
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020 1

Deep Reinforcement Learning for Tactile Robotics:
Learning to Type on a Braille Keyboard

Alex Church1, John Lloyd1, Raia Hadsell2 and Nathan F. Lepora1

Abstract—Artificial touch would seem well-suited for Rein-
forcement Learning (RL), since both paradigms rely on interac-
tion with an environment. Here we propose a new environment
and set of tasks to encourage development of tactile reinforcement
learning: learning to type on a braille keyboard. Four tasks are
proposed, progressing in difficulty from arrow to alphabet keys
and from discrete to continuous actions. A simulated counterpart
is also constructed by sampling tactile data from the physical
environment. Using state-of-the-art deep RL algorithms, we show
that all of these tasks can be successfully learnt in simulation,
and 3 out of 4 tasks can be learned on the real robot. A lack of
sample efficiency currently makes the continuous alphabet task
impractical on the robot. To the best of our knowledge, this work
presents the first demonstration of successfully training deep
RL agents in the real world using observations that exclusively
consist of tactile images. To aid future research utilising this
environment, the code for this project has been released along
with designs of the braille keycaps for 3D printing and a guide
for recreating the experiments. A brief video summary is also
available at https://youtu.be/eNylCA2uE_E.

Index Terms—Force and Tactile Sensing; Reinforecment Learn-
ing; Biomimetics

I. INTRODUCTION

TOUCH is the primary sense that humans use when
interacting with their environment. Deep Reinforcement

Learning (DRL) algorithms enable learning from interactions
and support end-to-end learning from high-dimensional sensory
input to low-level actions. However, most research has focused
on vision, while a scarcity of data, sensors and problem domains
relating to touch has relegated tactile research to a minor role.
This trend continues even when DRL is applied to robots
interacting physically with their environment, where most
research uses proprioception or vision. Here we attempt to
bridge the gap by positioning tactile DRL research in the
context of a human-relevant task: learning to type on a braille
keyboard.

The field of DRL has seen rapid progress, which in part is
due to benchmark suites that allow new methods to be directly
compared. These are mainly simulated environments, such
as the Arcade Learning Environment [1], continuous control
environments [2], [3] and simulated robot-focused environments
[4], [5]. More recently, several robot benchmarking suites have

Manuscript received: February, 24, 2020; Revised May, 31, 2020; Accepted
June, 26, 2020.

This paper was recommended for publication by Editor Dan Popa upon
evaluation of the Associate Editor and Reviewers’ comments.

This work was supported by an award from the Leverhulme Trust on ‘A
biomimetic forebrain for robot touch’ (RL-2016-39) and an EPSRC CASE
award to AC sponsored by Google DeepMind.

1 AC, JL and NL are with the Department of Engineering Mathematics and
Bristol Robotics Laboratory, University of Bristol, Bristol, U.K. {ac14293,
jl15313, n.lepora}@bristol.ac.uk

2RH is with Google DeepMind. raia@google.com

(a) Robot arm with tactile sensor
and braille keyboard (b) Example key

(UP-arrow)

(c) Tactile image
(of UP key)

Fig. 1: Robot arm with tactile fingertip (panel a) pressing a
3D-printed UP-arrow key (panel b) resulting in a tactile image
(panel c). Notice how the UP-key shape is visible in the spacing
of the pins in the tactile imprint.

been established [6], [7], [8], [9], [10] with the intention of
moving the field towards physically-interactive environments.

In the area of tactile robotics, there are currently no bench-
marks for evaluating and comparing new methods. In this paper,
we propose a challenging tactile robotics environment which we
intend will serve as a tool for experimentation and fine-tuning of
DRL algorithms. Furthermore, the environment challenges the
capabilities of the tactile sensor in requiring sufficient sensitivity
and spatial resolution and could be used to draw comparisons
between different tactile sensors. The environment consists
of a keyboard with 3D-printed braille keycaps, combined
with a robotic arm equipped with a tactile sensor as its end
effector. The primary task in this environment involves learning
to type a key or sequence of keys, and has several useful
attributes: it is goal driven, uses sparse rewards, contains both
continuous and discrete action settings, is challenging in terms
of exploration and requires a tactile sensor with both a high
spatial resolution and high sensitivity. All of these aspects help
to make the task representative of other robotics and tactile
robotics challenges. The environment has also been designed
to need minimal human intervention and be reasonably fast,
necessary characteristics for real-world applications of DRL
algorithms. In addition, the components required for creating
this environment are either widely available or 3D printed,
which allows easier adoption in the tactile robotics community.

This paper makes the following contributions. We define
4 tasks in the braille keyboard environment that progress in
difficulty from arrow to alphabet keys and from discrete to
continuous actions. In addition to the physical environment, we

ar
X

iv
:2

00
8.

