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Place Recognition in Forests with
Urquhart Tessellations

Guilherme V. Nardari1,2, Avraham Cohen2, Steven W. Chen2,3,
Xu Liu2, Vaibhav Arcot2,3, Roseli A. F. Romero1, and Vijay Kumar2

Abstract—In this letter, we present a novel descriptor based
on Urquhart tessellations derived from the position of trees in
a forest. We propose a framework that uses these descriptors
to detect previously seen observations and landmark correspon-
dences, even with partial overlap and noise. We run loop closure
detection experiments in simulation and real-world data map-
merging from different flights of an Unmanned Aerial Vehicle
(UAV) in a pine tree forest and show that our method outperforms
state-of-the-art approaches in accuracy and robustness.

Index Terms—Robotics and Automation in Agriculture and
Forestry, Localization, Mapping

I. INTRODUCTION

IDENTIFYING previously encountered locations is funda-
mental to a variety of robotic applications such as loop

closure in simultaneous localization and mapping (SLAM)
[1], or merging observations from different robots in multi-
robot systems [2]. This problem is more challenging in GPS-
denied or restricted settings where absolute information about
locations is unavailable or unreliable. Forests are an inter-
esting and challenging use of robot systems, with promising
applications to automatic timber volume estimation [3], animal
detection [4], and forest fire management [5]. The problem of
place recognition is critical in cluttered forests as the opera-
tional area is vast, GPS is typically unreliable due to dense
forest canopy, infrastructure for long-range communication is
usually not available, and the environment is repetitive [6].

To address this, we propose a new method for place
recognition illustrated in Fig. 1 that derives polygons based
on tessellations of the set of landmark detections. From these
polygons, we extract unique descriptors of parts of a robot
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Fig. 1: As the robot detects landmarks, we can derive polygons
based on their positions to detect loops and associate land-
marks even if the observations are not completely consistent.

observation that can be used to localize the agent and compute
landmark correspondences.

Many works address the place recognition problem in
urban or indoor scenarios, where features have meaningful
and discriminative information [7], [8]. For the multi-view
case, observations of an environment can be differentiated by
encoding the semantic labels observed in a scene [9]. However,
when navigating under the forest canopy, these methods are
not viable since the only reliable information differentiating
trees is their position in space. In this type of scenario, instead
of a bag of words approach, one can resort to encoding the
objects’ spatial relationships using a global descriptor that
encodes the entire observation.

Graphs are a natural model for these types of represen-
tations. The graph nodes are usually given by features or
landmarks detected in an observation. A kernel can then be
applied to extract a descriptor that can be matched against
other observations [10]. Methods such as GLARE [11], its
rotation invariant extension GLAROT [12] are similar in that
they compute both a global descriptor for each observation, as
well as local descriptors for each landmark in that observation
based on the relative distances and angles between landmarks.
During the matching stage, they first check that the global
descriptors are consistent, then associate landmarks based on
the local descriptors. Even though these methods have had
some success in a forest environment [6], they are susceptible
to noise since they rely on space discretization to compute the
local descriptors, and the estimate of the same landmark can
lie in different bins.

For the 2-D case, Rizzini et al. [13] extends these works by
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representing the same metrics as probability density functions
to avoid the discretization problem. However, this approach
can still suffer from noise and fail to match observations that
only partially overlap each other. We bypass these drawbacks
through encoding local spatial relationships with geometric
primitives, which is robust to partial overlaps and does not
rely on discretization.

On the other end of the spectrum, local methods compute
descriptors based on small regions around feature points.
These methods can successfully match even in the presence
of partial overlap or occlusion. Gawel et al. [14] merge
accumulated point cloud maps from vision and lidar systems
by calculating structural descriptors based on the density of the
neighborhood of feature points. Fast point feature histograms
(FPFH) [15] create descriptors for each point by computing
surface normals using its neighboring points inside a user-
defined radius. FPFH bins these normals into a histogram by
representing them as angular features.

The drawback of local methods is that the number of
comparisons usually grows linearly with the number of points
in the set, resulting in higher computational times. For robotics
applications where speed and resource allocation is critical,
this can be prohibitively expensive.

