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Model-based robust pose estimation for a
multi-segment, programmable bevel-tip steerable

needle
Alberto Favaro1, Riccardo Secoli2, Ferdinando Rodriguez y Baena2, and Elena De Momi1

Abstract—Bevel-tip steerable needles for percutaneous inter-
vention are prone to torsion determined by the interaction forces
with the human tissue. If disregarded, torsion can affect the
insertion accuracy inducing a change in the needle tip orientation,
which is generally undetectable by tracking devices because
of the small diameter of the needle. This paper presents a
method for estimating the tip pose (i.e. position and orientation)
of a programmable bevel-tip needle using a 2-D kinematic
based Extended Kalman Filter (EKF), where the tip position
of the two steering segments is used as input measurement.
Simulation trials and experiments in phantom-brain gelatin were
performed to prove the performance of the method and mimic
real case scenarios. The solution presented shows state-of-the-art
performance in needle pose estimation with a bounded positional
error of < 1mm and orientation error of < 5◦.

Index Terms—Medical Robots and Systems; Surgical Robotics:
Steerable Catheters/Needles; Biologically-Inspired Robots

I. INTRODUCTION

PERCUTANEOUS needle insertion is a common medical
approach used for procedures such as biopsy, brachyther-

apy, drug delivery and thermal ablation to achieve minimally-
invasive access to different organs and body regions as the
breast, kidney, liver, prostate and brain [1], [2]. In these
contexts, this approach is often preferred to standard open
surgery for the reduced tissue trauma and the faster recovery
time. Nonetheless, percutaneous interventions can be challeng-
ing when the targeted tissue is deep inside the body due to
the presence of anatomical structures to be avoided and the
onset of needle deflection caused by tissue inhomogeneity and
deformation [3].

Recent effort has been applied to the design of steerable
percutaneous needles, the steering of which can be robotically
controlled so as to perform nonstraight paths, allowing the
needle to avoid the anatomical obstacles and increase tip
placement accuracy [4]. These include the Programmable
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Bevel-tip Needle (PBN), a multi-segment steerable needle
composed of four axially-interlocked slender sections, which
are robotically actuated to develop specific tip configurations
that allow the needle to steer.

A significant component required to bring these robotically-
actuated steerable needles into use is the development of
appropriate control strategies to achieve an accurate insertion.
This can be obtained in a closed-loop fashion if the position
and the orientation of the needle (i.e. its full pose) are known.
This is not trivial in flexible needles as the tip is not rigidly
connected to the base. Needle tracking methods can thus be
used, as X-Ray fluoroscopy [5], ultrasound (US) [6][7] and
electromagnetic (EM) tracking systems [8]. However, imaging
methods cannot track the rotation of the needle about its
insertion axis (the roll angle) because of its small diameter
[1], which also precludes the possibility to accommodate a
6 Degrees of Freedom (DoF) EM sensor. Some authors [6],
[9], [10], handled this limitation by considering the roll angle
at the needle tip as equal to the one measured at the base,
assuming an infinite torsional stiffness of the needle.

For the PBN, closed-loop control was achieved by using
adaptive control strategies to compensate for unknown, nonlin-
ear mechanical properties [11], [12]. More recently, these non-
linearities were modelled by using finite-element techniques
[13], creating a new optimised control for the configuration of
the segments.

For most of the steerable needle designs, the effect of
needle-tissue interactions determines a significant torsional
moment. In the case of PBNs, for some tip configurations,
experiments demonstrated the onset of an unmodelled needle
torsion during the insertion, ascribed to needle-tissue shear
forces, which can increase the error in tracking if not measured
and subsequently compensated for.

