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Abstract—Current approaches combining task and motion
planning require intensive geometric and symbolic reasoning to
find feasible motions for task execution. The poor expressiveness
of task planning domains for characterizing geometric changes
with actions and the difficulties faced by current approaches to
efficiently identify motion dependencies for plan execution pro-
duce expensive callings to motion planning on unfeasible actions
and intensive reasoning to find realizable plans. In this work we
combine two recent approaches to address these problems. Task
planning is carried out using an object-centered description of
geometric relations that consistently characterizes changes in the
object configuration space. Plan execution is implemented using
a symbol to motion hierarchical decomposition that depends on
consecutive actions in the plan, rather than on single actions,
which permits considering motion dependencies across plan
actions for a successful execution.

I. INTRODUCTION

Task planning [1] is an efficient tool for automatically defin-
ing the sequence of instructions to a robot for the execution
of manipulation tasks. It permits representing structures of the
environment that are relevant to describe object configurations
and actions that can be performed on them in an intuitive
manner, using a declarative notation compatible with human
language: on cup table, to indicate that a cup is on the
table, or pick cup table, to instruct the action of picking
the cup from the table. The sequence of instructions to fulfill a
task, the task plan, is generated using searching strategies that
evaluate the changes produced by action executions encoded
in the so called planning operators. For the execution of
the task, it is mandatory to ground the symbolic actions to
let the robot physically interact with the real world [2]-[6].
This is normally done by integrating methods of different
levels of abstraction into a task and motion planning (TAMP)
framework [7]-[10], where task and motion planning are
brought together through geometric reasoning mechanisms
that search for feasible robotic motions for the execution of
task plans. However, this strategy is not cost-effective since
it requires intensive computations and several calls to motion
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planning on unfeasible actions to search for solutions in the
usually large object configuration space.

We propose a TAMP framework that generates feasible
motions for task plan execution without intensive geometric
reasoning or unfruitful callings to motion planning. The frame-
work combines, on the one hand, a task planning approach
that uses a novel representation of geometric constraints in the
object configuration space for the generation of geometrically
consistent plans and, on the other hand, a method for ground-
ing symbolic actions based on a hierarchical decomposition
of abstract tasks into specific motions. The selection of which
hierarchical decomposition is most suitable for the execution
of a symbolic action is determined by the geometric constraints
of consecutive plan actions encoded at the task planning level.

A. Related Works

Several strategies have been proposed to alleviate the
computational effort of combined task and motion planning
(TAMP). A widely used approach is to hierarchically decom-
pose a complex abstract task into several simple sub-tasks that
can be easily solved and executed [11]-[14]. Along this line,
Kaelbling et al. [12] interleave hierarchical planning with plan
execution on small sub-tasks to limit the reasoning effort. The
approach generates a global plan using only highly abstract
tasks and without checking in detail the forward progression
of the effects of actions. Given this global plan, each of the
involved tasks is resolved as a smaller TAMP problem that is
immediately executed. The resulting state is used to initialize
the next task in the global plan, repeating the process. In this
manner, the approach focuses on the execution of the task at
hand but at the expense of facing frequent planning impasses.
Our approach also relies on a hierarchical decomposition of
plan actions. However, contrary to [12], our task planner
consistently assesses the propagation of effects of actions in
the plan using a rich representation of geometric changes.

The framework presented in [15] integrates a hierarchical
decomposition of tasks, in the form of grammar models, and
haptic predictions for complex manipulation on single objects.
Grammar models are encoded in a graph representation that
contains words (single actions) or sentences (sequences) at
terminal nodes. These graphs are used for task plan generation
according to the history of actions rather than from propagat-
ing the effect of actions in the reasoning process. The approach
is specially suitable for complex manipulation of single objects
involving action selection based on forces but does not address
the general TAMP problem of efficiently defining motion
parameters on configuration spaces comprising several objects.