Using polygons derived from the Urquhart graph, our
method encodes information with fewer descriptors than a
local method while also being robust to partial overlap and
noise. We run experiments in simulation and a real-world
forest, demonstrating that it can be used for loop-closure
detection and landmark association for map-merging while
handling noise perturbations that cause current state-of-the-art
methods to fail. In summary, our contributions are:
• A novel descriptor based on polygons capable of handling

large scale repetitive environments while being robust to
noise;

• A framework for aligning arbitrary observations using
only the position information of landmarks.

II. PROBLEM FORMULATION

We model a robot with a noisy, limited range sensor travers-
ing an environment filled with identical landmarks. Moreover,
we define a map as a set of landmarks M , {Li}Ni=1, where
the only information differentiating Li and Lj , i 6= j are
their locations in M. Due to the limited range sensor, a robot
at time t has the potential to detect a submap of landmarks
SM (t) ⊆ M. However, due to sensor noise and landmark
occlusion, some landmarks may not be detected. Let δ(L)
be the Boolean random variable representing the successful
detection of landmark L,

δ(L) =

{
1 if landmark L is detected,
0 otherwise.

Similarly to [16], we model δ(L) as a Bernoulli distribution
with success probability ω, δ(L) ∼ Ber(ω). We define the
observed submap under the presence of detection noise

S̄M (t) , {L : δ(L) = 1}L∈SM (t) ⊆ SM (t).

We assume that each landmark L has a 2-D coordinate
projection on the xy-plane in the map frame pM ∈ R2. Due
to sensor noise and uncertainty in the landmark projection,
the observed 2-D coordinate projection p̄M may differ from
the true 2-D coordinate projection pM . We model this noise as
p̄M = pM+ε, where ε is a 2-D Gaussian random variable with
zero mean and variance Σ, ε ∼ N (0,Σ). The 2-D observation
of SM (t) including both forms of sensor noise is

PM (t) , {p̄M}L∈S̄M (t).

Finally, the robot will typically perceive its surroundings
in its local frame, not the global map frame. Suppose that
at time t, the pose of the robot projected in the xy-plane in
the map frame is TM

R (t) ∈ SE(2). We define the noisy 2-D
observation of SM (t) in this local frame as

PR(t) , {[TM
R (t)]−1p̄M}L∈S̄M (t).

We will refer to the robot pose at time t as T(t) for ease
of notation.

Problem (Place recognition with identical landmarks).
Given noisy 2-D observations PR(ti) and PR(tj) taken at
times ti 6= tj , determine if the corresponding sub-maps
SM (ti) ∩ SM (tj) 6= ∅ and if so, estimate the associated rigid
transformation H(ti, tj) ∈ SE(2) where

T(ti) = H(ti, tj)T(tj). (1)

This problem encapsulates a variety of different applications
such as kidnapped robot [17], multi-robot map fusion [6],
and loop closure detection [18] in environments with identical
landmarks (e.g. forests).

III. PRELIMINARIES

An edge e = (pi, pj) is a line segment bounded by a pair
of points pi, pj ∈ R2. A polygon L is a closed set defined by
the region enclosed by the edges constructed via consecutive
point pairs (pi, pi+1) in the sequence of points (p0, . . . , pn)
where p0 = pn. In other words, polygon L is defined by
a sequence of edges (e0, . . . , en−1), where each edge ei is
constructed based on the original point sequence. A triangle
is a polygon with n = 3, and its circumcircle is the circle that
passes through all points of the triangle.

Let P be a set of at least 3 discrete points p ∈ R2 in
general position. A tessellation is a finite set of polygons
{L0, . . . Ln} which covers the convex hull Q(P ) without
gaps or overlaps. More precisely, ∪ni=0Li = Q(P ) and
int(Li) ∩ int(Lj) = ∅ ∀ i 6= j, where int(·) denotes the
interior of a polygon. A triangulation is a tessellation where
all elements are triangles. The Delaunay triangulation DT (P )
is a triangulation where no point p ∈ P is in the circumcircle
of any triangle of DT (P ) [19].

We convert the Delaunay triangulation to a graph in order to
construct the Urquhart graph [20]. The triangulation DT (P )
can be represented as a graph GD = {VD, ED} where VD is
the union of the triangle points, and ED is the union of the
triangle edges. The set of the longest edges of each triangle in
DT (P ) is defined by Ω = {arg max

e∈L
‖e‖ : L ∈ DT (P )}. The
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Urquhart graph of DT (P ) is a graph GU = {VU , EU} where
VU = VD and EU = ED \ Ω. GU is a sub-graph of GD where
the longest edges of each triangle are removed.