02
64

6v
1 

 [
cs

.R
O

] 
 6

 A
ug

 2
02

0

https://youtu.be/eNylCA2uE_E


2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020

Fig. 2: Braille alphabet used for the tactile keyboard en-
vironment. The space bar is a blank character, which will
cause deformation of the tactile sensor. Grey squares indicate
positions where no deformation of the sensor will occur. A
simpler task can be defined using only the 4 arrow keys.

construct a simulation based on exhaustively sampling tactile
data, and use this for initial validation of DRL, including
agents trained with Deep Q Learning [11], Twin Delayed Deep
Deterministic Policy Gradients (TD3) [12] and Soft Actor Critic
(SAC) [13]. We then demonstrate that for the majority of these
tasks, DRL can be used to successfully train agents exclusively
from tactile observations. However, a lack of sample efficiency
for the most challenging task makes it impractical to train
learning agents in the physical environment. This work thus
leaves open the question of whether new or untested methods
can improve this sample efficiency to a point where physical
training is feasible, or whether alternative tactile sensors can
represent the required tactile information in a concise enough
form to allow for better sample efficiency in training.

II. RELATED WORK

A common approach for applying DRL to robotics is to train
on accurate simulations of the robot, then transfer those learned
policies to the real world, bridging what is known as the ‘reality
gap’ [14], [15]. However, a serious issue for this approach is
that the physical properties of artificial tactile sensors are
highly challenging to simulate, as evidenced by a lack of use
in the field compared to e.g. simulated visual environments.
This issue is compounded as the task complexity increases,
particularly with dynamic environments. This necessitates
solutions that are capable of being trained directly on a real
robot to make progress on DRL for tactile sensing applied to
physical interaction.

DRL has been applied to object manipulation, particularly
with dexterous robotic hands. However, the most successful
examples of learning in this area do not utilise tactile data [16],
[15], [17], but instead deploy simulations to accelerate learning.
In these cases, observations are often made up of joint angles
and object positions/orientations; in practise, obtaining this
information from real-world scenarios has required complicated
visual systems. In their work, OpenAI state that they specifically
avoid using sensors built into the physical hand, such as tactile
sensors, as they are subject to “state-dependent noise that would
have been difficult to model in the simulator” [15].

Most prior research applying RL to tactile sensing has used
the SynTouch Biotac, a taxel-based tactile sensor the size of
a human fingertip. Van Hoof et al. [18] demonstrated that

Fig. 3: Dimensions of the braille keycaps in mm, designed for
cherry MX mechanical switches.

tactile data can be used as direct input to a policy network,
trained through RL, for a manipulation task on a physical
robot. In [19] dimensional reduction is used to simplify the
tactile input, resulting in successful regrasping of an object
utilising tactile data. In [20], tactile and proprioceptive data
are combined to achieve the task of gentle object manipulation,
where exploration is improved by using tactile data to form
both a penalty signal and as a target for intrinsic motivation.

Recent work has combined tactile image observations
from the Gelsight optical tactile sensor with proprioceptive
information to use DRL to learn surface following [21]. Optical
tactile sensors provide tactile information in a form that is
well-matched to modern deep learning techniques that have
been honed on computer vision challenges. Given the recent
successes of optical tactile sensors with deep learning [22], [23],
[24], [25], [26], [27], the combination of deep reinforcement
learning and optical tactile sensing appears a promising avenue
for future research.

III. HARDWARE
A. Custom biomimetic tactile fingertip

The BRL tactile fingertip (TacTip) [28] is a low-cost, robust,
3D-printed optical tactile sensor based on a human fingertip.
As the current task involves interpreting braille keycaps, we
require a tactile sensor with high spatial resolution that makes
contact with an area that can lie inside a standard keycap.
Conventionally, the TacTip has 127 pins on a 40 mm-diameter
tactile dome [28], which is too large for this task. The sensor
tip was thus redesigned for this work to fit 331 pins of radius
0.625 mm onto a 25 mm-diameter dome of depth 7.2 mm. The
pins are arranged such that there is a sub-mm space between
them. An example tactile image obtained from this modified
sensor is shown in Figure 1c, where adaptive thresholding
is used to process the raw tactile image into a binary image
that makes the deformation more apparent and mitigates any
changes of lighting inside the sensor.

Following recent work with this tactile sensor [22], the pre-
processed image captured by the sensor is directly passed into
the machine learning algorithms. This removes the need for
pin detection and tracking algorithms that were necessary in
previous work, and enables the advantages of convolutional
neural networks to be applied to tactile data.

B. Braille Keyboard
For the tasks considered here, we chose a good-quality

keyboard with a fairly stiff key switch: the DREVO Excalibur



CHURCH et al.: DEEP REINFORCEMENT LEARNING FOR TACTILE ROBOTICS 3

(a) Start of Training (b) Middle of Training (c) End of Training
D

is
cr

et
e

C
on

tin
uo

us

Fig. 4: Visualisation of both the discrete action (top) and continuous action (bottom) tasks. The sensor is initialised in a random
position with the task of pressing a randomly initialised goal key (green). Orange arrows indicate the actions taken at each step.
Initially, the policy networks cause random actions that results in an incorrect key press (red). After some training, actions
that lead to a correct key press are found but may be sub-optimal, often with cyclic movements. Eventually, policies should
converge to a near-optimal path between the initial position and goal key. For the discrete case, actions are given by a DQN
agent trained for 0, 30 and 100 epochs. The continuous case is an illustrative depiction of successful training.