Another approach to tackle the TAMP problem is to use
a semantic representation of geometric constraints to better



interface continuous motion parameters and symbolic task
descriptions [16], [17]. Wells et al. [16] propose to train
a support vector machine classifier that uses semantics of
geometric constrains to quickly classify motions as feasible
or not feasible. The classifier has a relatively low accuracy
provided the coarse granularity of semantic representations but
helps reducing the effort of motion exploration, which is still
required to define the motion parameters to ground symbolic
actions. The approach in [17] also incorporates semantics
descriptions of geometrical constraints to evaluate motion
feasibility of single actions. However, contrary to [16], the
constraints are used within the task planning algorithm, rather
than in separate methods. The task planner generates candidate
plans adding and removing constraints incrementally while
a sampling-based motion planner checks actions feasibility
using geometric reasoning. The described approaches focus
on grounding single plan actions without considering motion
dependencies between actions in the plan and require the
introduction of additional methods to handle the semantic
representations. Our approach, instead, permits generating
motions compatible with consecutive actions in the plan, rather
than with single actions, and avoids the necessity of defining
intermediate semantics or heuristics.

Logic programming is an appealing alternative to task
planning based on state-space search. Logic programming
methods search for solutions directly in the plan space, rather
than in the state space, which permits better considering
geometrical constraints compatible with entire plan executions
[18], [19]. Lagriffoul et al. [18] use logic programming to find
plans compatible with symbolic constraints as explanations
of plan failures produced by collisions. Toussaint [19], in
turn, proposes an approach specially designed for creating
pile of objects with stable configurations, where symbols are
tailored to describe geometric and differential constrains, e.g.
(in-)equalities, for optimizing the entire plan execution. Logic
programming approaches need a model of the robot dynamics
to find optimal solutions after intensive computations. Our
approach, instead, does not require the robot dynamics and
is able to generate plans at low computational costs using
off-the-shelf linear planners. Although we consider motion
dependencies between consecutive actions rather than in the
entire plan, as in logic programming, it provides an appealing
low-complexity alternative to these methods.

In this work we adapt and combine two methods to address
the efficiency problem of TAMP frameworks: 1) the generation
of geometrically consistent task plans based on an object-
centered representation of geometrical relations [20], and, 2)
the transformation of abstract tasks into motion parameters
using a symbol-signal hierarchical decomposition [21]. The
main contributions of this work can be summarized as follows:

e The integration into a TAMP framework of a planning

domain compatible with off-the-shelf, computationally
efficient, linear planners that permits considering relevant
geometrical constraints for plan execution already at the
task planning level.

e The integration of task planning with a hierarchical

symbol-signal decomposition of actions that combines
learning from demonstration and action segmentation for

plan action execution.

o A method for selecting adequate motion parameters con-
sidering motion dependencies on consecutive actions in
a task plan without the need of intensive geometric
reasoning or multiple callings to motion planning.

The rest of the paper is organized as follows. Section II
describes the basic elements of our framework, namely the
task planner and the hierarchical task representation. In Sec.
III, we describe how planning and hierarchical task decompo-
sition are effectively combined to execute manipulation tasks.
Experiments on a real robot are presented in Sec. IV. Section
V states the conclusion and propose further extensions.

II. PRELIMINARIES
A. Task Planning

We use the traditional task planning domain definition
comprising a set of objects (e.g. cup, table) and a set of
predicates, coding object relations and properties (e.g. on cup
table), which are logical functions that take value true or
false. The set of predicates describing a particular scenario
defines the symbolic state s. We define a set of planning
operators (PO), encoded in the traditional precondition-action-
effect notation [22]. A PO describes the changes on a symbolic
state with an action execution. The precondition part comprises
the predicates that will be changed by the execution of the PO,
as well as those predicates that, even though they don’t change
with the execution, are necessary for these changes to occur.
The effect part describes the changes in the symbolic state
after the PO execution. We define a symbolic action as the
name of the PO that consists of a declarative description of an
action and may contain parameters to ground the predicates in
the precondition and effect parts. In task planning, the planner
receives the description of the initial state, s;p;, and a goal
description, g, as a set of grounded predicates that should
be observed after task execution. With these elements, the
planner searches for a sequence of actions called plan that
would permit producing changes in s;,; necessary to obtain
the goal g using the set of planning operators [1]. In this work,
we use the off-the-shelf linear planner Fast Downward [23].