We then convert the Urquhart graph GU back into an
Urquhart tessellation U(P ) using cycle detection. A simple
cycle c of an arbitrary graph G = {V, E} is a non-empty
sequence of edges Ec = (e0, . . . , en−1) ⊆ E with a vertex
sequence Vc = (v0, . . . , vn) ⊆ V such that v0 = vn, and
vi = vj ⇐⇒ i, j ∈ {0, n}, i.e. there are no repeated vertices
except for the first and the last. The simple cycles of a graph
correspond to polygons of a tessellation.

The cycle basis C of a graph G is the minimal set of simple
cycles such that for all cycles c ∈ G, ∃ ci, cj ∈ C, such that c =
ci∆cj where ∆ represents the symmetric difference operation.
Intuitively, any cycle can be computed with elements of the
cycle basis. The cycle basis of a graph corresponds to the
tessellation. As a result, we can convert the graph GU into the
tessellation U(P ).

These tessellations motivate a hierarchy of geometric prim-
itives H(P ) that encompass local to global information. The
first level H0(P ) is the set of all edges ED. The second level
H1(P ) is given by the triangles of the Delaunay triangulation
DT (P ). The third level H2(P ) is given by the polygons of
the Urquhart tessellation U(P ).

We define a function φk(·) : Hk+1(P ) → Hk(P ), to map
from higher to lower levels, where

φk(s) = {l : l ∩ s = l, l ∈ Hk(P )}, (2)

e.g. φ0 maps triangles of the Delaunay triangulation to
its corresponding edges, φ1 maps polygons of the Urquhart
tessellation to its corresponding triangles.

IV. METHOD

In this section, we describe our method for extracting from
an observation PR(t), the polygons H(PR(t)) or H(t) for
brevity. Moreover, we present a framework depicted in Fig. 2
for solving Eq. 1 using landmark correspondences derived
from H(t). We assume that the spatial distribution of the
landmarks is unique, and leverage these landmarks’ positions
to define polygons that can be used to represent a sub-map
S(t) uniquely.

Our method expects a set of noisy 2-D landmark locations as
input. Li et al. [21] obtains this information using a clustering
algorithm. We derive the position of the trees observed by the
robot with SLOAM, a framework for odometry and mapping
in forests proposed in our previous work [3]. The algorithm
detects tree instances in lidar point clouds and estimates a
cylinder model for each tree. Each cylinder is parameterized
by a ray that defines its axis and a radius. The position of
the trees is estimated by projecting the initial point of the ray
onto the 2-D plane. Any method that can output consistent
landmark locations relative to the robot across observations
can be used for this step. The choice depends on the type of
robot or environment.

A. Polygons from Landmark Detections
In general, a triangle of DT (t) will have consistent metric

properties such as perimeter and area across observations as

Algorithm 1 Urquhart Graph with Cycle Detection

1: input: GD, H1(t)
2: C = H1(t)
3: GU = GD
4: for each triangle L ∈ H1(t) do
5: eL = arg max

e∈L
‖e‖

6: Find Lneigh ∈ C, Lneigh 6= L, eL ∈ Lneigh . Find a
neighboring triangle that shares eL.

7: Drop eL from GU
8: CL = L∆Lneigh

9: end for
10: return GU , C

long as other polygons that share a side with it are not
perturbed with noise [21]. However, similar triangles are likely
to be found as the scale of the area covered by the robot
grows. Moreover, the number of triangles to match has an
upper bound of 2n − 2 − b where n is the number of points
and b are the points that lie in Q(P ) [19], which can become
impracticable to match in real-time applications.

For two polygons Lm and Ln, Lm∩Ln = ∅, from different
regions of the map to have similar metric properties, it would
require that the triangles that compose Lm and Ln also have
similar metric properties and are arranged in space similarly,
such that

⋃
φ1(Lm) ≈

⋃
φ1(Ln). For this reason, U(P )

creates polygons that are less likely to repeat than DT (P ) and
decreases the probability of false-positive correspondences.

As stated in Sec. III, the set of polygons of the tessellation
U(t) is given by the cycle basis CU . We propose an algorithm
summarized in Alg. 1, where we loop through the elements
of H1(t) to compute the set of longest edges Ω while also
updating CU as triangles are combined to efficiently compute
both GU and CU .