Reed et al. [14] proposed a solution to model the torsion
experienced by a bevel-tip needle controlled through base
rotation. This model was later expanded by Swensen et al. [15]
with a length-varying torsional dynamics component. They
introduced it in a closed-loop control framework in combi-
nation with C-arm fluoroscopy imaging for needle position
tracking. Kallem et al. [16] presented a feedback controller
that stabilizes a bevel-tip steerable needle to a desired 2-D
plane. In their work, they used the 3-D needle tip position and
estimated the needle torsion applying a Luenberger observer
to the reduced and feedback-linearized Webster’s model of
the needle [17]. These works, however, are designed for a
steerable needle that strongly differs from the PBN in terms
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of structure, kinematics and steering mechanism [11], making
them unsuitable for this type of needle.

A solution for the full pose tracking of a PBN was proposed
by Khan et al. [18], where multi-core optical fibers with
embedded Fiber Bragg Grating sensors were used. Errors in
pose reconstruction were identified since the fibers are not
bonded to the needle and can thus experience a different level
of torsion with respect to the needle body.

In this paper, a solution for estimating the full pose of a PBN
during the insertion is proposed, which addresses the case of
needle torsion. A simplified version of the PBN, featuring two
axially-interlocked segments, is considered (sPBN). For some
configurations, this PBN design has shown experimentally
to be affected by the onset of a torsional effect around the
insertion axis. The method involves an Extended Kalman Filter
(EKF) defined on the 2-D kinematic model of the sPBN
originally presented by Ko et al. in [19] and properly extended
to contemplate the torsion of the needle. In order to mock up
a real test scenario where conventional imaging systems are
used, only the position of the tip of the two needle segments is
considered as a measurement to estimate the full 6DoF pose.
As target accuracy for needle pose estimation, in the proposed
method we considered a position and orientation of < 1mm
and < 5◦, respectively, in line with [5], [16].

Such a solution can be used as a means to inform the PBN
control system about the pose taken by the needle during the
insertion process, allowing the controller to compensate for
the potential onset of needle torsion.

II. METHODS

A. Needle kinematic model

The sPBN needle can generate controlled steering in a plane
according to the relative offset between the two active beveled-
tip segments, as shown in the schematic representation of Fig.
1a. The two segments are identified as A and B. Their local
frames, XA and XB , are on the segments tips.

The needle kinematic model described in [19] is:
ẋ
ẏ

ψ̇

δ̇

 =


cos(ψ)
sin(ψ)

k1(δ − εψ)
0

 v1 +


0
0
0
1

 v2 (1)

where x, y represent the x-axis and y-axis coordinates of the
rear segment frame (Xr) with respect to the global reference
frame O. Based on the needle configuration, Xr can either be
XA or XB , according to whether segment A or segment B is in
front. In Fig. 1a, Xr is XB while the leading segment (Xl) is
XA. ψ is the angle of rotation of the tip around the z-axis and
δ is defined as the relative offset between the two segments
at the needle base (see Fig. 1a). v1 is the cruise speed, i.e.
the forward velocity of the whole needle body, while v2 is the
offset velocity, i.e the rate of change of δ.

The sPBN is formed by two segments able to slide relatively
to each other. According to this principle, when the needle
bends, the inner part of Xl is in compression and the inner
part of Xr is in tension, resulting in a difference between the

offset at the tip (δt) and offset at the base (δ). As reported in
[19], the relationship between the two offsets is:

δt = δ − εψ (2)

with ε = (8Rn)/(3π) for a needle made by two segments,
where Rn the radius of the needle.

The rotational velocity ψ̇ is linked to the cruise speed v1 as
follows:

ψ̇ = ρv1 (3)

where ρ is the instantaneous curvature that the needle tip
follows. In Ko et al. [19], ρ is considered as proportional to
δt with a coefficient k1 as follows:

ρ = k1δt (4)

and, from (2), the expression of ψ̇ reported in (1) is obtained.
At each time step, δt defines the leading segment and the

rear segment, such as:

δt > 0

{
Xl = XA

Xr = XB

δt < 0

{
Xl = XB

Xr = XA

(5)

When the offset of the tip is null, i.e. δt = 0, frames Xl and
Xr coincide. Their poses with respect to the world frame O
are OTl =O Tr.

