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Dense isometric non-rigid shape-from-motion
based on graph optimization and edge selection

Yongbo Chen1, Liang Zhao1, Yanhao Zhang1, and Shoudong Huang1

Abstract—In this letter, we propose a novel framework for
dense isometric non-rigid shape-from-motion (Iso-NRSfM) based
on graph topology and edge selection. A weighted undirected
graph, of which nodes, edges, and weighted values are respec-
tively the images, the image warps, and the number of the
common features, is built. An edge selection algorithm based
on maximum spanning tree and sub-modular optimization is
presented to pick out the well-connected sub-graph for the
warps with multiple images. Using the infinitesimal planarity
assumption, the Iso-NRSfM problem is formulated as a graph
optimization problem with the virtual measurements, which are
based on metric tensor and Christoffel Symbol, and the variables
related to the derivatives of the constructed points along the
surface. The solution of this graph optimization problem directly
leads to the normal field of the shape. Then, using a separable
iterative optimization method, we obtain the dense point cloud
with texture corresponding to the deformable shape robustly. In
the experiments, the proposed method outperforms existing work
in terms of constructed accuracy, especially when there exists
missing/appearing (changing) data, noisy data and outliers.

Index Terms—Dense Iso-NRSfM, Edge Selection, Graph Op-
timization, Metric Tensor, and Christoffel Symbol.

I. INTRODUCTION

NON-RIGID Shape-from-Motion (NRSfM), which is the
problem of reconstructing the 3D shapes of a deforming

object from a set of monocular images, plays a very important
role in computer vision. For the NRSfM, the recovered 3D
shapes are in the local camera coordinates, which means
that the camera motion is coupled in the deformations. This
point is greatly similar to the visual measurements of the
deformable visual SLAM algorithms, of which the goal is
to simultaneously locate a robot using a visual sensor and
map its surrounding area in a partly or fully deforming
environments [1], [2]. In other words, the NRSfM algorithm
may be an important way to deal with the mapping part of
the deformable visual SLAM problem. If we have some other
tools to localize the robot poses, the NRSfM algorithms will
estimate the more consistent mapping results by fusing the
information of the robot poses. Hence, we consider it as a
potential tool in the research of the deformable visual SLAM.

Because of the non-rigid deformation, many traditional
Structure-from-Motion methods [3] for the rigid objects cannot
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be used to solve the NRSfM problem directly. In fact, the
NRSfM problem is un-solvable without introducing other con-
straints, because the same images may be proposed by totally
different deformations of the objects [4]. Hence, some con-
straints on the deformation model of the object are proposed
to limit the set of solutions. The commonly used constraints
include low-rank trajectory basis [5], low-rank shape basis [6],
isometry [7] and so on. Due to the good approximation to
many real deformable objects, like: paper, rug, flag and bag,
the isometry constraints are widely used [8], [9]. Because
of the lack of estimating information, the existing methods
tend to be inaccurate, ill-posedness, and un-robust for the
missing/appearing and noisy data. In order to overcome these
challenges, this letter aims to use the well-connect graph
for the image warps, which are the geometric transformation
functions mapping points between 2D images of a deforming
surface, and the robust graph optimization to achieve high
efficiency in improving the estimation accuracy and good
robustness in terms of the data changing.

A. Related work

NRSfM is still an open problem because of the complexity
of deformations and less reliable information. Its usual inputs
and outputs are respectively multiple calibrated images from
a monocular camera and the time-varying 3D shapes of the
deformed object. Popular frameworks include statistics-based
methods and physics-based methods [10].

The statistics-based methods, which commonly assume a
low-dimensional space of the deformed shapes using low-
rank shape [11], temporal smoothness [12], or low-rank point
trajectory [13], usually require a large number of images as
inputs to recover all parameters corresponding to different low-
rank bases. The authors in [14] propose a novel 3D shape
trajectory method that solves for the deformable structure as
the smooth time-trajectory of a single point in a linear shape
space. In [15], the authors summarize the low-rank trajectory-
based representations and the low-rank shape-based repre-
sentations using a force-based representation for the NRSfM
problem. This statistics-based methods can well handle small
and regular objects such as human faces, but are not very
suitable for the objects with very large shape spaces such as
pieces of flag, which may cause the large error.

The physics-based methods, which introduce some ge-
ometry or physical constraints, like isometric manifold [7],
inextensibility [4], local planarity [9] and energy minimiza-
tion [16], for the deformed shapes without using the low-rank
assumption, can commonly handle larger or more complex
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deformations. The authors [4] present a global and convex
Second-Order Cone Programming (SOCP) formulation for the
template-less 3D reconstruction of a deforming object with
the perspective camera using a convex relaxation of isome-
try, called inextensibility constraint. Because many physical
concepts have the specific limitations for the local geometry
property (like derivative) of the 3D shape, most physics-
based methods are explored based on the mesh model or a
discrete neighborhood-aware point cloud model [10]. Thus
the physics-based methods can deal with the more complex
deformations and also overcome the missing data problem.
However, restricted to the accuracy of the mesh and point
cloud models, the recovery accuracy performance of the
physics-based methods is also limited.