84 Key Mechanical Keyboard with Cherry MX Black switches.
These switches have a linear pressing profile and require
0.6 N of force and 2 mm of travel before actuation occurs.
Furthermore, Cherry keys have good build quality which
improves consistency across keys. The dimensions of our 3D-
printed keycaps are shown in Figure 3 and the full set of
keys used throughout this work are shown in Figure 2. The
keyboard was chosen in order to allow the tactile robot to
make exploratory contacts with a key before pressing it.

C. Robotic Arm

For these experiments we use a Universal Robotics UR5
robotic arm and its in-built inverse kinematics to allow for
Cartesian control. This makes the environment relatively
agnostic to the type of robotic arm used, with variation only
arising subject to error accumulating from the lack of precision
in the inverse kinematics controller. Other than the robotic
arm, the environment consists of components that are either
3D printed or widely available.

IV. BENCHMARK TASKS

Within this tactile keyboard environment, we propose 4
tasks of progressive difficulty that have the same underlying
principles:
• Discrete actions: Arrow keys.
• Discrete actions: Alphabet keys.
• Continuous actions: Arrow keys.
• Continuous actions: Alphabet keys.

The distinction between arrow and alphabet keys is shown
in Figure 2. Note that the space key is included in alphabet
tasks and is represented by a blank character. Continuous
actions constitute a positional change in the x, y axis and a tap
depth in the z axis, where the sensor performs a downward
movement and returns to a predefined height. This is performed
sequentially to reduce the potential for damage occurring. An
illustration of successful training of a RL agent is depicted in
Figure 4 over the alphabet keys for both discrete and continuous
actions.

The proposed task for this environment is to successfully
press a goal key, which is randomly selected each episode from
a subset of keys on a braille keyboard, and to do so without
actuating any other keys. The start location is randomised for
each episode. Hence, the agent must first determine its location,
then navigate to the target position and finally press the target
key. Positions of all the keys are learnt implicitly within the
weights of a neural network. A positive reward of +1 is given
for successfully pressing a goal key; an incorrect key press
results in episode termination and a reward of 0. Successful
learning of this task will result in an average episodic return
close to 1, dependent on the exploration parameters of the RL
agent.

The arrow keys offer a natural way to define an easier task,
since they are located away from the other keys, are fewer,
and span a smaller area, which greatly reduces the size of
the state space. An agent should therefore encounter more
positive rewards during random exploration. Moreover, the
tactile features on the arrow keys are more distinct, easing
their interpretation from tactile data.

The alphabet (plus space) keys give a far more challenging
task. As the state space is relatively large, learning over the full
set of alphabet keys requires an approach such as Hindsight
Experience Replay (HER) [29] to improve data efficiency.
Also, depending on the position of the sensor, some keys can
be indistinguishable from each other, giving subtleties from
perceptual aliasing. This feature also makes it harder to learn
continuous action policies, since when using discrete actions
the sensor can be arranged to be always located above the
centre of a key.

V. INITIAL ASSESSMENT USING SUPERVISED
DEEP LEARNING

For a first step, we check that the braille keys can be
interpreted by the tactile sensor without exerting enough force
to activate the button. To test this, we used supervised learning
to classify all keys on the braille keyboard (shown in Figure
2). Overall, we used 100 samples per key for training and



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020

TABLE I: DRL and network hyperparameters.

Param Shared
N

et
w

or
k

Input dim [100, 100, 1]
Conv filters [32, 64, 64]
Kernel widths [8, 4, 3]
Strides [4, 2, 1]
Pooling None
Dense layers [512,]
Output dim num actions
Activation ReLU
Initialiser variance scaling (scale=1.0)

C
on

tr
ol

Epoch steps 250
Replay size 105

Update freq 1
n/ Updates 2
Batch size 32
Start steps 200
Max ep len 25
Optimizer Adam

DQN SAC TD3

R
L

Discount (γ) 0.95 0.6 (disc)
0.95 (cont) 0.95

Polyak (τ ) 0.005 0.995 0.995
LR (η) 5× 10−4 5× 10−4 5× 10−5

Alpha LR (ηα) n/a 1× 10−3 n/a

E
xp

lo
re Initial ε 1.0 n/a 1.0

Final ε 0.1 n/a 0.05
ε Decay steps 2000 n/a n/a

Target entropy n/a 0.139 (disc)
-6 (cont) n/a

50 samples per key for validation, resulting in 3100 training
images and 1550 validation images.

To make the task more representative of how humans perform
key presses, we introduced small random perturbations in the
action. Each tactile image was collected at the bottom of a
tapping motion, where the sensor was positioned 3.5 + ∆zmm
above the centre of each key, then moved downwards 5 mm,
finishing above the 2 mm activation point for a key press. A
random variation ∆z sampled from the interval (−1, 0) mm was
used to represent uncertainty in the key height, which ranges
from ‘barely touching’ to ‘nearly activating’ the button. A
similar random horizontal (x, y)-perturbation was sampled from
ranges (−1,+1) mm and a random orientation perturbation
was sampled from (−10◦, 10◦) to add further variation in the
collected data.

Tactile images were cropped and resized down to 100× 100
pixels (from 640 × 480 pixels), then adaptive thresholding
was used to binarize the image; in addition to reducing image
storage, this also helps accentuate tactile features and mitigate
any issues from changes in internal lighting.