For a given pair of cycles ca and cb that represent polygons
from a tessellation, we compute the symmetric difference
ca∆cb by moving the elements of its lists of edges Eca and Ecb .
The longest edge of ca that is shared with cb, e ∈ Eca , e ∈ Ecb
is moved to the first position in Ecb and the last position in Eca .
Then, we concatenate Ecb to the end of Eca , excluding e from
both. This procedure will create a new cycle and maintain
the order of the edges. In some cases, elements of CU will
have a hanging edge, as depicted by the yellow polygon in
Fig. 3. These elements can be detected and filtered out in
post-processing to respect the definition of a simple cycle.
Furthermore, polygons that have a side at the boundary of the
tessellation are discarded since these shapes have a probability
of changing in a new observation with different robot position
as new landmarks can enter the field of view of the sensor.

B. Robust Polygon Descriptor

We can view the place recognition problem as an instance
of the sub-graph matching problem using GU , which is NP-
Complete [22]. Instead, we use H(t) to derive descriptors
for different regions of the observation. To compute our
descriptor, we assume that observations will not be sheared
or have scale differences, which will be true for lidar data.
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Fig. 2: Our method computes tessellations from the position of trees detected from lidar scans. The polygons derived from it can
be used for place recognition and landmark association. The target observation is a different set of polygons with descriptors
that can come from the robot’s history of observations in loop closure tasks or a different agent in multi-robot scenarios.

Fig. 3: A graph before and after Algorithm 1. It drops the
longest edge for each triangle while keeping track of the cycles
being formed (represented by the colored regions).

We borrow techniques from the shape retrieval literature
and, for each polygon and triangle L ∈ H(t), we compute
a descriptor based on the centroid distance [23]. The set of
points that are part of L is N = {p : p ∈ L} where p are
the elements of the sequence of points from the definition
of a polygon in Sec. III, excluding the repeated point. The
centroid c = (cx, cy) of L is computed by

cx =
1

|N |

|N |−1∑
n=0

pxn, cy =
1

|N |

|N |−1∑
n=0

pyn.

Since the size of N can vary for different polygons, we
sample a constant number points relative to the perimeter size.
The step size between sampled points is given by step ∗ P ,
where 0 < step < 1.0 and P is the length of the perimeter,
creating a new set of points M with the same number of
elements regardless of the size of N .

The new centroid distance with sampled points is

F (L) = {‖pn − c‖2 : pn ∈M}.

A large step size will smooth out the polygon, while a
small one will be more likely to capture details such as sharp
corners. The optimal value balances these two properties to
maximize precision while also being robust to noise.
F (L) is translation invariant since it uses only relative

distances. However, the order of the elements of the descriptor

can be different depending on what part of the polygon
sampling starts. Similar to GLAROT [12], one could apply
a permutation function to the descriptor and use the config-
uration with the smallest distance. This can be inefficient, as
we may have to match many polygons per observation.

We address this problem by applying a Discrete Fourier
Transform DFT (·) to F (L), and obtain a new descriptor
F̂ (L) = DFT (F (L)) [23]. F̂ (L) is in the frequency domain,
and has the property that its magnitude F̄ (L) =

∣∣∣F̂ (L)
∣∣∣ will

be the same regardless of the order of the input, making it
invariant to starting point of the sampling step.

C. Matching

We store F̄ (L) for all polygons in H(t), including trian-
gles. A pair of polygons Ln ∈ H(ti) and Lm ∈ H(tj)

are considered a match if
∥∥F̄ (Ln)− F̄ (Lm)

∥∥2
< τ . To

increase robustness and speed, we only compare polygons if
|Nn|−|Nm| ≤ 3. That is, if the difference in number of points
between polygons is smaller than or equal to 3.

In the worst case, the initial comparison between elements
of H2(P ) of a pair of observations will be gti ∗ gtj where
gi =

∣∣H2(ti)
∣∣ and gj =

∣∣H2(tj)
∣∣. In loop-closure or other

scenarios where the number of comparisons scales over time
with the number of stored observations, we may have to
sample elements of H2(t).

We define a parameter γ that creates an upper bound on the
number of H2(t) polygons per observation and, consequently,
the time required for matching a pair of observations. With
this process, the algorithm will still grow linearly with respect
to the number of stored observations. However, like in global
methods, the number of landmarks will no longer affect the
performance since the number of polygons to match per
observation will be constant.