B. Overview of the approach

Our framework (Fig. 1) is based on two un-directed graphs,
which are respectively used in the image warps and the 3D
features reconstruction. Using any cheap feature matching
method, we can get a complete weighted graph, of which the
nodes, the edges, and the weights are respectively the input
monocular images, the image pairs based on feature matching,
and the number of the common features. For this complete
graph, given a fixed edge number, we seek a sub-graph to max-
imize its D-optimal design metric. This measurement (edge)
selection problem can be solved based on Kruskal’s maximum
spanning tree approach [17] and the sub-modular optimization
method [18]. Based on the selected well-connected sub-graph,
for each two connected images, its corresponding image warp
is computed using the matched features and the bicubic B-
splines. For the other graph corresponding to 3D features
reconstruction, using the infinitesimal planarity and isometric
assumptions, we build a sparse graph optimization problem
of which the variables are the directional derivatives of the
common features of each image pair and the virtual measure-
ments are their relationship obtained by metric tensor (MT)
and Christoffel Symbol (CS). Its solution directly leads to the
normal field of the 3D recovery surface and further generates
the dense colorless point cloud. Finally, so as to texture these
points, the transformation between the 3D point cloud and
the 2D features of the images are computed using a novel
separable iterative optimization method.

C. Paper organization and contributions

This letter presents a dense physics-based Iso-NRSfM
framework for the recovery of the deformable shapes using
graph optimization and edge selection. In Section II, we
present some preliminaries in the NRSfM problem and an
accurate image warp method based on the edge selection. A
graph optimization based framework is proposed in Section III.
In Section IV, we present a non-linear least squares formula-
tion to generate the colorful dense point clouds. Simulations
and experiments are presented to validate the practicality of
this framework and its high-performance in Section V. The
main contributions of this work are as follows:
� Novel graph optimization framework using MT and CS

for obtaining the normal field of the deformed shapes.

� Efficient edge selection method using maximum spanning
tree and sub-modular optimization to obtain the well-
connected graph structure for robust image warps.

� Robust separable iterative optimization method for tex-
turing the dense point cloud.

II. PRELIMINARIES AND IMAGE WARPS

A. Models Preliminaries

As shown in Fig. 2, assuming that the multiple deformation
surfaces are Riemannian manifolds, using the perspective
projection (Π1, Π2, · · · ), we can obtain the monocular
images (I1, I2, · · · ). The inverse mapping of the perspective
projection Πi is named as the image embedding Φi : Ii ∈
R2 → Mi ∈ R3. Based on the matched features, the dense
geometric transformation between the pair of images Ii and
Ij is denoted by the image warps functions ηij and ηji. Our
NRSfM goal is to compute the deformation mapping Ψij .

Based on the perspective camera, its perspective projection
mapping Πi : z → x is defined as:

x = (x1, x2)> = Πi(z) = (z1/z3, z2/z3)>, (1)

where z = (z1, z2, z3)>, z3 > 0 is a 3D point, the image em-
bedding, which is its inverse mapping perspective projection
Φi from 2D feature pixels x to z, is defined as:

z = Φi ◦Πi(z) = Φi(x) = αi(x1, x2)
−1

(x1, x2, 1)>, (2)

where αi(x1, x2) is the inverse of the depth of the feature
corresponding to the i-th image. The image embedding aims
to regard the depth of the i-th feature as a smooth function.

In this work, we use the infinitesimal planarity assump-
tion [9], which means that a surface at every point z is
planar. Thus, we have the plane equation n>z + d = 0,
where n = (n1, n2, n3)> is the normal of the small plane.
By introducing the mapping (2) into this equation, we have:

αi(x1, x2) = −d−1(n1x1 + n2x2 + n3). (3)

The Jacobian matrix JΦi
of the image embedding Φi is:

JΦi=
1

α2
i

 αi − x1αi,1 −x1αi,2
−x2αi,1 αi − x2αi,2
−αi,1 −αi,2

 , (4)

where αi(x1, x2) is written as αi for simplification, αi,1 =
∂αi

∂x1
= −n1

d and αi,2 = ∂αi

∂x2
= −n2

d . Based on this
assumption, we have the second-order derivatives αi,11 =

αi,12 = αi,21 = αi,22 = 0, where αi,kl means ∂2αi

∂xk∂xl
.

B. Accurate image warp based on edge selection

Our Iso-NRSfM method is a point-wise method. The differ-
ent features are solved decoupling after using the image warps,
which is the only step of this algorithm shown the information
connection between different features. Thus, the accuracy of
the image warp will decide the accuracy of the NRSfM results.
In this letter, we use the image warps method based on 2D
Schwarzian derivatives [19]. Under the infinitesimal planarity
assumption, this method aims to find the optimal warp between
two images of which the objective function is the combination
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Fig. 1. Structure of our dense Iso-NRSfM method. Fig. 2. Models and maps in NRSfM problem.

of the Schwarzian penalty εse[η] and the transfer error between
point correspondences εd[η], satisfying:

min
η
εd[η] + λεse[η], (5)

where λ is a hyperparameter which weighs the influence of
the Schwarzian derivatives over the data term. More details
are shown in [19]. Because of the non-convexity, the image
warps are solved using the Levenberg-Marquardt algorithm.