The network used in this task follows the architecture used
for learning to play Atari games, originally proposed in [30].
The same network architecture is used for all reinforcement
learning tasks (details given in Table I). For supervised learning,
we perform data augmentation including random shifting and
zooming of the images. We also use early stopping, a decaying
learning rate, batch normalization on the convolutional layers
after the activation and dropout on the fully connected layers.

A near perfect overall accuracy of 99% was achieved,
demonstrating that the braille can be interpreted by the tactile
sensor without activating the button, even when there is
significant uncertainty about how the key is pressed.

VI. SIMULATED ENVIRONMENT

Even though our focus in this work is DRL on a physical
tactile robot, it is useful to have a simulated task that is similar
to the physical environment yet runs much faster. While the
policies trained in simulation may not be directly transferable
to the physical environment, the parameters found should guide
successful training of policies on the physical robot.

In the simulation of the discrete task, actions lead to
locations on a virtual keyboard with a known label. The
label is then used to retrieve a tactile image of the same
label from the data collected for the initial assessment of
supervised learning (Section VI). Thus the simulation accurately
matches the physical environment, where the label of each
key may not be known but a tactile image observation can be
collected that will resemble the one obtained from the simulated
environment. In practice, this simulated discrete environment is
more complicated than the physically interactive environment,
because of the perturbations introduced in the data collection
that we choose not to introduce during reinforcement learning
on the physical robot.

The simulation of the continuous task is more difficult to
represent, because we do not have labels for every location
on the keyboard. To approximate the physical environment,
we collect tactile observations over a dense grid of locations
spanning the keyboard, with those location stored (using 3 mm
intervals over the x, y-dimensions and 1 mm intervals over
z). Along with the tactile image observations, we also record
whether a key has been activated or not. During simulation,
the position of the virtual sensor is known, which allows for a
tactile image to be sampled from the collected data with the
minimum Euclidean distance from the virtual sensor position.

In both cases, the simulated environment ignores effects such
as error that accumulates over long sequences of robot arm
moves, sensor drift, changing lighting conditions, movement of
the keyboard and any other information that is not represented
during the data collection stage. However, whilst these effects
can occur on a real robot, the simulated tasks still offer useful
information for hyper-parameter tuning and initial validation
of RL algorithms.

VII. TACTILE REINFORCEMENT LEARNING

A. Reinforcement Learning Formulation

To define the problem, we represent the proposed tasks in
a standard Markov Decision Process (MDP) formulation for
reinforcement learning. An agent interacts with an environment
at discrete time steps t, consisting of a state s, action a, resulting
reward r, resulting state s′ and terminal signal d. Actions a
are sampled from policy distribution π(a|s) represented by a
neural network.

States s are represented as a combination of a tactile image
observation o from the sensor, goal g and previous action at−1.
Goals g are selected randomly per episode and represented as
a one-hot array, where the ‘hot’ value represents the class label
of a target key. The previous action at−1 is required to avoid
an agent becoming stuck in cyclic patterns when no tactile
deformation is present on the sensor. Both are concatenated
into the policy networks after any convolutional layers. Reward



CHURCH et al.: DEEP REINFORCEMENT LEARNING FOR TACTILE ROBOTICS 5

Fig. 5: Training curves showing the average episodic return for all tasks, discrete task results are shown on the top row,
continuous task results are shown on the bottom row. Each epoch corresponds to 250 steps in the environment. For the simulated
tasks results are averaged over 5 seeds, the physical tasks show results for 1 seed. Coloured dashed lines represent the first
point at which episodic return reaches 95% of the maximum reached throughout training.

r is sparse and binary, with r = 1 when a correct button is
actuated, otherwise r = 0. Activation of any button, correct
or incorrect, results in a terminal signal d = 1 that resets the
environment with the sensor moving to a new random location
on the keyboard.

In the discrete tasks, actions are selected from the set
A = {UP, DOWN, LEFT, RIGHT, PRESS}. For each
movement action the tactile sensor is re-positioned above the
centre of a neighbouring key where a tap action (which does
not activate a key) is performed and a tactile image for the
next state s′ is gathered. The PRESS action moves the sensor
in the z axis by −8 mm to activate a key.

In the continuous tasks, each action is selected from A =
{∆x, ∆y, ∆z} where ∆z corresponds to a tapping depth. For
practical reasons, actions are bound to a finite range dependent
on task. For the arrow task, the enforced ∆x and ∆y bounds are
between ±10 mm and for the alphabet task between ±20 mm.
In both the alphabet and arrow tasks, ∆z is bound to the range
[2, 8] mm to ensure safe key actuation.

B. Reinforcement Learning Algorithms

There are several popular DRL algorithms in common use
[11], [31], [32], [33], [12], [34], [35]. However, there are
two major problems holding back the application of DRL to
physical robotics: poor sample efficiency and brittleness with
respect to hyper-parameters. Generally, on-policy methods such
as Trust Region Policy Optimisation (TRPO) and Proximal
Policy Optimisation (PPO) sacrifice sample efficiency to gain
stability and robustness to hyper-parameters, making them
difficult to apply to physical robots. Since its introduction,
Deep Q-Learning (DQN) has had various improvements to
address these issues, some of which are amalgamated in
RAINBOW [36]. Off-policy entropy-regularised reinforcement
learning has also separately addressed these issues with Soft
Actor Critic (SAC) [34] and Maximum a Posterior Policy
Optimisation (MPO) [35]. Both of these offer good sample

efficiency, robustness to hyper-parameter selection and work
with either continuous or discrete action spaces. SAC has
led to the most follow-up research and a modified version
has demonstrated successful training when applied to physical
robots [13]. Twin Delayed Deep Deterministic Policy Gradients
(TD3) [12] was developed concurrently to SAC and offers
similar performance.