For the generation of realizable plans, it is important to
encode in the planning domain task-relevant geometrical de-
scriptions that permit consistently characterizing changes in
the object configuration space. To this end, we define a set
of predicates that can be unambiguously obtained from object
parameters describing the object configuration space. Using
the poses and bounding boxes of objects, we can identify six
sides of the bounding boxes of each objects: top, bottom, front,
back, left and right. We use the sides to describe the relation of
each object with others through simple relational predicates:
on ol o2 (object o2 is on object ol), under ol o2 (02 is
under o1), in ol o2 (o2 is inside o1), and so on.

These relational predicates have been widely used in the
TAMP community. However, the newly introduced concept
here is that these relations are described from an object
perspective, rather than from an observer perspective. Using an
object perspective permits describing the object configuration
space only with simple relational predicates, without the need



TABLE I
EXAMPLE PLANNING OPERATORS

(:action pick-top
:parameters

(?0bjl 20b72)
:precondition (and
(on 2objl air)
(under ?0bjl 20bj2)
(on ?o0bj2 20bijl)
(in hand air)
ceffect (and

on ?objl hand)
under ?objl air)
on ?0bj2 air)

in hand ?objl)

(:action place-top
:parameters

(?0b3j1 20b72)
:precondition (and
(on ?objl hand)
(under ?0bjl air)
(on ?0bj2 air)
(in hand ?objl)
ceffect (and

( (on ?objl air)

( (under ?0bjl 20bj2)
( (on 2o0bj2 2obijl)

( (in hand air)

( (
( (
( (
( (

not (on ?2objl air)) not (on ?objl hand))
not (under ?o0objl ?0bj2)) not (under ?o0bjl air))
not (on ?obj2 2obijl)) not (on ?obj2 air))
not (in hand air)))) not (in hand ?2objl))))

of introducing additional arbitrary names. For example, the
predicate on cup table would describe that the top of the
cup is touching the table. If, instead, the bottom of the cup
is touching the table, the predicate under cup table would
be used. Instead, the interpretation of an external observer of
the predicate on cup table is that the cup is on the table,
no matter if it is lying upright, horizontally, or upsidedown.
To fully describe the cup-table configuration, it would be
necessary to introduce additional arbitrary symbols such as
isOriented, upright, upsidedown [9]. This difference
becomes important when the task requires to distinguish
object relations with different orientations in configuration
spaces involving several objects. An exhaustive analysis of
the benefits of this representation is presented in [20].

Table I presents two example planning operators for pick-
ing and placing an object encoded using the object-centered
predicates. These predicates permits characterizing important
geometric conditions for the execution of these operators. For
instance, for a picking from top action, the conditions that
the hand is empty and that the top of the object is clear for
grasping are encoded as in hand air and on 20objl air,
respectively, where air is an abstract object indicating that
no object is in contact with the corresponding side. For the
placing action, in turn, the conditions under ?objl air and
on 20bj2 air permit checking that the surfaces of the two
objects that will get in contact are not obstructed.

After a plan is generated, we need to define the mecha-
nisms for plan execution. This could be done using different
strategies, ranging from predefined behaviours (e.g. control
trajectories) to more elaborate methods involving geometric
reasoning and motion planning. In this work, we ground plan
actions using a hierarchical symbol-signal decomposition.

B. Hierarchical Task Decomposition

In [21], we decompose symbolic tasks into rooted trees,
where each node corresponds to a certain robot behavior
activated when a set of pre-conditions are met. In this repre-
sentation, here referred as schema, the task planning reduces
to simple three transversal and logical condition checking.

The correct execution of a behavior modifies the value of
the assigned post-conditions, regulating the execution. This is
computationally effective but rather rigid, i.e. a schema cannot
handle significant variations in the execution context.