The number and the distribution of the matched features will
decide the accuracy of the image warps. It is hard to guarantee
the geometry distribution of the features, so we consider
the number of the common features only by introducing a
complete undirected graph Gc = (Vc, Ec, wc) of which the
edge value is the number of the common matched features of
the image pair. Then, we need to pick out a well-connected
sub-graph and then compute the corresponding image warps.

The D-optimal design metric, which is to evaluate the log-
determinant function of the reduced Laplacian matrix of a
graph, is used to select the sub-graph. The node and edge
numbers of Gc are |Gc| = nc and |Ec| = nc(nc − 1)/2. So
as to recover all shapes, at least nc − 1 edges are required
to connect all images, which is called as spanning tree. The
spanning tree of a graph T is a subgraph that is a tree and
covers all nodes of Gc. We need the following definition:

Definition 2.1: Let TG be the set of all spanning trees of
G. The weighted number of G, called tree-connectivity [20],
is defined as:

tw(G) ,
∑
T ∈TG

V(T ), V(T ) =
∏

e∈E(T )

w(e), (6)

where V(T ) : TG → R+ is the value of a spanning tree
T ∈ TG , E(T ) represents the set of edges in T .

A result of tree-connectivity in graph theory is as follows:
Theorem 2.1: (Weighted Matrix-Tree Theorem [18]). For a

simple weighted graph G = (V, E , w) with w : E → R+, we
have tw(G) = det(LGw), where LGw is the reduced weighted
Laplacian matrix of G.

Hence, for the edge selection problem, we can easily obtain
the following Theorem 2.2.

Theorem 2.2: For a graph G with positive weights, to select
the optimal spanning tree based on the D-optimal design
metric is equal to select the maximum spanning tree.

Proof: Because of the monotonicity of the log function,
for any tree, to maximize the D-optimality metric is same
to optimize the tree connectivity based on Theorem 2.1. For
a spanning tree T ∈ TG , we have: tw(T ) = V(T ) =∏
e∈E(T ) w(e). The maximum spanning tree is a spanning tree

Algorithm 1: Edge selection method
Input: The complete graph Gc = (Vc, Ec, wc), the number of

the edges N = nc − 1 + k
Output: The optimal sub-graph Gopt with N edges

1 Topt = Kruskal MST (Gc); //Using the Kruskal’s algorithm
to select the optimal spanning tree.

2 Gopt ← Topt;
3 if k == 0 then
4 else if k > 0 then
5 Es ← E(Gc/Gopt); Lb

w ← LToptw ;
6 for l = 1 : 1 : k do
7 //Greedy-based method.
8 eopt = f1−ESP (Es,Lb

w); //Use Algorithm 2.
9 Gopt ← Gopt ∪ {eopt}, Es ← Es/{eopt}, update Lb

w;
10 end
11 end
12 return Gopt

of a weighted graph T having maximum weights, so we have:
max
T ∈TG

log(det(LGw))⇔ max
T ∈TG

tw(T )⇔ max
T ∈TG

V(T ).

Hence, if the edge number is nc − 1, we can pick out
the maximum spanning tree using the Kruskal’s maximum
spanning tree algorithm. If the edge number is allowed to be
larger than nc − 1, we can build a stronger sub-graph Gs for
the image warps. Based on the maximum spanning tree, this
new problem becomes the famous k edge selection problem
(k−ESP) [20], of which the aim is to find k additional edges
to a given graph that leads to the highest increase in tree
connectivity of the new pose graph. The k-ESP problem is:

max
Ek∈E(Gc/Topt)

tw(Topt ∪ Ek), s.t. |Ek| = k. (7)

where E(Gc/Topt) is a set of new candidate edges which
belongs to the complete graph Gc, but does not belong to the
maximum spanning tree Topt.

Theorem 2.3: ([20]) The k-ESP problem is an instance
of a monotone sub-modular function maximization problem
subject to a cardinality constraint.

For the sub-modular maximization problem with a cardinal-
ity constraint, the greedy-based method is widely used with
some performance guarantee. The k-ESP problem is divided
into k new 1-ESP sub-problems. As an example, we explain
the operations in the first 1-ESP sub-problem. Using this
exhaustive method, the optimal edge for 1-ESP can be found
by exhaustively computing the tree connectivity for every
candidate edge es ∈ Es, leading to a new graph with nodes V
and edges Topt∪{es}. For computational efficiency, the 1-ESP
is written as:

max
es∈Es

f(es) = log(det(LToptw + asw(es)a
>
s )), (8)
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Algorithm 2: 1-ESP f1−ESP
Input: The candidate edge set Es and the weigted Laplacian

matrix Lb
w for the base graph

Output: The optimal edge e∗s
1 porder = AMDP (Lb

w); //Column approximate minimum
degree permutation

2 Hb = Cholesky(Lb
w(porder,porder));

3 v ← cs etree(Hb,′ col′); //Return the elimination tree of
Hb>Hb for rank-1 update CholeskyUpdate

4 f∗ ← 0
5 for all es in Es do
6 Generate as based on es, ās ← w(es)

1
2as;

7 H̄b = CholeskyUpdate(Hb, ās,v);
8 f ← 2

∑
i log(H̄b)i,i;

9 if f > f∗ then
10 f∗ ← f , e∗s ← es;
11 end
12 end
13 return e∗s

where as is a column in the incidence matrix corresponding
to new added edge, and w(es) is the edge weight corre-
sponding to the edge es. f(es) can be calculated by a rank-
1 update to the reduced weighted Laplacian matrix setting
ās = asw(es)

1
2 , LToptw = HToptHTopt

>.1

Overall, our edge selection method including the maximum
spanning tree and the k-ESP problem is summarized in Al-
gorithm 1. For the obtained well-connected sub-graph, based
on its edges, we can compute the corresponding image wraps
from the small index image to the large index image.