For discrete-action tasks, we use DQN with the double [37]
and dueling [38] improvements, and SAC adapted for discrete
actions. For continuous-action tasks, we use TD3 and SAC;
since SAC is applicable to both types of action space, some
hyper-parameters are transferable over all tasks.

Another barrier to the application of DRL to robotics is when
environments require challenging exploration combined with
sparse rewards, as convergence is then very slow. A common
technique commonly used to alleviate this is to use dense
and shaped rewards [39], [10], [8], [13]. However, this can
require domain-specific knowledge and bias learning algorithms
towards sub-optimal policies. Hindsight Experience Replay
(HER) helps address this problem by replaying episodes stored
in a buffer while varying the goal from what was initially
intended. Here we find HER significantly improves performance
and sample efficiency for all considered tasks.

Several other adjustments were also made to optimise
performance. For all algorithms except TD3, the ratio of
optimisation steps per environment step was increased to 2 : 1
to improve efficiency because of the greater cost of environment
versus optimisation steps; however, this hindered the stability of
TD3. Additionally for both DQN and TD3 we linearly decayed
the exploration parameter ε for an initial number of exploration
steps. For SAC and TD3, polyak averaging was used for target
networks, with a coefficient of τ = 0.995, although we did
find that SAC could also learn well with hard target updates.

VIII. EVALUATION METRICS
To quantify the performance when training an agent on this

benchmark, we introduce several evaluation metrics particular



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020

to this task. These can be used to compare results of this
benchmark when using alternative algorithms or alternative
sensors. The evaluation metrics introduced are:

• Convergence Epoch: Measures the first epoch in which
95% of the maximum performance across the full training
run is achieved and serves as an indication of sample
efficiency during training. This is subject to some noise
and works best when results are averaged over multiple
seeds or when test results are averaged over a relatively
high number of episodes (> 10).

• Typing Accuracy: Measures the accuracy when typing
example sentences or sequences of keys. As a reward of
1 is given for correct key presses this metric is directly
correlated with the average return.

• Typing Efficiency: Measures the number of steps taken
to press a key and gives an indication as to whether the
policies learnt are near optimal.

When measuring typing accuracy and efficiency for the arrow
task all 24 permutations of {UP, DOWN, LEFT, RIGHT}
are evaluated. For the alphabet task, we provide 10 randomly
generated permutations of the alphabet. This tests that a
mapping between all keys is stored implicitly within the weights
of the policy neural networks. During evaluation, the sensor
is initialised in a random starting position for each sequence
and the sensor position is not randomly reset after episode
termination when a single key is pressed unlike during training.
Furthermore, during evaluation we used deterministic actions
to avoid mispressed keys from unnecessary exploration. This
procedure gives a more consistent value in comparison with
using average episodic return, which allows better comparisons
to be drawn.

IX. RESULTS

A. Results for Discrete Tasks

For the discrete arrow key and alphabet key tasks, we find
that both DQN and Discrete SAC rapidly converge to accurate
performance in simulation and on the physical robot. Testing
over multiple seeds in simulation shows that this learning is
stable and consistently converges to an average episodic reward
of near 1. The training curves for the discrete tasks for both
the arrow and alphabet key environments (Figure 5) show that
the task can be learned in all cases.

For the arrow task, asymptotic performance is achieved
within 15 epochs, which is approximately equal to 1 hour
of training time on the physical robot. For the alphabet task,
convergence is longer, with asymptotic performance achieved
within 60 epochs, or approximately 4 hours of training time
on the physical robot. Similar sample efficiency and final
performance is found for both discrete SAC and DQN across
all trained agents. Whilst final performance appears slightly
higher for discrete SAC, this can be explained by the target
entropy causing lower levels of exploration when the agent
nears convergence. Decaying the exploration parameter (ε) to a
lower value during training for the DQN agents, or evaluating
with deterministic actions, results in similar final performance
to discrete SAC.

TABLE II: Results for trained agent evaluation.

Task Algorithm Steps Accuracy Convergence
Epoch

Si
m

ul
at

io
n

Disc Arrow DQN 230 1.0 8
SAC_DISC 234 1.0 8

Disc Alpha DQN 1722 0.981 45
SAC_DISC 1649 0.940 39

Cont Arrow TD3 140 0.906 60
SAC 133 1.0 25

Cont Alpha TD3 1169 0.811 1246
SAC 1193 0.933 872

Ph
ys

ic
al Disc Arrow DQN 246 1.0 8

SAC_DISC 246 1.0 6

Disc Alpha DQN 1722 0.992 24
SAC_DISC 1649 0.985 32

Cont Arrows SAC 364 0.938 76

B. Results for Continuous Tasks

The continuous control tasks are far more challenging due
to their larger state spaces. For the arrow task in simulation,
we find SAC is still able to achieve an asymptotic performance
of near 1.0 within 50 epochs. TD3 is also able to achieve
performance of near 1.0 within 100 epochs; however, training
is less stable and is not robust to hyper-parameter changes.
Due to this instability we do not evaluate TD3 in the physical
environment. The training curves are shown in Figure 5 (bottom
panels) for all continuous tasks that we were able to run to
completion.