We exploit an augmented version of a typical schema where
each node is associated to a particular robot behavior and
it is defined by the 5-tuple B = (Ip, 7s, Pb, Cb, €1), Where [
is a unique label, r, are the pre-conditions or releasers, py
are the post-conditions, ¢, are the child nodes, and e is a
continuous emphasis parameter. The emphasis conveys in the
tree information about the task execution coming from the sen-
sors, allowing for a rapid adaptation of the task execution and
helping to solve possible conflicts generated by multiple be-
haviors active at the same time. In this work, we continuously
monitor the object poses to check the presence of the target
object and plan motion trajectories in object frame. All the
existing schemata are stored into a knowledge base in the form

schema (node_name (Obj),
((child_node_l(Obj), pre_conditions_1),
( ),
(child_node_7j (0Obj), pre_conditions_j)L
node_post_conditions)
schema (child_node_1 (Ob3),( ),
post_conditions_1)

At run-time, we use the unique label of the root node to
query for a specific schema. The task tree is dynamically
instantiated and periodically traversed to monitor the task
execution. Abstract schemata are grounded into concrete robot
motions via kinesthetic teaching. Human demonstrations are
automatically segmented using two simple rules, namely a
new segment is generated if i) the robot enters/leaves the
surveillance area (a sphere of radius 0.2m) of an object or
if ii) the user commands to open/close the gripper. In this
phase, the emphasis is used to assign the generated segments
to the most emphasize node, corresponding to the active
behavior with Obj=closest_obj. In this way, knowledge
is incrementally added by providing new demonstrations.

The outlined approach has the following limitations:

L1 The segmentation strategy generates unnecessary seg-
ments if the robot accidentally enters the proximity area
of non-target objects.

L2 Only the bottom level of the tree is learned from demon-
stration, while higher levels are defined by a domain
expert.

L3 Although the emphasis introduces some flexibility, a tree
remains a relatively rigid structure that cannot consider
significant variations in the executive context.

In this work, such limitations are overcome by combining the
schema with a task planner as detailed in Sec. III.

III. TAMP USING HIERARCHICAL DECOMPOSITION OF
CONTEXTUAL ACTIONS

In this section, we present the strategy to bring together the
task planning approach based on object-centered geometrical
descriptions (Sec. II-A) with the hierarchical decomposition
of tasks using schemata (Sec. II-B). These two approaches are
articulated through a new representation that we denote action
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Fig. 1. General diagram representing the learning (green) and execution (red)
mechanisms to ground plan actions using schemata. For the grounding of
the plan action a¢, the system looks for an active action context in the set
AC for the plan segment (at—1,at,at+1) (Sec. II-A). If no active action
context is found, the system generates a new AC for that plan segment and an
abstract schema (without motion parameters) associated to m. Afterwards, the
system requests for a demonstration of the action at, which is performed using
kinesthetic teaching. The demonstrated motion is segmented and the motion
parameters for each segment are generated (Sec. III-B). If, on the contrary,
an action context gets activated with (az—1, at,at41) the associated schema
m is retrieved from the Schema database and executed (Sec. III-C). Queries
to the schema database are indicated with dashed lines.

context (AC). An AC is a tuple that represents consecutive
actions in a plan and will play a fundamental role in learning
schemata encoding feasible motions for task plan execution.
This section presents the insights of such mechanisms, which
are summarized in Fig. 1.

A. Action Context

We define an action context (AC) as a 4-tuple ac =
{@pre; Gnow, Apost; M}, Where apre, Gnow, and apes; represent
symbolic actions with grounded arguments (see Sec. 1I-A),
and m represents an action grounding mechanism. We use the
notation AC to refer to the set of action contexts. Given a
task plan p = {ag, a1, ...,a1—1,at, Gt41, ..., an }, We say that
an action context is active at time step ¢, if a; = anow,
and the previous and posterior actions in the plan fulfill
ai—1 = Gpre and ay11 = apost, respectively. We refer to
this active action context as act. Active action contexts are
used to execute action a; in a plan p through the action
grounding mechanisms m € acf. Note that, in the general
case, action contexts can be associated to different mechanisms
for grounding symbolic actions: e.g. a plain set of dynamic
movement primitive parameters [24] or a hierarchical task
decomposition. In this work, m identifies the schema used
to execute the action context.