III. ISO-NRSFM ALGORITHM

A. Virtual measurements based on metric tensor and CS

For a smooth mapping, we can define its metric tensor
and Christoffel Symbols, which are two properties in the
Riemannian manifolds. They are introduced in the NRSfM
problem by [8] to describe the mappings in Fig. 2.

The metric tensor of the mapping Φi is defined as:

g[Φi] , J>Φi
JΦi

. (9)

Let k1 =
αi,1

αi
and k2 =

αi,2

αi
, introducing the Jacobian

matrix of the perspective projection (4) into the definition of
the metric tensor, for the mapping Φi, we have:

g[Φi] = J>Φi
JΦi

=

[
g11[Φj ] g12[Φi]
g12[Φi] g22[Φi]

]
,

g11[Φi] = α−2
i (k2

1 + (k1x1 − 1)2 + (k1x2)2),

g12[Φi] = α−2
i (k1k2(1 + x2

1 + x2
2)− k2x1 − k1x2),

g22[Φi] = α−2
i (k2

2 + (k2x2 − 1)2 + (k2x1)2).

(10)

The (m,n)-th element Γpmn[Φi] of two 2 × 2 CS metrics
(p = 1, 2) of the mapping Φi, which represents the change of
the metric tensors, is defined as:

Γpmn[Φi] ,
2∑
p=1

2∑
m=1

2∑
n=1

2∑
l=1

1

2
gpl[Φi] (glm,n[Φi]

+gln,m[Φi]− gmn,l[Φi]) ,

(11)

1‘SuiteSparse’ library [21] provides efficient subroutines for sparse rank-1
Cholesky update including cs etree and CholeskyUpdate in Algorithm 2.

where gpl[Φi] is the (p, l)-th element of the 2 × 2 inverse
matrix of MT g[Φi]; gmn,l[Φi] is the partial derivative of the
(m,n)-th element of MT g[Φi] along the l-th direction.

Based on the infinitesimal planarity assumption, the CS
matrices of the mapping Φi can be re-written as:

Γ1[Φi] =

[
−2k1 −k2

−k2 0

]
, Γ2[Φi] =

[
0 −k1

−k1 −2k2

]
.

(12)
In Fig. 2, for the image mappings Φi and Φj , we can define

their metric tensors and CS: g[Φi], g[Φj ], Γ1[Φi], Γ1[Φj ],
Γ2[Φi], and Γ2[Φj ] using (10) and (12). Naturally, we have
the mapping Φj satisfying: Φj = Ψij ◦ Φi ◦ ηji and the
Jacobian matrices following: JΦj = JΨijJΦiJηji , so its MT
is: g[Φj ] = J>Φj

JΦj = J>ηjiJ
>
Φi
J>Ψij

JΨijJΦiJηji .
Based on the isometric assumption on the mapping Ψij

from i-th deformable shape Mi to j-th deformable shape Mj

(J>Ψij
JΨij

= I3×3), we have the following theorem:
Theorem 3.1: Let Ψij be an isometric mapping, then

gmn[Φj ] = gmn[Φi ◦ ηji] and Γpmn[Φj ] = Γpmn[Φi ◦ ηji] with
(i, j) ∈ [1, N ]× [1, N ] [7].

Let’s further consider the composite function Φi◦ηji, based
on [8], its MT and CS can be written by:

gst[Φi ◦ ηji] =

2∑
m=1

2∑
n=1

∂xm
∂ys

∂xn
∂yt

gmn[Φi],

Γpst[Φi ◦ ηji] =

2∑
p=1

2∑
m=1

2∑
n=1

2∑
l=1

(
∂xm
∂ys

∂xn
∂yt

Γpmn[Φi]

· ∂yq
∂xp

+
∂yq
∂xl

∂2xl
∂ysyt

),

(13)

Combining Theorem 3.1 and the equation (12) related
to the CS, we can get the first two virtual measurements
f1(k1, k2, k̄1, k̄2) = 0 and f2(k1, k2, k̄1, k̄2) = 0 about the
matched feature corresponding to the i-th and j-th images:

∂x1

∂y1
k1 +

∂x2

∂y1
k2 −

∂y2

∂x1

∂2x1

∂y1y2
− ∂y2

∂x2

∂2x2

∂y1y2
= k̄1,

∂x1

∂y2
k1 +

∂x2

∂y2
k2 −

∂y1

∂x1

∂2x1

∂y1y2
− ∂y1

∂x2

∂2x2

∂y1y2
= k̄2,

(14)

where k̄1 =
αj,1

αj
and k̄2 =

αj,2

αj
are corresponding to the j-th

image, which are the linear combinations of k1 and k2, ∂xm

∂yn
,

∂ym
∂xn

and ∂2xm

∂y1y2
are obtained based on the derivatives of the

image warps and its inverse mapping [10].
Let Gmn = gmn[Φi]α

2
i and Ḡmn = gmn[Φj ]α

2
j , com-

bining Theorem 3.1 and the equation (10) related to the
metric tensor, then we can get the other measurements
f3(k1, k2, k̄1, k̄2) = 0 and f4(k1, k2, k̄1, k̄2) = 0 [7]:

2∑
m=1

2∑
n=1

(
∂xm
∂y1

∂xn
∂y1

GmnḠ12 −
∂xm
∂y1

∂xn
∂y2

GmnḠ11) = 0,

2∑
m=1

2∑
n=1

(
∂xm
∂y1

∂xn
∂y1

GmnḠ22 −
∂xm
∂y2

∂xn
∂y2

GmnḠ11) = 0.

(15)
Finally, we can get the above four measurements functions

(14) and (15) for every image pair of which the coefficient
has computed the image warp in Section II.
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B. Point-wise solution using graph optimization

For i-th feature in the j-th shape, we can define two
variables k

(i,j)
1 and k

(i,j)
2 similar to k1 and k2. Based on

Section II-B, given the edge number N , we can generate a
well-connected graph Gopt using edge selection. Assuming
that all features are observed from all images, the NRSfM
problem aims to compute Np 3D points from Nm monocular
images, which means that, using the coefficients from the
image warps, this problem can be written as an optimization
problem of which the variable dimension is 2NpNm. For e-th
edge (ie, je) ∈ Gopt, considering i-th feature in ie-th and je-
th shapes, we can also write four virtual measurements based
on (14) and (15). Finally, as shown in Fig. 3, different from [8],
we formulate a non-linear least squares problem:

min
∑

(ie,je)∈Gopt

Np∑
i=1

ω(e)

4∑
j=1

‖f̄j(ie, je, i)‖2, (16)

where f̄j(ie, je, i) = fj(k
(i,ie)
1 , k

(i,ie)
2 , k

(i,je)
1 , k

(i,je)
2 ). Exploit-

ing its sparseness, we can easily solve it using the trust-region-
reflective algorithm with the given sparse Jacobian matrix in
seconds when 2NpNm is limited in 105.

Fig. 3. NRSfM solution based on graph optimization.

After computing all parameters k(i,j)
1 and k(i,j)

2 , introducing
them in the Jacobian matrix JΦi

of the image embedding (4),
we obtain the normals by normalizing the cross-product of
two columns of the Jacobian matrix and recover the surfaces
by integrating the normal fields using [9].

IV. DENSE COLORED POINT CLOUD GENERATION

In order to texture the generated dense point clouds, their
corresponding pixels on the image are found. After applying
the translation, scale adjustment and perspective projection for
the 3D recovered points, we seek to minimize the distances
between the transformed 2D features and the 2D features on
the images. For one shape, we have:

min
s,T

fd(s,T ) =

Np∑
i=1

‖sfper(pri − T )− pfi ‖
2, (17)

where s means the scale, T is the translations to transform
the point cloud, fper(?) is the perspective projection function
shown in (1), pri means the i-th 3D recovered point, pfi is its
corresponding 2D detected features on the image.

Because of the non-convexity and the different scales of
s and T , an algorithm for solving problem (17) can be
easily trapped into a local minimum. We use the separable

way to solve it. Given a rough initialization2, the problem is
considered as the single-variable-only minimization problem.
With the given Jacobian matrix and limited iterations, we can
robustly and quickly compute its solution using Algorithm 3.
Finally, all points are transformed to the 2D image coordinate
and their colors are found by the nearest pixels.

Algorithm 3: Solution of the optimization problem (17)
Input: A rough initialization for s0 and T0

Output: The optimized solution s∗ and T ∗

1 sk ← s0, Tk ← T0;
2 while ‖sk+1 − sk‖+ ‖Tk+1 − Tk‖ < κ do
3 srange ← [clbsk, cubsk], 0 < clb < 1, cub > 1
4 sk+1 = min

sk∈srange

fd(sk,Tk);

5 Tk+1 = min
Tk

fd(sk,Tk);

6 end
7 s∗ ← sk+1, T ∗ ← Tk+1;
8 return s∗, T ∗

V. SIMULATIONS AND EXPERIMENTS

In this section, we implement simulations and experiments
with synthetic and real datasets using MATLAB on a Dell
E5570 laptop with an Intel Core i5-6500 3.20 GHz proces-
sor. We compare our method with two other state-of-the-art
NRSfM methods iso [7] and infP [8], which were shown to
have better performances than other six algorithms [4], [5], [9],
[22], [23], [24], by the shape error (mean difference between
obtained and ground truth normals in degrees) and % 3D
error3, often used in the NRSfM literature [7]. We also output
the dense colorful point clouds for the real datasets.

A. Simulation with synthetic data
In this part, we simulate two synthetic datasets with 10 de-

forming scenes isometrically using the perspective projection
model.