When δt 6= 0, a steering angle ξ is shown between Xl and
Xr [19] (see Fig. 1a), expressed as:

ξ = k1 δ
2
t sgn(δt) (6)

The radius of curvature (Rc) associated with the angle ξ is
defined as:

Rc =
δt
ξ

sgn(δt) (7)

The translation rPl from Xr to Xl (in Fig. 1a, respectively
XB and XA) is defined as:

rPl = [Rc sin(ξ), Rc(1− cos(ξ)), 0]T (8)

The transformation rTl between Xr and Xl is defined as:

rTl =

[
Rz(ξ) rPl

0 0 0 1

]
(9)

where Rz(ξ) is the rotation between Xr and Xl due to the
presence of ξ. The transformation OTl between O and Xl can
be computed as:

OTl =O Tr rTl (10)

B. Needle torsion

Differences in the roll angle (φ) between the tip and the
base are a well-known fact for needles that require rotation to
steer [16], [20]. In the case of the sPBN, the needle undergoes
a torsion because of the interaction between the needle tip
and the tissue when an offset δt is generated, or for frictional
components between segments. This torsion determines a
rotation by an angle φ about the x-axis that drives the needle
from an ideal 2-D motion to a 3-D displacement (see Fig. 1b)
and an orientation discrepancy between the needle tip and the
base, which does not rotate.
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Fig. 1: Needle kinematics: in a), a 2-D representation of the two-segment
sPBN is reported. XA and XB represent the local frames of segment A and
segment B. In the case depicted, XA = Xl and XB = Xr . Rn is the needle
radius and δ the offset at the needle base. ψ is the rotation of the needle about
the z-axis. The offset at the tip, δt, differs from δ because of the needle bend,
which generates a further curvature ξ associated to a radius Rc. In b), the
effect of needle torsion on the original 2-D trajectory of segment A and B is
reported. The needle moves from a planar steering to a spatial movement. The
local frames of segment A and segment B are reported. The offset between
the leading segment (here the segment A) and the rear segment (here the
segment B) determines a different torsion on their tips, i.e φA 6= φB .

The poses of the two segments tip become:
OT′r = Rx(φr)

OTr (11)

and

OT′l = Rx(φl)
OTr rTl (12)

where φl and φr are the torsion angles on Xl and Xr, as
depicted in Fig. 1b.

C. Needle pose estimation

The state vector x describes the needle status and is defined
as follows:

x = [x, y, ψ, δ, k1, φA, φ̇A, φ̈A, φB , φ̇B , φ̈B ]T (13)

where the first 5 parameters come from (1). The torsion
experienced by the two segments enters in the state vector
by φA and φB . Torsion is assumed to have a second order
dynamics: the torsion affecting the sPBN changes during the
insertion as a function of the current offset δt and can increase
or reduce its speed according to the acceleration determined by
variations in δt during the insertion. Higher order derivatives
are modelled by the process noise.

The extended kinematic model, is defined as:

x(k + 1) = f(x(k)) + b(u(k + 1)) + n(k + 1) (14)

where u is the vector of inputs made of the cruise speed and
the offset velocity:

u = [v1, v2]T (15)

The process noise n(k) is assumed to be drawn from a zero-
mean normal distribution n(k) ∼ N (0,Qp) with variance Qp.

The function f(·) is defined as:

f(x(k)) =

I[5×5] 0
A[3×3]

0 A[3×3]





x(k)
y(k)
ψ(k)
δ(k)
k1(k)
φA(k)

φ̇A(k)

φ̈A(k)
φB(k)

φ̇B(k)

φ̈B(k)


(16)

where I is the identity matrix and A describes a second-order
dynamics:

A =

1 ∆t 1
2∆t2

0 1 ∆t
0 0 1

 (17)

where ∆t is the sampling time.
The control-input function b(·) is defined as:

b(u(k+1)) =



cos(ψ(k))∆t 0
sin(ψ(k))∆t 0

k1(δ(k)− εψ(k))∆t 0
0 ∆t
...