As stated previously, a polygon Lm ∈ H2(ti) defines a
subset of triangles φ1(Lm) ⊆ H1(ti). Given a target polygon
Ln ∈ H2(tj), if the ratio between elements in φ1(Lm) with
correspondences in φ1(Ln), and the number of elements of
φ1(Lm) is greater than a threshold eta, the triangle corre-
spondences are considered valid.

For a pair of corresponding triangles Lk ∈ H1(ti) and Ll ∈
H1(tj), we match edges based on their lengths ¯̄Ek = {‖e‖ :

e ∈ Lk}, and ¯̄El = {‖e‖ : e ∈ Ll} by



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2020

arg min
k

∥∥∥ ¯̄Em − χk
¯̄En
∥∥∥2

,

where χ is a permutation matrix reordering the elements of
¯̄E . Intuitively, the matrix that generates the smallest difference
between the lengths of the edges is the best assignment
between them. We extend this assignment to point correspon-
dences by matching points that share corresponding edges.

D. Euclidean Transformation Computation

Given a set of correspondences, there are many approaches
to solving the observation alignment problem. For the R3 case,
the assignments found by our algorithm can be propagated to
the entire object, and an optimization-based approach can be
used to align the instances, e.g., as an alternative to the data
association methods presented in [3] Sec. III-B.

We run our experiments in R2, and use the assumption that
the data will not suffer from shearing or scale variations to
reduce H(ti, tj) to a Euclidean transformation with 3 degrees
of freedom that we estimate using RANSAC.

For each iteration, we randomly sample two correspon-
dences, and solve Eq. 1 for H(ti, tj). If the Euclidean distance
between corresponding points after the transformation is below
a threshold d, we consider the correspondence an inlier. If
the ratio of inliers to outliers is above a threshold r or the
maximum number of iterations s is reached, the algorithm
stops and returns the best estimate which has the most inliers.

V. EXPERIMENTS

In this section, we present our experimental setup, analyze
the influence of key parameters on our method’s performance
and compare it to other algorithms on loop closure detection
and map-merging tasks.

A. Setup

We run our experiments in two different environments.
The first is a simulated forest. We use ground truth pose
measurements to evaluate our algorithm’s precision and recall
under varying noise levels and how different parameter con-
figurations affect performance. In the second experiment, we
collected a real-world dataset at a commercial pine tree forest,
manually flying a UAV under the tree canopy. As shown in
Fig. 1, the UAV carries an Ouster OS1-64 360o 3D lidar, which
has a 45o field of view and 64x2048 of vertical and horizontal
resolution, respectively. The robot has an Intel® NUC 8i7BEK
computer onboard to store the lidar data. We evaluate the
quality of the associations detected by our algorithm in this
dataset with a map merging task.

We compare our method against GLARE with GLAROT
distance [12]. The angle and distance discretization resolutions
are 8 and 50. Following the original paper, we compute
descriptors for every landmark and a global descriptor. If the
GLAROT distance between two global descriptors is under a
threshold, they are considered a match. Then, the landmark
descriptors are used to detect associations. We also compare
with Li et at. [21]. Developed in parallel with this work, they

propose a landmark association method based on Delaunay
triangulations. Their method computes a descriptor for each
triangle by concatenating the areas and perimeters of itself
and other triangles that share a side with it.

For our method, η is set at 0.5 in all experiments. For all
methods, we use RANSAC to compute H(ti, tj) according
to Sec. IV-D with d = 0.5, r = 0.99 and s = 40000.
Since the original papers do not explicitly recommend values
for distance thresholds, we use the best configuration found
empirically for GLAROT [12] and for Li et al. [21] which are
10 and 100 respectively.

B. Loop Closure Detection in Simulation

In repetitive environments such as a forest, the challeng-
ing part of performing loop closure is detecting previously
seen locations. Once this is solved, methods such as Factor
graphs [24] can be employed to incorporate the detection.
For this reason, in this experiment, we focus on the sub-task
of loop closure detection to measure the robustness of each
method.

We simulate a 1km2 or approximately 247 acres forest. To
ensure a consistent density of trees across the map, the set of 2-
D landmarks is generated by Poisson-Disc sampling through
Bridson’s algorithm [25] with a minimum distance between
points of 7m. This algorithm will create a regular pattern of
trees across the environment, which is not a realistic represen-
tation of the distribution of trees in a real forest. To account
for this, each point in the set is perturbed with Gaussian noise
with 0 mean and 3m standard deviation. After this steps, each
50m radius observation will have approximately 80 trees per
lidar reading and the average distance from a tree to its nearest
neighbor is 3.4m, while in the accumulated map from our real-
world dataset this distance is 3.2m.