The first dataset is to simulate the V-shape folding paper
with multiple features connected by a small circular arc
surface. The second one is to simulate the random scenes of
the J-shape deforming paper, which is obtained by connecting
a plane and a circular arc surface with small curvature.
The deformations include many different folding angles. The
reconstruct results for four shapes are shown in Fig. 4. Based
on the whole sequential images, the comparison results for
each image using three methods are shown in Fig. 5 4.

2The rough initialization of the scale s0 is based on the ratio between the
maximal distance of the 2D features and the maximal horizontal distance of
the 3D recovered points. The initial value of the translation T0 is zero vector.

3The % 3D error of the i-th shape is defined as: % 3D errori =
meani

√
meanw(‖pr(i)−pGT (i)‖2)

maxw(maxw
i (pGT (i))−minw

i (pGT (i)))
, where pr(i) ∈ R3×Np and

pGT (i) ∈ R3×Np are the obtained coordinate and the ground truth of the
recovery points in the i-th shape after using the scale and transformation
adjustions. ‖‖2 is performed for every compponent similar to .2 in MATLAB.
meani(?) ∈ R denotes the average function of all points in the i-th
shape, meanw(?) ∈ RNp denotes the average function of the different
components for every point, maxw(?) ∈ R is the maximal element in a
vector, maxw

i (?) ∈ R3 and minw
i (?) ∈ R3 are respectively the maximal and

minimal values of all points in different components. The physical meanings
of the numerator and the denominator of this definition are respectively the
average error and the shape scale in different components.

4In all our simulations, we find that the infP method and iso method show
the simular performances, so their result curves commonly stack together.
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(a) Shape 6 (b) Shape 9 (c) Shape 6 (d) Shape 9
Fig. 4. NRSfM ground truth (green) data and recovery results (red). First
dataset: (a) and (b); Second dataset: (c) and (b).

(a) First dataset (b) Second dataset
Fig. 5. Comparison result of the shape error (degrees) and % 3D errori.
For the first dataset, our proposed method shows better performance than the
others except the 8-th and 9-th images. For the second one, we find that the iso
method fails to deal with this dataset and cannot obtain the recovery results.
We also find that our method has some advantages compared with the infP
in terms of the shape and % 3D errors.

We present the comparison results with the changing data
and the additional graph edges. Table I shows the mean %3D
error (in %) and the mean shape error (in ◦) obtained on two
synthetic datasets (S1 is the first dataset and S2 is the second
one) when 0-50% point data are missing from every image,
including the first image. When a point is missing in the first
image and is not missing in others, it is considered as an
appearing point5. In Table I, ours and +3 edges respectively
mean our method with nc− 1 = 9 and nc− 1 + 3 = 12 edges
for the image warps. The result shows that our methods are
better than the other one in terms of the data changing. The
reasons of the good robustness of our method are as follows.

The infP method aims to get the image warps between the
first image and the other images, then derive a system of two
quartics in two variables for each image pair and finally solve
the sum-of-squares of these polynomials of which the variables
are only corresponding to the first image. Its structure is the
star-like graph with the first image as the graph center. It is not
based on the graph optimization. We improve the infP method
on the following points.
� Balance the importances of the MT and the CS: The

infP method introduces the CS constraints into the MT
constraints to get the minimization of the sum-of-squares,
which means that the CS constraints will be certainly
satisfied and the metric tensors are not. In our method,
we consider them as the measurements, minimize them
equally, and introduce the graph optimization idea.

� Strong graph structure: By using the graph optimization,
every two images are possible to make connection which

5The infP and iso methods cannot deal with the appearing points case, so
we delete the features, which are not detected by the first image for these
two methods, in the recovery shape and the error computation. Our method
can easily deal with the appearing points, hence, these points are remained.
In fact, if we conisder the errors of these deleting points for the infP and iso
methods, our advantage shown in Table I and II will be larger.

TABLE I
COMPARISON USING MISSING AND APPEARING DATA

Missing infP ours +3 edges

S1

0% 1.16%-8.24◦ 1.00%-7.90◦ 1.00%-7.90◦

10% 1.34%-9.15◦ 0.85%-6.73◦ 0.91%-7.17◦

20% 1.71%-10.77◦ 1.02%-7.67◦ 0.97%-7.54◦

30% 2.25%-13.31◦ 1.14%-8.44◦ 1.10%-8.39◦

40% 2.74%-15.85◦ 1.36%-9.33◦ 1.31%-8.99◦

50% 3.41%-19.14◦ 1.17%-7.91◦ 1.25%-8.93◦

S2

0% 0.61%-5.55◦ 0.60%-5.49◦ 0.60%-5.49◦

10% 0.60%-5.36◦ 0.61%-5.50◦ 0.60%-5.49◦

20% 0.58%-5.36◦ 0.56%-5.32◦ 0.55%-5.39◦

30% 0.67%-6.08◦ 0.67%-6.15◦ 0.66%-6.10◦

40% 0.65%-5.41◦ 0.62%-5.30◦ 0.61%-5.42◦

50% 0.71%-6.10◦ 0.68%-5.88◦ 0.66%-5.79◦

leads to the introducing of the edge selection method.
Meanwhile, the features in every image will be fully used
instead of only using the sub-set of the features of the
first images. We have the good graph structure selected by
the edge selection to deal with the missing and appearing
instead of the star-like shape.