...
0 0


[11×2]

[
v1(k + 1)
v2(k + 1)

]

(18)
The proposed method makes use of the 3DoF position of the
two segments tips. Such information can be obtained through
embedded sensors, e.g. EM sensors, or via a suitable imaging
modality, such as ultrasound. In case of sensors mounted on
the segments tip, a further translation is included to link the
sensor local frame to the segments tip, as in Fig. 1b. The sensor
local frames, XA′ and XB′ , result from the transformation
OTA′ and OTB′ , including translations ∆SAx,y,z , ∆SBx,y,z from
the segments tip to the sensors position. For the sake of
simplicity, no rotation is assumed in OTA′ and OTB′ .

The observation at time k is expressed as:

y(k) = h(x(k)) + v(k) (19)

where the measurement function h(·) is a non-linear function
defined as:

h(x(t)) = [pA,pB ]T (20)

where p are the translation component of OTA′ and OTB′ . The
measurement noise v(k) is a zero-mean Gaussian noise v(k) ∼
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N (0,Qm). Variance Qm is unknown a-priori and has to be
guess in the filter calibration on the basis of the experimental
data.

At each time step, the pose of the segments tip XA and
XB can be computed from the parameters in the state vector
x through (11) and (12).

III. EXPERIMENTAL PROTOCOL

A. Simulation study

The EKF was tested over a set of simulated insertions. These
tests aimed at evaluating the accuracy of our pose estimation
method with respect to the noise within the measurement
data so as to determine the maximum level of noise that still
guarantees acceptable estimation performance.

A set composed by four variable offset velocities (v2),
reported in Fig. 2a, was provided to the 2-D kinematic model
described in Section II-A to generate four simulated needle
insertions.

Two 3DoF position sensors were ideally mounted on the
segments tips, located at a known distance (∆SAx,y,z,∆S

B
x,y,z)

with respect to the tip reference frames (XA, XB). The
insertions feature different values of k1, used to obtain dif-
ferent steering responses. These dimensions and parameters
are reported in Tab. I.

To mimic the torsion of the needle during the insertion, a
rotation φ about the needle insertion axis was simulated for
both the needle segments at every time step.

We simulated φ within the leading segment by applying the
following function:

φl(t) =



φl(t− 1) + ∆φ(δt(t))

if |φl(t− 1)| < φmax

φl(t− 1) + ∆φ(δt(t))e
−d|φl(t−1)−φmax|

if |φl(t− 1)| ≥ φmax

(21)

where ∆φ represents the incremental step of rotation affecting
the leading segment. φmax is the maximum angle of needle
torsion after which we assumed that the needle torsional com-
pliance would decrease. This limits further rotations, which
was simulated by the exponential decay that multiplies ∆φ in
the second case of (21).

∆φ is defined as follows:

∆φ(δt) = sgn(δt) ·
[

a

1 + e(−b(δt−c))
− a

1 + ebc

]
(22)

we assumed ∆φ having a quasi-linear behavior. Values of δt
near to zero induce a slow increase in the rotation angle; the
slope of ∆φ rises for larger values of δt up to |δt| ≥ 15mm,
where the incremental step of rotation becomes constant. The
second addendum in (22) is required to have ∆φ(0) = 0◦.
∆φ is symmetrical about the y axis, thus positive values
of δt drive the needle to twist toward positive values of φ
and vice-versa. Such a behaviour, designed for the scope of
simulation and reported in Fig.2b, represents an assumption
based on experimental evidence [13]. Parameters of (21) and

Fig. 2: In a) the evolution of the offset velocities (v2) for the four simulated
insertions is shown over time. In b), the incremental step of needle rotation
is reported with respect to the offset at the tip. In c), the trend of φ for one
simulated insertion is depicted over the insertion length for segment A and B.
In d), the resulting 3-D reconstruction of the needle shape. In e), a schematic
of the main entities coming into play in the geometric approach is reported.