The simulated robot does a circular path 4 times. Each ob-
servation is rotated by a random angle sampled from a uniform
distribution in the range {0, π

2
}, and every landmark L in the

observations subject to position noise ε and detection noise
δ(L). Excluding the trivial match where i = j, we consider a
match a true positive if ‖T(ti)−H(ti, tj)T(tj)‖2 < 10 and
the rotation difference is smaller than 20o, which are similar
constrains to related work [9]. We consider a false negative
when not enough matches are found but the distance between
the ground truth poses is smaller than the lidar radius.

For all experiments we run all possible combinations
of the detection success probability ω in the range
{0.8, 0.9, 0.95, 1.0} and the standard deviation σ =

√
Σ of the

position estimation error ε in the range {0.0, 0.1, 0.2, 0.3, 0.4}
totalling 20 different experiments.

We compute Precision-Recall (PR) curves with respect to
the minimum number of point to point associations in the
range {4, 8, 16, 32, 64} required to run RANSAC. For our
method, we first store all polygons in H(t) and evaluate
different configurations of the polygon descriptor distance τ .
The values of the PR curve are the average precision and recall
under different combinations of values of ε and δ. We consider
the best configuration with respect to the F1-score, given by
2 ∗ (precision∗recall)

(precision+recall) .
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(a) (b)

Fig. 4: (a) PR-curves for different distance thresholds. Our method achieves the best F1-score with τ = 5. (b) PR-curves
for different numbers of sampled polygons of H2, γ. We vary the number of point correspondences required to compute the
transformation between observations to compute the curve for both experiments.

By running the simulation experiment with different config-
urations of τ , we find that with τ = 5, our method achieves
the best F1-score as shown in Fig. 4a.

With this result, we evaluate the effect of the parameter γ.
We select polygons of H2(t) by prioritizing elements with
4 ≤ N ≤ 9 since polygons with large N are usually more
sensitive to noise, and triangles encode less information about
the space. If not enough polygons in this range are found, we
continue to select randomly from the available polygons with
N > 9 and, if still necessary, from triangles.

We show the PR curves with different values of γ in Fig. 4b
and observe that sampling from elements from H2(t) has a
direct impact on performance. For this reason, we use all
polygons in the next experiments.

Finally, we combine the best results of previous experiments
to evaluate the effect of different noise levels on the precision
and recall of each method. In Table I we show the performance
of all methods for each combination of noise using the same
range for σ and δ as previous experiments.

Increasing the position noise or decreasing the number of
detections impacts all methods’ performance. Li et al. [21]
can handle more detection failures than both our method
and GLAROT. As triangles capture a smaller portion of the
observation, they are more likely to have consistent polygons,
even with a large percentage of unobserved landmarks. How-
ever, with 10cm of position noise, the performance of Li et
al. [21] significantly drops. The main factor for this is that the
descriptor relies on the area of the triangles, which has high
sensitivity to noise.

For all methods, we used the configuration that achieved the
best F1-score for our experiments. However, for GLAROT, that
implied in either high precision and low recall or low precision
and high recall. In this experiment, we observe many false
positives, making GLAROT have poor performance even on
the scenario with no noise.

For our method, as the polygons in H2(t) capture a larger
area of the observation, these elements are more likely to be
altered as landmarks are not detected. For this reason, while
it is more robust than the other methods, we observe that our
approach is more sensitive to detection failures.

C. Map Merging

In this experiment, we fly the robot twice across the same
plot of a commercial pine tree forest. For each flight, we split
the raw sensor readings into sub-maps for every minute of
data. We run SLOAM [3] for pose estimation and landmark
detection on each sub-map individually. The sub-maps have
partial overlap, position noise, and detection failure cases,
making this task challenging for methods that are not robust
to these factors.

We match sub-maps following a chronological order and
iteratively recompute a descriptor for the accumulated map
to merge with the next sub-map until all are combined into a
single map. For GLAROT [12], since we know that subsequent
sub-maps have overlap, we skip the global descriptor check
and directly match landmarks.