Action context is a newly introduced concept that plays
an important role for the grounding of symbolic actions. For
example, if the action of picking a bottle (a;) is followed
by the action pouring (a;y1), the motion performed should
permit a posterior stable pouring. These specific movements

for picking the bottle might be different if the next action is
just to place the bottle somewhere else. In the same manner,
previous actions also matter for defining adequate motions.
The picking for pouring described before may involve different
motions depending on if the robot picks the bottle after
placing an object to the right or to the left of the bottle. An
example of this situation is shown in Fig. 8. These different
motions will be encoded in different schemata considering the
adequate motion parameters. In general, associating symbolic
actions to schemata through action contexts permits defining
geometric parameters for motion planning depending on the
action intentions and on the ongoing task. This allows for
the generation of feasible trajectories between consecutive
symbolic actions.

B. Learning from human demonstrations

To make our framework suitable for online planning and ex-
ecution in variable scenarios, we define learning mechanisms
that automatically generate action contexts and the associated
schemata every time a new plan segment is observed. These
mechanisms correspond to the green modules in Fig. 1. Given
a task plan p, the context of the action at the current time
t, a;—1,as,a441, 1s used to retrieve the active action context
ac? from the action context set AC. If no action context is
found, which indicates that the given plan segment was never
observed before, a new AC is generated. The newly generated
AC is stored in AC and triggers an instance of schema learn-
ing, where a human demonstration is requested to execute the
action plan according to its context (e.g. pick the bottle from
the table to pour water in the cup). The demonstration is used
to generate a new schema that is stored in the schema database,
associated to the newly generated AC through m. More in de-
tails, the new AC is used to instantiate an abstract schema (see
Fig. 2 left), where the target object is specified by the planner.
The schema has always a TRUE pre-condition, assuming the
relevant preconditions for a successful execution of the schema
were already checked at the task planning level. For instance,
the AC activated for the action pick side bottle table
in a plan segment place top cup table - pick side
bottle table - pour water bottle cup is generated
only if there is a bottle on the table and no object has
been previously grasped. The post-condition of the schema
also comes from the planner and let the system switch to
the next active AC after the correct execution of the current
schema. Therefore, the prior knowledge needed to instantiate
new schemata comes from the task planner and not from an
expert user as in [21] (limitation L2 in Sec. II-B).

The new abstract schema is grounded into a concrete robot
behavior using human demonstrations. The user kinesthetically
guides the robot to show the AC execution (e.g. pick a bottle
as in Fig. 2). The demonstration is automatically segmented
using robot to target object distance and gripper commands
as described in Sec. II-B. The fact that a single target object
is considered for the abstract schema makes the segmentation
strategy more robust, resolving the limitation L1. Indeed, even
if multiple objects are present, we need to monitor only the
target object and trigger new segments when the robot reaches
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Fig. 2. Grounding of the AC into a schema with associated movement
primitives. At run-time, object poses are used to adapt the motion execution.

it. Considering the example in Fig. 2, the first segment is
generated when the robot enters the surveillance area of the
bottle independently from the other objects in the scene.

The generated segments are linked to the abstract schema.
Since the segments are sequentially demonstrated, it is reason-
able to assume that they are sequentially executed. This behav-
ior is obtained by properly defining pre- and post-conditions
that are automatically assigned to the segment nodes. After the
demonstration the schema has J segments (leaves), indicated
as sl (Obj), ---, sJ(Obj), where a segment sj (Obj)
has been demonstrated after s j—1 (Obj) . The post-condition
of each segment sj (Obj) is sj (Obj) .done V j=1,...,J.
The first segment (s1 (Ob 7)) has a TRUE pre-condition (like
sl (bottle) in Fig. 2) and it is then executed first. The
second segment (s2 (Obj)) has sl (Obj) .done as pre-
condition and it is executed after s1 (Ob7j), and so on until
the last segment sJ (Obj) is reached. sJ (Obj) sets the
post-condition of the schema, successfully terminating the
execution of the action context and returning to the planner
that generates the next action context.