When there are no missing data, the weights of all edges of
the complete graph Gc are equal. Based on Theorem 2.2, the
tree-connectivities of all spanning trees are the same. Hence,
using our edge selection method with 9 edges (Kruskal’s
algorithm), the default sub-graph using MATLAB is the star-
like graph with the first image as the center, which is the same
as the infP and iso methods. For the 0% missing data, we find
that balancing the importance of the MT and CS can help us to
get better performance. For the missing data cases, commonly,
introducing 1-3 additional edges, our method can obtain better
results, because of the edge selection method.

B. Experiments with real data

1) Comparison of the NRSfM results: In this part, we
conducted experiments with Hulk, T-shirt, Flag, Rug, and
KinectPaper datasets to compare with other two methods.

a) T-shirt and Hulk datasets: The T-shirt and Hulk
datasets are two public datasets [4] with 10 different images
respectively involving the isometric deformable cloth and
paper. Based on the full datasets and all features, the shape
error and the % 3D error, compared with the others, are
respectively shown in Fig. 6a (T-shirt) and Fig. 6b (Hulk).

(a) T-shirt dataset (b) Hulk dataset
Fig. 6. Comparison using T-shirt and Hulk datasets. Our proposed method
shows better performance than the other two methods in most images of the
T-shirt and Hulk datasets in terms of the shape error and the % 3D error.

b) Flag dataset: The Flag dataset [25] is a semi-synthetic
data with real objects and a virtual camera using perspective
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projection. We use 30 images from the whole 450 frames to
test the performance of our method and the others based on
the full features. The comparison results of the shape error
and the % 3D error are shown in Fig. 7.

(a) Shape error (b) % 3D error
Fig. 7. Comparison using Flag dataset: (a) shape error; (b) % 3D error. In
this dataset, the mean % 3D errors of all images are respectively 0.9382%
(ours), 1.0725% (infP), and 1.0698% (iso). The average shape errors are
8.5279◦ (ours), 8.9091◦ (infP), and 8.9210◦ (iso). Our method shows better
performance than the other two methods for these datasets.

c) Rug dataset: The Rug dataset [7] is a public data
with 159 images and 300 features showing the deformed rug.
Because of the low frame-rate of the recorded sequences,
the given correspondences are not very accurate and contain
outliers. The comparison results using the full datasets and
three methods are shown in Fig. 8a.

(a) Rug dataset (b) KinectPaper dataset
Fig. 8. Comparison of two datasets including shape error and % 3D error. In
the Rug dataset, the mean % 3D errors of all images are respectively 1.3782%
(ours), 1.5286% (infP), and 1.5318% (iso). The average shape errors are
12.5522◦ (ours), 14.2981◦ (infP), and 14.3206◦ (iso). In the KinectPaper
dataset, the mean % 3D errors of all images are respectively 1.05% (ours),
1.24% (infP), and 1.21% (iso). The average shape errors are 8.57◦ (ours),
8.64◦ (infP), and 8.92◦ (iso). Our method shows best performance in all
methods for these datasets.

d) KinectPaper dataset: The KinectPaper dataset is a
video sequence of 191 frames and 1500 points of a isometri-
cally deformed paper [8]. It is noted that this sequence contains
outliers. Based on the full datasets and all features, using three
methods, we present the statistical results of the shape error
and the % 3D error for every image in Fig. 8b.

2) Changing data: We also present the comparison results
with changing data for the T-shirt and Hulk datasets. Table II
shows the mean % 3D error and shape error obtained on two
datasets when 0-50% features are missing at every image.

The result shows that our method has the most robust perfor-
mance among the three methods in terms of the data changing.
We also find that too many additional edges (more than 10 new
edges) may not greatly improve the result. The main reason
is that only using the common feature number may select the
poor image warps, introduce the bad measurements, and finally
get the even low-accurate results.

3) Noisy data: For the T-shirt and Hulk datasets, we also
present the comparison results with randomly generated noisy
data. The presented results in Fig. 9 are the mean values of
10 times testings. From Fig. 9, we find that every method
degrades when noise varying between 1-20 pixels is added.
Our method shows good tolerance to noise and gives best
performance. Even though the infP and iso methods transform
the problem into two variables optimization corresponding
to the first image improving the result robustness of the
first image, for the rest images, they directly use the linear
relationship shown in (14), which means that they sacrifice
the performance of the rest images. Our method balances all
information in all images using a strong graph optimization,
which helps us to achieve the overall robust performance.

Fig. 9. Comparison for the noisy data case using T-shirt and Hulk datasets.

4) Computational complexity: In this part, we analysis the
computational complexity of our method and present some
numerical results. With no missing features, for a NRSfM
problem with Nm images and Np features on each image, the
computational complexities of Kruskal’s algorithm, k-ESP, and
graph optimization are respectively O(N2

m logNm), O(kN4
m),

and O(mi(NmNp)
3).6 Commonly, the NRSfM problem satis-

fies Nm � Np and k is small, so the computational complex-
ity of our method is O(mi(NmNp)

3). The computational com-
plexities of the infP and iso methods are both O(NpO(1))),
where O(1) means the computational complexity of the small-
scale moment SDP programming. In theory, our method has
the much higher computational cost. However, because of
the highly-sparse Hessian matrix, for the real problems, our
method shows the similar computational time, when Nm is
small, compare with others. The computational time grows
when the scale of the datasets grows. The numerical results
are in Table III 7.