(22), reported in Tab. I, were defined empirically on the basis
of the expected needle behavior and the experimental evidence.

We hypothesised a follow-the-leader condition for which, at
a specific insertion length l, the rear segment features an angle
of torsion φr equal to the one shown earlier by the leading
segment at the same insertion length, i.e. φr(l) = φl(l).

Fig.2c reports the torsion angle featured by segments A
and B in one of the simulated insertions. The resulting needle
shape is illustrated by the 3-D reconstructions in Fig. 2d.

White noise with different levels of standard deviation (σ)
was used in different simulations. As the lower value of
noise, σ1 = 0.07mm measured in-gelatin during a static
EM acquisition was considered (EM sensors: 5DoF, 0.3mm
diameter, AuroraTM, NDI R©, Waterloo, Ontario, Canada). As
performance metrics for needle position estimation, the Eu-
clidean error (Et) between the true segment position and
the estimated one was used. The orientation error (Er) was
computed individually for each Euler angle as the absolute
error between the true angle and the estimated one. We
considered as acceptance criteria Et < 1mm and Er < 5◦,
comparable with the state of the art [5], [16]. With these
criteria, an upper bound σ4 was defined, which is reported in
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Needle EKF Noise (σ [mm])

Rn [mm] ∆SA [mm] ∆SB [mm] Qp Qm [mm] σ1 σ2 σ3 σ4

1 -1 -1 0 -1 1 0 10−9 1 0.07 0.14 0.21 0.28

k1[mm−2] Torsion function Setup
k1,1 k1,2 k1,3 k1,4 a [deg] b c d φmax[deg] v1 [mm/s] Li [mm] f [Hz]

1.85 · 10−4 2 · k1,1 5 · k1,1 k1,1 0.06 0.5 5 0.2 60 1 110 10

TABLE I: Parameters and dimensions used in the simulation trials.

Tab. I along with two intermediate steps σ2 and σ3 included in
the test to evaluate the performance of the solution at different
levels of measurement noise. The EKF was tested three times
over each insertion and each level of σ. In simulations, Qm
was chosen empirically by tuning the nominal accuracy of the
EM sensors used in in-gelatin experiments to the value that
guarantees the best estimation performance. Similarly, Qp was
chosen as Qp = 10−j in the set j ∈ [0, ..., 10] as the value
that provides the best prediction accuracy. Qm, Qp, insertion
speed (v1), insertion length (Li), sample rate (f ) and further
simulation parameters are reported in Tab. I.

Tests were performed using MATLAB R© R2019a, on a
MacBook Pro (MacOS 10.14.6, 2,7 GHz Intel Core i5, 8 GB
of RAM).

B. Geometric approach for pose estimation

A geometric approach was used as a term of comparison
for the proposed EKF solution. This method, run offline,
relies only on geometric relationships to compute the pose
of segments A and B and consists of the definition of a
cross-plane Qk at each time step, as shown in Fig. 2e. In
the following, the description of the method for defining the
pose of segment A at time k and point PAk is reported.

At first, the insertion direction, v, is defined by finding the
point P̄ as the average of the n = 25 future insertion points
with respect to k:

P̄ =
1

n

n∑
1

(PAk+i) (23)

v =
P̄ − PAk
|P̄ − PAk |

(24)

For a sampling frequency of 2Hz and a cruise speed v1 =
1mm · sec−1, n=25 corresponds to 12.5secs of acquisition and
12.5mm of needle insertion.
The plane Qk is defined as follows:

a(x− PAk,x) + b(y − PAk,y) + c(z − PAk,z) = 0 (25)

where a = vx; b = vy; c = vz .
From the EM data of segment B, the closest point PB

ī
to Qk

is found, where ī is such that:

ī = argmin(
−−−→
PA,B · PAk ) ∀i ∈ [0, kend] (26)

where kend is the last sample of the EM acquisition and
−−−→
PA,B = PBi − PAk (27)

The projection P̂ of PB
ī

on Qk is computed and the reference
frame at PAk is obtained as:

x =
v

|v|
; y =

P̂ − PAk
|P̂ − PAk |

; z = x× y (28)

The performance of the geometric method was evaluated in
simulation over the different levels of noise. As this set
includes the noise measured in gelatin during static EM
acquisitions (σ1), the test aims to demonstrate the suitability
of the method to be used as a way to compare phantom-brain
gelatin experiments.