The generated segments are also uniquely associated to
motion primitives used to generate motor commands for the
robot. Poses collected during the demonstrations are used to
generate these motion primitives as stable dynamical systems.
Pick and place motions require simple point-to-point motions
which are effectively represented by linear dynamical system
connecting current and goal poses. Other action contexts, like
pouring, require more sophisticated movements that generated
using the dynamic movement primitives (DMPs) framework
[24]. Initial and goal poses, as well as the robot trajectory,
are automatically extracted from the demonstration and used
to fit the DMP. A known problem of DMPs is the trajectory
overshooting when generalizing to different initial/goal pose.
To prevent the overshooting, in [21] the robot first reaches the
surveillance area of the target object with a linear motion and
then uses the DMP. This simple but effective strategy is used
also in this work.

C. Autonomous execution

In case an active action context is found in AC associated
to the observed plan segment, the execution mechanisms
identified by m are triggered (red modules in Fig. 1). First, the

corresponding schema is retrieved from the schema database.
Then, the schema is executed segment by segment using the
associated motion primitives—either DMP or linear system—
and the current pose of the target object for trajectory gener-
ation. Motion trajectories are generated relative to the object
pose and on-line transformed into the robot base frame using
the forward kinematics. In this way, the generated motions
adapt to changes between the demonstrated and the actual
execution context. At run-time, the schema is periodically
traversed to determine the active leaf, i.e. the next segment
that the robot has to execute.

The emphasis parameter, that in this work is the inverse
of the robot-object distance squashed between 0 and 1, is
also periodically updated. In case the object is removed from
the scene or moved to an unreachable position, the schema
execution is preempted and its post-condition left unchanged.
This prevents the robot to execute useless and potentially
dangerous movements. The planner is informed of the failure
through the unchanged post-condition, and it can generate new
action contexts to recover the task. It is worth noticing that
the hierarchical structure described in Sec. II-B has limited
re-planning capabilities (see the limitation L3 in Sec. II-B)
and that the proposed combination of task planning and
schemata contributes to mitigate this limitation. If the schema
ends successfully, the post-condition(s) is set and the planner
proceeds with the next action context. Finally, the object pose,
periodically monitored to update the emphasis, is used to
adjust the motion in case of unexpected perturbations. An
example of this behavior is shown in Sec. IV.

IV. EXPERIMENTS

We evaluate the effectiveness of our approach with a set of
manipulation experiments where a real 7 degrees-of-freedom
robot (Kuka LWR IV) is asked to solve different pouring
or stacking tasks. These tasks require several planning steps
and the execution of complex manipulation actions. In all the
experiments, the schemata are generated from scratch using the
learning mechanisms presented in Sec. III-B. The evaluation of
predicates describing the object configuration space is carried
out as described in Sec. II-A.

The scenario for the stacking task, illustrated in Fig. 5,
comprises 3 boxes, namely the white (whiteB), blue (blueB),
and green (greenB) boxes. In addition to whiteB, blueB,
and greenB, we define the objects tablel, tablem, and
tabler to indicate the left, middle, and right parts of the
table. The table is considered as composed of 3 parts to
facilitate consistency checking for placing actions. The goal
for this task is to arrange the boxes in the configuration
tablem-white-green-blue. For the pouring task (see Fig.
5) we consider a different set of objects to be manipulated: a
bottle bott1le, a white cup whiteC, and a red cup redc. The
goal for this task is to place the white cup on table middle and
fill it with water, while the bottle should be placed on table
right and covered with the red cup. For plan generation, we
use the Fast Downward planner [23]. Initial states are variable
and defined according to the purpose of each experiment.



Number of action contexts and demonstration requests: We
carry out 10 different runs for each of the tasks (stacking and
pouring). Each run consists of solving 50 different planning
problems that are presented to the system in sequence, where
the initial state for each of them is defined from a random
initial configuration of objects. No schemata or action contexts
are initially provided. For each of the experiments, we compute
the accumulated number of action contexts and the ratio of
actions that triggered a demonstration request, calculated as
the total number of requests versus the length of the plan. For
the generation of action contexts in the stacking task, we do
not consider the color of the boxes to favour generalization.