For the continuous arrow task, continuous control is not
as well represented in simulation, this is shown by the left
and middle panels in Figure 5 (bottom) not being accurate
matches. We find convergence to a slightly lower average
episodic return of 0.95 after about 76 epochs compared to 25
epochs in simulation.

The alphabet task again offers an increase in task complexity.
For a single-seeded run in simulation, we achieved a final
average episodic return of ∼ 0.9 for the continuous SAC
algorithm and ∼ 0.8 for TD3. This final performance takes
significantly longer to achieve than all other tasks, with
convergence occurring around 872 epochs for SAC and 1246
epochs for TD3. This will correspond to approximately 60
hours of physical robotic training time and is currently not
feasible given laboratory operating constraints.

C. Performance on Evaluation Metrics

An overview of the results across all algorithms used within
this work are given in Table II. These can be used as a
comparative point for future work using this benchmark. For
discrete tasks, we find that high typing accuracy is possible
across both simulated and physical environments. In evaluation,
both SAC_DISC and DQN have comparable results for typing
accuracy and typing efficiency. In simulation, continuous tasks
display a large reduction in the number of steps taken to
activate a goal key due to the more efficient path across the
keyboard that the sensor can take. However, this comes at the
cost of a reduction in accuracy. These more-efficient policies
are not observed in the physical task, likely due to more variety
in tactile observations causing less certainty in the selected
actions. In the simulated continuous alphabet task, TD3 gave



CHURCH et al.: DEEP REINFORCEMENT LEARNING FOR TACTILE ROBOTICS 7

high performance. However, these results were difficult to
achieve consistently, making TD3 impractical for application
to the physical robot.

X. DISCUSSION

This work proposes a benchmarking tool aimed at developing
the area of reinforcement learning for tactile robotics. Four tasks
of varying difficulty are proposed, together with a representative
simulated environment to allow for easier exploration of
algorithmic adjustments. Evaluation metrics are also provided to
allow for a quantitative comparison when using this benchmark
with alternative algorithms or alternative sensors.

We evaluate the performance of several learning-based agents
on the proposed benchmark tasks, both in simulation and on
the physical robot. We demonstrate that successful learning is
possible across all tasks within simulation and across 3 of 4
tasks on the physical robot. Currently, training the physical
agent with continuous actions for the full alphabet task has not
been achieved within the time allowed by operating constraints
in our laboratory. Some example techniques that have not
yet been implemented include using prioritised experience
replay [40] to improve efficiency, and scheduling the ratio of
optimisation steps per environment step throughout learning.

During development, we found some techniques were crucial
to achieving successful learning on a physical robot. For
example, HER gave sample efficiency improvements up to
a factor of 10, along with boosting final performance. This
efficiency was particularly evident on the alphabet tasks
where rewards are less frequently encountered under random
exploration. Training a DQN agent on the simulated discrete
alphabet task with HER achieved final performance of ∼ 0.98
within 50 epochs; comparatively, this same task without HER
achieved a similar level of performance after ∼ 500 epochs.
Thus, HER was required for feasible learning of the tasks on
a physical system. When using RL to solve physical robotics
problems, designing the tasks to be goal orientated can allow
for more general behaviour to be learnt whilst taking advantage
of the benefits HER gives.

We also found that learnt optimal policies were sensitive to
factors other than the algorithm hyper-parameters. For example,
when using large action ranges on the continuous arrow tasks,
the policies tended towards large movements in the direction
of a goal key with low dependence on the current tactile
observation. This behaviour arises because a relatively high
average return can be found with this method alone, which
causes agents to become stuck in a local optimum. Reducing
the action ranges to lower values minimised this effect because
the sensor was less likely to jump directly to the correct key.
Thus, the average return from following this sub-optimal policy
was reduced, which ultimately resulted in better policies.

Another useful technique was to create a simulation that
is partially representative of the final task. Even with recent
advancements, DRL is notoriously sensitive and brittle with
respect to hyper-parameters, and so a fast, simulated environ-
ment helped find parameter regions that allowed for successful
and stable training. For example, TD3 was so sensitive that
a bad starting seed could cause minimal learning of the task.

If attempting to find stable hyper-parameter regions on the
physical task, multiple-seeded runs took hours or days of
lab operation time. Therefore, where possible, simulating a
simplified version of the problem provides valuable information
for the physical task.

The braille task is designed to be representative of a multitude
of tactile robotics tasks in which it may not be practically
feasible to create a simulated environment via exhaustive
sampling. Therefore, a main aim of this study was to achieve
training from scratch in the physical environment. That said,
in some circumstances, it would be interesting to explore the
benefits of transfer learning from simulation to reality. For
a preliminary investigation in simulation, we attempted to
capture an important aspect of switching from a simulation to
the physical robot, by artificially increasing the step size of
the data in the continuous alphabet task from 3 mm to 6 mm
(mimicking that the 3 mm intervals are a discrete approximation
of the continuous physical environment). We found that learning
on the higher density task could be accelerated by transferring
policies trained on the lower density task. Whilst this is not
entirely aligned to the problem of transfer learning between
simulation and reality, these preliminary results demonstrate the
potential for large sample-efficiency improvements. However,
there are multiple methods of transferring trained policies from
simulation to reality, opening up an avenue of future work that
uses this platform to examine these sim-to-real approaches.