Similarly to the EKF, the geometric approach was tested
three times for each simulated insertion and noise level.

C. In-gelatin experiments

Three needle insertions were performed on phantom-brain
gelatin (10% by weight bovine gelatin - Chef William Pow-
dered Gelatin) to assess the performance of the proposed
solution in conditions which replicate real insertion scenarios.

In-gelatin trials were performed using a four-segment PBN
design, the details of which can be found in [13]. The PBN
is formed by four segments featuring one lumen of 0.3mm
each, and an overall outer diameter of 2.5mm for all segments
together. To reproduce the sPBN model, the four segments
were coupled two by two. We can thus define two couples
of segments, cplA and cplB , with the first controlling the left
steering and the second controlling the right steering. In such
a way, we transform defacto the four-segment PBN design
into a two-segment design with cplA and cplB representing
segment A and segment B.

The EKF requires the tip position of segment A and B as
measurement data. This is obtained by accommodating an EM
AuroraTM sensor (5DoF, 0.3mm diameter, Northern Digital
inc.) inside a lumen of cplA and a lumen of cplB . Only the
3DoF position of each segment was used as measurement input
in the proposed method. This approach was chosen to make
the solution feasible also for applications where the orientation
cannot be measured. The orientation measurements (pitch and
yaw angles) are considered as ground truth to validate the EKF
estimation accuracy. As for simulation trials, Qp and Qm were
set through a tuning process to values that provided the best
prediction results, namely Qp = 1 · 10−3 and Qm = 1mm2.

The experimental setup is reported in Fig. 3 and described
hereinafter. The insertion of the needle was driven by a robotic
system composed of four linear actuators (one per each PBN
segment). The needle was inserted for 20mm in the gelatin
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phantom, with all four segments aligned, then the desired
offset was generated by pushing a couple of adjacent segments
ahead (e.g. cplA if δ > 0). The needle was then inserted
at a constant cruise speed of 1mm · sec−1, as in previous
studies [13], [19], resembling the speed of manual insertion
of a standard deep brain stimulation electrode performed by an
expert neurosurgeon. Encoders recorded the insertion length of
the segments, from which the cruise speed v1 and the offset
velocity v2 could be computed. A sample rate of 2Hz was
used, which was assumed to be appropriate, considering the
low magnitude of v1. A desktop PC with Linux Ubuntu 16.04
operating system running the Robotic Operating System (ROS)
was used to control the needle insertion and for data storage.

Fig. 3: Experimental setup: the PBN is inserted into gelatin and tracked by
the EM field generator through the EM sensors mounted on the needle. An
actuation box controls each segment of the PBN and encoders measure their
insertion length. On the bottom left, a magnification of the needle insertion.

IV. RESULTS

A. Simulation study
The results of simulated trajectories at the different levels of

measurement noise are reported in Fig. 4 for the EKF and the
geometric approach. As no significant difference was detected
from segment A and B and from different simulated insertion
profiles, results were combined. In the top row, the Euclidean
error (Et) with respect to the reference trajectory is presented
for both the estimation methods. Et shows a positive linear
trend over the increasing of σ still maintaining the position
error lower than the 1mm margin of acceptability.

The orientation errors (Er) are reported in the rows below.
As a yardstick, the error of 5◦ considered to be acceptable is
reported in the graphs, except for θ and ψ in the EKF results,
where it was omitted to improve readability, as Er was found
to be particularly small.