Fig. 3 and 4 present the average and standard deviation of
the 10 runs. We can observe that most of the action contexts
are generated during the initial 20 scenarios, where the ratio
of demonstration drops below 10 % after this point. The
system quickly becomes fully autonomous, executing plans
without the need of further demonstrations. The total average
number of ACs generated for the pouring and stacking tasks
were 66 and 48, respectively. Table II shows two example
plans generated for stacking and pouring tasks, where we
mention the intention of each action in the context of the
plan to provide an intuition of motion dependencies. Snapshots
of the plans execution are shown in Fig. 5. To shed light
on the specific processes that link ACs with schemata, we
present in Fig. 6 a concrete example of a schema associated to

number of ACs

--- Stacking task | |
— Pouring task

0 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

number of scenarios

Fig. 3. Accumulated number of ACs for the stacking (blue) and pouring (red)
tasks. The results present the average and standard deviation of 10 runs, each
of them comprising 50 randomly generated initial states.

T T
--- Stacking task | |
— Pouring task | |

ratio of demonstration request

0 5 10 15 20 25 30 35 40 45 50
number of scenarios

Fig. 4. Ratio of demonstration requests for plans generated in sequence for
the stacking (blue) and pouring (red) tasks.

TABLE II
EXAMPLE PLANS FOR THE STACKING AND POURING TASKS.

Stacking Pouring
pk top whiteB blueB (pick2place) pk bottom redC bottle (pick2place)
pl top whiteB tabler (placeon) pl bottom redC tablel (placeon)
pk top blueB greenB (pick2place) pk top whiteC tablem (pick2rotate)
pl top blueB tablel (placeon) pl top whiteC tablem (placerotated)

pk top greenB tablem (pick2place) pk side bottle tabler
pl top greenB blueB (placeon)

(pick2pour)
pour water whiteC bottle (pour)

pk top whiteB tabler (pick2place) pl side bottle tabler (placeon)
pl top whiteB tablem (placeon) pk bottom redC tablel (pick2place)
pk top greenB blueB (pick2place) pl bottom redC bottle (placeon)

pl top greenB whiteB
pk top blueB tablel
pl top blueB greenB

(placeon)
(pick2place)
(placeon)

(b) Pouring

Fig. 5. Snapshots of the executions of the box stacking and the pouring tasks
for the plans presented in Table II.

the AC place top redC tablem - pick side bottle
tabler - pour water bottle cup. If this schema is se-
lected for execution, it is instantiated and executed segment
by segment as discussed in Sec. III-C. If the query returns
an empty schema (the schema has not been generated so far),
the learning from demonstration mechanism described in Sec.
III-B is triggered. After demonstration, the learned schema
with associated motion primitives is stored in the database
and the task execution continues from the next AC. This
interactive learning and execution mechanism allows us to
reuse existing schemata in different tasks and to incrementally
add new schemata when needed for the task execution.

Computation time and scalability: To assess the scalability
of our approach to different complexity problems, we present
in Fig. 7 the computation time for different plan lengths
corresponding to all the plans generated in the experiments
of Fig. 3 and 4. We can see that the most demanding planning
problem, comprising 17 steps and corresponding to the pouring
task (red crosses), does not exceed a computation time of
10 ms. It is worth noticing that we have similar computation
times when planning with single actions.

The schema is a reactive system that generates and eventu-
ally re-plan the motion trajectory at each time step. However,
to provide a reference of the computation effort required for
grounding a plan action, we measure the total computation
time for grounding an AC into a schema. Grounding the AC
into a schema requires to: query the schema from a database
(= 5.7ms independently of the schema), traverse the schema
tree to determine the motion primitive to execute (= 10ms
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Fig. 6. Action context with associated schema for a pick2pour action.
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Fig. 7. Computation time for the plans generated in the experiments of Fig.
3 and 4 for the stacking (blue) and pouring (red) tasks.

independently of the schema)!, load the motion primitive,
determine the goal pose from the current object pose, and
generate the entire robot trajectory (= 10.6ms with DMP,
~ 5.1 ms with a linear dynamical system).