Previous research on DRL and tactile data has either used
taxel-based sensors [18], [19], [41], [20], or has combined
optical tactile images with proprioceptive information [21]. To
the best of our knowledge, this work presents the first demon-
stration of successfully training DRL agents in the real world,
with observations that exclusively comprise high-dimensional
tactile images. Though this work has only presented an
evaluation of the TacTip sensor, the proposed experiments
could offer valuable comparisons between alternative tactile
sensors, particularly in the context of applications using recent
DRL techniques. It is possible that alternative tactile sensors
could represent the tactile information in a more concise
form that allows for more sample-efficient learning, which
is the most limiting factor found during this work and an
interesting topic for future investigation. To aid with future
work, the code used for this project has been released along
with designs of the braille keycaps for 3D printing and a
guide for recreating experiments and evaluating trained agents
(available at https://github.com/ac-93/braille_RL).

REFERENCES

[1] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” Journal
of Artificial Intelligence Research, vol. 47, pp. 253–279, 2013.

[2] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking Deep Reinforcement Learning for Continuous Control,” Inter-
national Conference on Machine Learning (pp. 1329-1338), 4 2016.

[3] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden,
A. Abdolmaleki, J. Merel, A. Lefrancq, T. Lillicrap, and M. Riedmiller,
“DeepMind Control Suite,” arXiv preprint arXiv:1801.00690, 1 2018.

[4] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker,
G. Powell, J. Schneider, J. Tobin, M. Chociej, P. Welinder, V. Kumar,
and W. Zaremba, “Multi-Goal Reinforcement Learning: Challenging
Robotics Environments and Request for Research,” arXiv preprint
arXiv:1802.09464, 2 2018.

https://github.com/ac-93/braille_RL


8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020

[5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv preprint
arXiv:1606.01540, 6 2016.

[6] M. Ahn, H. Zhu, K. Hartikainen, H. Ponte, A. Gupta, S. Levine, and
V. Kumar, “ROBEL: robotics benchmarks for learning with low-cost
robots,” in 3rd Annual Conference on Robot Learning, CoRL,, ser.
Proceedings of Machine Learning Research, vol. 100. PMLR, 2019,
pp. 1300–1313.

[7] A. Kumar, T. Buckley, Q. Wang, A. Kavelaars, and I. Kuzovkin,
“OffWorld Gym: open-access physical robotics environment for real-
world reinforcement learning benchmark and research,” arXiv preprint
arXiv:1910.08639, 10 2019.

[8] B. Yang, D. Jayaraman, J. Zhang, and S. Levine, “Replab: A reproducible
low-cost arm benchmark for robotic learning,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
8691–8697.

[9] A. R. Mahmood, D. Korenkevych, B. J. Komer, and J. Bergstra, “Setting
up a Reinforcement Learning Task with a Real-World Robot,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 3 2018, pp. 4635–4640.

[10] A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra,
“Benchmarking reinforcement learning algorithms on real-world robots,”
in 2nd Annual Conference on Robot Learning (CoRL),, ser. Proceedings
of Machine Learning Research, vol. 87. PMLR, 2018, pp. 561–591.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with Deep Reinforcement
Learning,” arXiv preprint arXiv:1312.5602, 12 2013.

[12] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation
error in actor-critic methods,” in International Conference on Machine
Learning, 2018, pp. 1582–1591.

[13] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar,
H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft Actor-Critic Algorithms
and Applications,” arXiv preprint arXiv:1812.05905, 12 2018.

[14] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz,
S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-Real via Sim-to-Sim:
Data-efficient Robotic Grasping via Randomized-to-Canonical Adaptation
Networks,” Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol. 2019-June, pp. 12 619–
12 629, 12 2018.

[15] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz,
B. McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray,
J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba,
“Learning Dexterous In-Hand Manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3–20, 8 2018.

[16] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov,
and S. Levine, “Learning complex dexterous manipulation with deep
reinforcement learning and demonstrations,” in Robotics: Science and
Systems XIV, 2018.

[17] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. Mc-
Grew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider,
N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan, W. Zaremba, and
L. Zhang, “Solving Rubik’s Cube with a Robot Hand,” arXiv preprint
arXiv:1910.07113, 10 2019.

[18] H. van Hoof, N. Chen, M. Karl, P. van der Smagt, and J. Peters, “Stable
reinforcement learning with autoencoders for tactile and visual data,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 10 2016, pp. 3928–3934.

[19] Y. Chebotar, K. Hausman, Z. Su, G. S. Sukhatme, and S. Schaal,
“Self-supervised regrasping using spatio-temporal tactile features and
reinforcement learning,” in IEEE International Conference on Intelligent
Robots and Systems, vol. 2016-November, 11 2016, pp. 1960–1966.

