory compared to
the simulation, because all values transferred over acoustics
are quantizied. The experiment was run 4 times with similar
results.

In the experiment with 5 aMussels, they first reach con-
sensus which corresponds to the measurement of aMussel27
(Figure 14). After the aMussel39 changes its depth, aMussels
manage to reach the consensus around the measurement of
aMussel18, which represents the new median value. The
measured total loss of packages during the experiment was
around 15%, with aMussel39 having a loss of around 30%.
This experiment was run 2 times with similar results.

The results of communication loss experiment are shown
in Figure 15. After 600 steps aMussel27 was removed from
the water for 5 minutes, and the results show that this short
term communication loss did not influence the system. When
aMussel31 and aMussel39 were removed from water and left
to communicate only between each other, they started to agree
on the consensus between only their measurements. After
returning them into the water on different depths, all aMussels
in the water started converging to the new median value. This
experiment was run once.

Steps
0 20 40 60 80 100 120 140 160 180

V
al

ue

100

120

140

160

180

200
x

aM3 - 100 -> 180
aM5 - 150
aM32 - 170
Median

Fig. 13: Experimental results for 3 aMussels
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Fig. 14: Experimental results for 5 aMussels
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VI. CONCLUSION

In this paper we have presented a method for determining
the median value of measurements for a group of agents com-
municating using scheduled acoustic communication channel.
The convergence of the protocol towards the median value is
proven theoretically. In order to validate the presented protocol
we tested it in a simulation setting, by creating a model
of the multi-agent system using scheduled communication.
This model was used to gather simulation results of the
presented dynamic median method for different number of
agents, different connectivity matrices and tuning parameters.
We have also tested the presented method on the underwater
robotic platforms aMussel, which are equipped with acoustic
communication units. Simulation, as well as experimental
results, have shown that the presented method converges
towards the median of the measurements and that parameters
of the consensus protocol can be tuned so that desired speed of
convergence and accuracy of the system output obtain desired
values. Results also show that the protocol work correctly even
for a higher percentage of communication losses.
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