Single actions vs. action contexts: To assess the validity
of our framework to select feasible motions compatible with
consecutive actions in the plan, we perform another set of
real-robot experiments where the schema to be executed is
selected only depending on the current action in the plan,
without considering what action was executed before and what
action comes next. We refer to these experiments as Single
Action (SA) experiments. The results of the SA experiments
are contrasted with those obtained using action contexts (ACs).
The experiments comprises 30 consecutive pouring tasks with
random initial configuration of objects. The results are pre-
sented in Table III. We compute the total number of failed
executions and the rate of successful plans, i.e. presenting no
execution failures. The single action approach (SA) produced
15 execution failures (see Fig. 8 for a failure example), where
50 % of the total plans were completed without failure. The

'A small schema like that in Fig. 6 can be traversed in less than 1 ms.
However, high loop frequencies make the communication with the robot over
ROS topics unreliable.

TABLE III
RESULTS FOR THE POURING TASK USING SINGLE ACTIONS (SA) AND
ACTION CONTEXTS (AC).

Planning Total Total Success

Approach | Demos | Failures Rate
SA 25 15 0.5
AC 66 0 1

(©)

Fig. 8. Snapshots of two example scenarios for the pouring task. (a) Both
AC and SA generate feasible plans. (b)—(c) In the same situation, the plan
generated with SA is unfeasible (b) while AC generates a feasible plan (c).

approach using ACs, in contrast, was able to execute all
the randomly generated tasks successfully, with no execution
failures, i.e. 100 % success rate. As expected, the total number
of requested demonstration was higher in the AC approach
(66 requests) compared to the SA approach (25 requests). The
AC (with three actions) yields more possible combinations,
which requires more human demonstrations than the SA with a
single action. However, the difference is lower than an order of
magnitude, and the number of requests in both cases represent
a small percentage of the total number of actions executed or
demonstrated in the 30 plans (350 actions).

To provide a failure example in the SA case, Fig. 8
shows two example scenarios for the pouring task that are
presented sequentially to the robot. In scenario A (Fig. 8a),
the system starts with no schema in the database and requests
demonstrations. After the demonstration, successful executions
were carried out using both the SA and AC approaches. When
the system is presented with scenario B (Fig. 8b-c) the SA
approach used the already learned action for picking a bottle
but fails in its execution, hitting the bottle before grasping
it (Fig. 8b). This is because the SA approach is not able to
identify the different motion dependencies between the picking
of the bottle and the previous and posterior actions in scenario
A and B. In contrast, the AC approach successfully considers
these motion dependencies by defining the motion parameters
for picking the bottle according to what action was executed
before and what action comes next (Fig. 8c).



External perturbation

Fig. 9. Snapshots of the schema execution under an external perturbation
for the AC place side bottle tabler - pick bottom
redC tablel - place bottom redC bottle. The reaching
motion is adapted on-line without calling the planner.

External perturbations: This test shows how the action
execution monitoring can be exploited to cope with external
perturbations. As a proof of concept, in Fig. 9 we show a
local perturbation in the task execution. While the robot is
approaching the red cup, this is moved away from its current
position (middle of Fig. 9). The monitoring system detects this
occurrence and the updated object pose is then used to adapt
the execution of the next segment without the need of call of
the task planner. Although preliminary, this result shows an
interesting feature of our system.

V. CONCLUSIONS AND FUTURE WORK

We presented a TAMP approach that efficiently generates
feasible motions for the execution of manipulation tasks.
Task planning is based on an object-centered description of
geometric relations able to consistently represent changes
with actions in the objects configuration space. This permits
reasoning about feasible geometric changes already at the task
planning level. For plan execution, we devise an approach
that considers dependencies between consecutive actions in a
plan to generate feasible motions. The approach is based on a
new structure called Action Context, that associates symbolic
actions to grounding mechanisms depending on the context
of an action in a plan: what action comes next and what
action was executed before. Motion parameters are stored
in the leaves of a tree-based hierarchical decomposition of
symbolic actions that is learned from demonstration. Our
framework provides an appealing low-complexity alternative
to existing TAMP approaches. However, it is only able to con-
sider motion dependencies between consecutive actions, which
may produce planning impasses in applications with longer
horizon dependencies. On the other hand, action contexts use a
symbolic representation to select motion parameters, hindering
generalization over objects requiring the same manipulations
but having different labels. Future work will address these
limitations and extend the strategies to handle disturbances
using the proposed framework.
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