For the EKF, the φ angle shows the largest error. The 5◦

yardstick is reached for a measurement noise (σ4) equal to four
times the one evidenced in static in-gelatin EM acquisitions
(σ1). This value can be considered the upper bound accuracy
for a tracking system to be used with the presented solution.

The geometrical approach guarantees Et < 1mm and
Er < 5◦ for the level of noise σ1, which is the one evidenced

in-gelatin during static EM measurements, confirming the
feasibility of the method to be used as comparison for the
experiments in gelatin.

Fig. 4: Simulation results: the graphs show Euclidean and orientation errors
(Et, Er) from the simulation trials at different values of noise (σ). Results
from the EKF and the geometrical approach are shown in the left and right
columns. As a yardstick, the 5◦ error tolerance is plotted, with the exception
of the θ and ψ angles of the EKF where Er is too small. Please note that
the span of the y differs for the two methods in the θ and ψ angles.

B. In-gelatin experiments

In Tab. II, the results in terms of Et and Er from the
3 in-gelatin insertions are reported as the 25th, 50th, 75th

quantiles. Results from the EKF estimation are compared to
the measurements provided by the EM sensors, i.e. the 3DoF
position and 2DoF orientation (pitch and yaw angles). For the
roll angle, the error is measured in comparison to the one
computed by the geometric approach.

The results from one of the three sPBN insertions in gelatin
are reported in Fig. 5 (Trial 1 in Tab. II). On the left,
the original position data retrieved by the two EM sensors
embedded in the PBN are reported. On the side, the needle
reconstructed from the 6DoF pose estimated by the EKF is
shown. In the graphs, the position and the orientation estimated
by the EKF are compared to the EM data and the geometric
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Et [mm] Er,φ [deg] Er,θ [deg] Er,ψ [deg]

25th 50th 75th 25th 50th 75th 25th 50th 75th 25th 50th 75th

Trial 1 0.10 0.18 0.34 0.62 1.40 2.65 1.97 2.55 3.06 0.82 1.37 1.80
Trial 2 0.11 0.23 0.39 1.98 2.77 4.74 0.69 1.41 2.21 0.79 1.52 2.22
Trial 3 0.32 0.40 0.47 2.71 3.71 4.91 0.27 0.43 0.76 0.53 1.11 1.44

TABLE II: Results from the in-gelatin trials. Position error Et is computed with respect to the original EM data. Orientation error Er,φ is computed with
respect to the geometric approach, while Er,θ and Er,ψ relative to the EM data. For each index of performance, the 25th, 50th, 75th quantiles are reported.

Fig. 5: In-gelatin results: on the left, the original position data from the EM sensors are reported for Trial 1. On the side, the reconstruction of the needle
from the 6DoF pose estimation by the EKF is reported. Graphs on the left side allow the comparison between the original EM position and the one estimated
by the EKF. Graphs on the right side allow to compare the estimated orientation with respect to the EM data (θ and ψ) and the geometric approach (φ). A
close look at the estimated angles is possible through the three magnification windows reported on the right graphs.

approach (for the roll angle, only the comparison with the
geometric approach is possible). For the sake of readability,
in the graphs, the EM position data and the needle orientation
reconstructed using the geometric approach are under-sampled
by a factor 25 and 10, respectively.

EKF results show an initial phase of orientation
convergence, particularly evident for the roll angle. This phase
is measured as the insertion length required to stabilize the
needle within the 5◦ error margin with respect to the angles
provided by the geometric approach, neglecting the initial
insertion offset between segments. In Fig. 5, the convergence
phase for Trial 1, segment B, was found to be equal to 8mm.
The convergence phases measured for Trial 2 and Trial 3 are
7.5mm and 10mm in duration, respectively. The convergence
phase is overlooked in the computation of the position and
orientation errors of Tab. II.