[20] S. H. Huang, M. Zambelli, J. Kay, M. F. Martins, Y. Tassa, P. M. Pilarski,
and R. Hadsell, “Learning Gentle Object Manipulation with Curiosity-
Driven Deep Reinforcement Learning,” arXiv preprint arXiv:1903.08542,
3 2019.

[21] C. Lu, J. Wang, and S. Luo, “Surface Following using Deep Re-
inforcement Learning and a GelSightTactile Sensor,” arXiv preprint
arXiv:1912.00745, 12 2019.

[22] N. F. Lepora, A. Church, C. De Kerckhove, R. Hadsell, and J. Lloyd,
“From pixels to percepts: Highly robust edge perception and contour
following using deep learning and an optical biomimetic tactile sensor,”
IEEE Robotics and Automation Letters, 12 2018.

[23] W. Yuan, C. Zhu, A. Owens, M. A. Srinivasan, and E. H. Adelson,
“Shape-independent Hardness Estimation Using Deep Learning and a
GelSight Tactile Sensor,” Sensors, vol. 17, no. 12, p. 2762, 4 2017.

[24] R. Calandra, A. Owens, M. Upadhyaya, W. Yuan, J. Lin, E. H. Adelson,
and S. Levine, “The feeling of success: Does touch sensing help predict

grasp outcomes?” in 1st Annual Conference on Robot Learning (CoRL),
ser. Proceedings of Machine Learning Research, vol. 78. PMLR, 13–15
Nov 2017, pp. 314–323.

[25] R. Calandra, A. Owens, D. Jayaraman, J. Lin, W. Yuan, J. Malik, E. H.
Adelson, and S. Levine, “More Than a Feeling: Learning to Grasp and
Regrasp using Vision and Touch,” IEEE Robotics and Automation Letters,
vol. 3, no. 4, pp. 3300–3307, 5 2018.

[26] F. R. Hogan, M. Bauza, O. Canal, E. Donlon, and A. Rodriguez, “Tactile
Regrasp: Grasp Adjustments via Simulated Tactile Transformations,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 3 2018, pp. 2963–2970.

[27] N. F. Lepora and J. Lloyd, “Optimal deep learning for robot touch:
Training accurate pose models of 3d surfaces and edges,” IEEE Robotics
Autom. Mag., vol. 27, no. 2, pp. 66–77, 2020.

[28] B. Ward-Cherrier, N. Pestell, L. Cramphorn, B. Winstone, M. E.
Giannaccini, J. Rossiter, and N. F. Lepora, “The TacTip Family: Soft
Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies,” Soft
Robotics, vol. 5, no. 2, pp. 216–227, 4 2018.

[29] M. Andrychowicz, D. Crow, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight experience
replay,” in Annual Conference on Neural Information Processing Systems,
2017, pp. 5048–5058.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2 2015.

[31] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust
Region Policy Optimization,” International conference on machine
learning (pp. 1889-1897), 2 2015.

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal Policy Optimization Algorithms,” arXiv preprint arXiv:1707.06347,
7 2017.

[33] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
in 4th International Conference on Learning Representations, ICLR,
2016.

[34] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International Conference on Machine Learning, 2018, pp.
1861–1870.

[35] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess,
and M. A. Riedmiller, “Maximum a posteriori policy optimisation,”
in 6th International Conference on Learning Representations, ICLR.
OpenReview.net, 2018.

[36] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. G. Azar, and D. Silver, “Rainbow:
Combining improvements in deep reinforcement learning,” in Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence. AAAI
Press, 2018, pp. 3215–3222.

[37] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence. AAAI Press, 2016, pp. 2094–2100.

[38] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Fre-
itas, “Dueling network architectures for deep reinforcement learning,” in
Proceedings of the 33nd International Conference on Machine Learning,
ICML, ser. JMLR Workshop and Conference Proceedings, vol. 48.
JMLR.org, 2016, pp. 1995–2003.

[39] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Vecerik,
T. Lampe, Y. Tassa, T. Erez, and M. Riedmiller, “Data-efficient Deep
Reinforcement Learning for Dexterous Manipulation,” arXiv preprint
arXiv:1704.03073, 4 2017.

[40] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in 4th International Conference on Learning Representations,
ICLR, 2016.

[41] B. Wu, I. Akinola, J. Varley, and P. K. Allen, “MAT: multi-fingered
adaptive tactile grasping via deep reinforcement learning,” in 3rd Annual
Conference on Robot Learning (CoRL), ser. Proceedings of Machine
Learning Research, vol. 100. PMLR, 2019, pp. 142–161.


	I INTRODUCTION
	II RELATED WORK
	III HARDWARE
	III-A Custom biomimetic tactile fingertip
	III-B Braille Keyboard
	III-C Robotic Arm

	IV BENCHMARK TASKS
	V INITIAL ASSESSMENT USING SUPERVISED DEEP LEARNING
	VI SIMULATED ENVIRONMENT
	VII TACTILE REINFORCEMENT LEARNING
	VII-A Reinforcement Learning Formulation
	VII-B Reinforcement Learning Algorithms

	VIII EVALUATION METRICS
	IX RESULTS
	IX-A Results for Discrete Tasks
	IX-B Results for Continuous Tasks
	IX-C Performance on Evaluation Metrics

	X DISCUSSION
	References