5) Dense reconstruct results: In this section, we generate
and texture the dense point cloud based on the recovery shape.

6mi is the number of iteration in the trust-region-reflective method. It is
noted that the computational complexity of the graph optimization is for the
worst case with a dense matrix and does not consider the sparsity of the
Hessian matrix. In fact, based on the measurements (14) and (15), their
Jacobian matrices are highly sparse with only 3 or 4 non-zero elements
in every row. Hence, the exact computational complexity of the graph
optimization will be much for smaller than O(mi(NmNp)3).

7We consider the feature matching and image warp as the front-end, so we
do not include their computation time in Table III. Meanwhile, all running
time results of our method are based on all-zero initialization, which causes the
large convergence iteration. For the large datasets, like Rug and KinectPaper, if
we use a few images (like first 4 images) to build the small graph optimization
problem, solve it, and use the linear relationship (14) to predict k̄1 and
k̄2 of the other images as initialization of the full graph optimization, the
convergence iteration and the running time will be greatly reduced. For
example, by this way, the running time of the KinectPaper will be 239.21s.
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TABLE II
COMPARISON USING MISSING AND APPEARING DATA

Missing infP iso ours +1 edges +2 edges +3 edges

T-shirt

0% 2.49%-18.91◦ 2.51%-18.99◦ 2.33%-17.66◦ 2.34%-17.64◦ 2.29%-17.40◦ 2.30%-17.53◦

10% 2.60%-20.65◦ 2.61%-20.66◦ 2.29%-17.24◦ 2.34%-17.58◦ 2.32%-17.92◦ 2.34%-18.23◦

20% 2.82%-19.49◦ 2.82%-19.44◦ 2.58%-18.20◦ 2.52%-18.13◦ 2.49%-18.12◦ 2.50%-18.23◦

30% 2.92%-20.44◦ 2.92%-20.46◦ 2.40%-18.57◦ 2.43%-18.84◦ 2.44%-19.00◦ 2.43%-19.00◦

40% 2.99%-21.25◦ 2.99%-21.30◦ 2.64%-17.87◦ 2.68%-18.29◦ 2.69%-18.50◦ 2.61%-17.97◦

50% 3.24%-20.85◦ 3.22%-20.78◦ 2.74%-19.41◦ 2.70%-19.41◦ 2.66%-19.86◦ 2.63%-19.91◦

Hulk

0% 2.32%-14.32◦ 2.32%-14.27◦ 1.92%-12.38◦ 1.92%-12.38◦ 2.03%-12.49◦ 2.03%-12.98◦

10% 2.50%-14.33◦ 2.50%-14.27◦ 1.68%-11.00◦ 1.60%-10.69◦ 1.62%-10.79◦ 1.58%-10.48◦

20% 2.67%-14.35◦ 2.67%-14.28◦ 1.88%-11.80◦ 1.80%-11.60◦ 1.72%-11.45◦ 1.72%-11.32◦

30% 2.93%-14.39◦ 2.94%-14.40◦ 2.08%-12.77◦ 2.08%-12.93◦ 2.02%-12.58◦ 1.97%-12.28◦

40% 2.99%-14.98◦ 2.99%-14.99◦ 2.16%-12.44◦ 2.08%-12.11◦ 2.10%-12.32◦ 2.14%-12.42◦

50% 3.10%-16.68◦ 3.11%-16.66◦ 2.44%-15.26◦ 2.34%-14.87◦ 2.33%-14.82◦ 2.31%-14.63◦

TABLE III
COMPARISON OF THE RUNNING TIME

T-shirt Hulk Flag Rug KinectPaper
Nm/Np 10/85 10/122 30/250 159/300 191/1500
infP (s) 8.85 8.88 22.40 58.90 327.79
iso (s) 18.36 25.62 57.67 127.47 613.32

ours (s) 7.68 8.30 16.15 410.56 1362.95

The partial dense NRSfM results for the T-shirt and Hulk
dataset using Algorithm 3 are shown in Fig. 10.

(a) T-shirt dataset (b) Hulk dataset
Fig. 10. Dense NRSfM results of three images in two datasets (the upper
figures are the 3D point cloud with the red 3D features and the lower figures
are the corresponding monocular images). The compuational time of the whole
datasets is 7.21s (T-shirt) and 9.16s (Hulk). The results show that our proposed
dense reconstruct method is efficient.

VI. CONCLUSIONS

This letter presents a theoretical framework for solving the
dense Iso-NRSfM problem with highly-accurate and robust
performance. Based on the powerful sub-graph for the image
warps and the sparse graph optimization, we can robustly deal
with the changing and noisy data. We test our method on both
synthetic and real datasets with different baseline viewpoints
and deformations. The results show that our method consis-
tently has better performance than the state-of-the-art methods.
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