V. DISCUSSIONS

Simulation trials on the EKF demonstrate for the roll angle
a less accurate estimation than for the other orientation angles.
In the EKF, the roll and its derivatives are unreachable states.
For these states, the initial prediction based on model inputs is
not possible and, for their estimation, the EKF relies solely on
the noisy measurement data, which leads to a higher estimation
error. In gelatin, where modeling inaccuracies come into play,
the error in pitch and yaw angles becomes similar to the one
in the roll.

Compared to the EKF, a faster worsening in pose recon-
struction accuracy was evidenced in simulation for the geomet-
ric approach over the raise of the measurement noise. Indeed,
by filtering the measurement data with the state prediction
provided by the needle kinematic model, the EKF can increase
the robustness of the estimation in the presence of measure-
ment noise. In addition, the main drawback of the geometric
approach consists of the impossibility to compute the needle
pose in the parts of the insertion where the needle cross-plane
cannot be defined, i.e. in the offset between segments. In the
in-gelatin trial reported in Fig. 5, this is represented by the
final part of the insertion of segment B, which is the leading
segment that defines the steering direction and the pose of
which is essential for the sake of needle control. This drawback
prevents the geometric approach from being used as a means
for pose estimation in real insertion scenarios.

The soundness of the proposed solution is confirmed by
the EKF performance in gelatin. Compared to the shape
reconstruction solution proposed by Khan et al. for a PBN
[18], our model-based pose estimation method achieves a
reduction in the mean position error of ∼30%. No data are
provided in [18] for a comparison of the orientation errors.
In this regard, if compared with a steerable needle tracking
solution as the model-based approach developed in [6] for a
bevel-tip needle, our solution demonstrates similar orientation
errors, although in [6] the estimation of the roll angle was
overlooked.

To make the proposed solution suitable for applications
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where only the needle position can be tracked (e.g. where
tracking is performed via X-ray fluoroscopy or US), only
the 3DoF position of the needle segments tip is considered
as tracking data from the 5DoF EM sensors (the pitch and
yaw angles are used only as ground truth for validation).
Benefits in terms of estimation performance arising from
the inclusion of pitch and yaw angles from the 5DoF EM
sensors as measurement data will be the object of forthcoming
investigations.

Future studies will focus also on improvements derived from
the use of different filtering approaches, as the Unscented
KF and particle filters, and on adapting the proposed method
to the case of the four-segment PBN, the design of which
can be viewed as the combination of 2 sPBN orthogonally
arranged to achieve movements in 3-D as the sum of a vertical
and an horizontal steering. In this regard, the PBN kinematic
model proposed in [21] could be extended including the effect
of torsion to each needle segment, as in Section II-B. The
EKF could be designed around this adapted PBN model in
a way similar to Section II-C and the position of the four
PBN segments tips be used as measurement data by the filter
to estimate the PBN pose during the insertion. Additionally,
an adaptation to other types of steerable needles will also be
evaluated. A possible candidate is the bevel-tip needle with
base rotation, the kinematic model of which is reported in
[16]. The needle tip position could be tracked and, similarly
to the method herein presented, a state variable representing
the torsional mismatch between the tip and the base of the
needle could be included in the EKF to correct the needle
pose estimation.

VI. CONCLUSION

In percutaneous intervention, the ability to track the
needle position and orientation (i.e. the full pose) is of
paramount importance for a robotic steering system to
perform accurate needle insertion and address needle torsion.
The method herein presented, based on an EKF, uses the
position measurement of the needle tip to correct the needle
state prediction obtained from a kinematic model and to
infer the roll angle. The method is proposed for a two-
segment beveled tip needle (sPBN) accommodating a sensor
for position tracking within the tip of each segment. The
method was tested in simulation, demonstrating reliability
in terms of estimation accuracy and robustness against
measurement noise. In experiments conducted in gelatin,
the solution was able to estimate the needle pose with
a position error < 1mm and an orientation error < 5◦,
consistent with the state of the art. The pose estimated by
the filter could thus be safely used by a control system to
drive the needle insertion and address potential needle torsion.
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