The associations could be used in a more complex data
association pipeline such as CLEAR [26] that checks for cycle
consistency across different sub-maps to refine the matches
resulting in better map quality. In this experiment, we use a
simpler approach with DBSCAN [27] to cluster trees closer
than 0.5m after the alignment into a single landmark. This
method is preferable instead of removing duplicates based on
the correspondences since some landmark matches may not
have been detected.

The forest canopy causes GPS to have errors that can range
up to tens of meters, which prevents it from being used as
ground truth. Although the odometry provided by SLOAM [3]
may contain drift, from our results in previous work, we
observed errors smaller than 1 meter for trajectories of similar
length in a similar forest. Besides the possible drift, since each
sub-map is an independent SLOAM run, the trees will not be
perfectly aligned. Instead, we use it as an initial guess to align
subsequent sub-maps, manually annotate tree correspondences
between pairs of sub-maps, and use RANSAC to compute a
transformation.

For all methods, we compute a translation error based on the
Euclidean distance, and a rotation error based on the absolute
difference for each transformation between subsequent sub-
maps when compared with the transformations derived from
the human associations. For our method, the translation error
on flight 1 is 0.43 meters, and the rotation error is 0.32 degrees.
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TABLE I: F1-scores for each method in the simulation experiment. We simulate the observations of a robot with different
combinations of landmark position noise and detection success probability.

Position Noise
Detection Success Prob. 100% 95% 90% 80%

Ours GLAROT [12] Li et al. [21] Ours GLAROT [12] Li et al. [21] Ours GLAROT [12] Li et al. [21] Ours GLAROT [12] Li et al. [21]
0cm 1.00 0.52 1.00 1.00 0.27 1.00 0.95 0.12 0.99 0.32 0.01 0.75
10cm 1.00 0.39 0.07 0.99 0.12 0.01 0.92 0.04 0.00 0.32 0.01 0.00
20cm 0.99 0.17 0.00 0.98 0.06 0.00 0.82 0.02 0.00 0.23 0.00 0.00
30cm 0.97 0.04 0.00 0.76 0.01 0.00 0.45 0.00 0.00 0.08 0.00 0.00
40cm 0.66 0.01 0.00 0.30 0.00 0.00 0.12 0.00 0.00 0.01 0.00 0.00

(a) Human Associations (b) Ours (c) GLAROT [12] (d) Li et al. [21]

Fig. 5: Accumulated sub-maps for flight one (top row) and flight two (bottom row). Colors represent the robot pose in different
sub-maps, and black triangles represent the landmarks. We iteratively merge pairs of sub-maps until the entire trajectory is
accumulated into a single map. Our method closely approximates to the results obtained with human associations.

TABLE II: Landmark alignment error. We compare the dis-
tance between manually associated landmarks after the align-
ment with correspondences provided by each method.

Method
Experiment Flight 1 Flight 2

Mean Min. Max. Mean Min. Max.
Human Associations 0.17 0.00 0.54 0.21 0.01 0.67
Ours 0.19 0.00 0.61 0.23 0.01 0.83
GLAROT [12] 0.20 0.01 0.90 30.15 0.03 89.22
Li et al. [21] - - - 42.38 4.79 125.71

For GLAROT [12], the translation and rotation errors are 0.33
meters and 1.54 degrees, respectively, and Li et al. [21] fails
to find correspondences for one of the sub-maps. On flight
two, the translation and rotation errors are 0.26 meters and
0.33 degrees for our method, while the others have translation
errors greater than 15 meters and 200 degrees. In Fig. 5, we
show that on flight 1, our method and GLAROT [12] closely
approximates the result with human associations, and Li et
al. [21] also approximates it except for the sub-map that it fails
to align. On flight 2, our method is similar to the reference,
while the benchmarks are significantly off.

With the transformations computed with manual anno-
tations, we select tree associations considered inliers by
RANSAC to evaluate the quality of landmark alignments,
totaling 142 and 162 trees for flights 1 and 2 respectively. The
distance between these landmarks after alignment is computed
on pairs of subsequent sub-maps. In Table II, we show
the mean, minimum and maximum distances over all pairs
compared to the human associations. Similar to our previous
results, our method closely approximates the reference on both
flights, while GLAROT [12] achieves good results in flight one
but fails in flight two, and Li et al. [21] fails in both flights.

D. Efficiency

For deployment on a robot, an algorithm has to be accurate
and have a reasonable execution time. For all three methods,

we run offline tests and report in Table III the worst-case big
O and the average speed required to estimate landmark cor-
respondences between two observations. Times are reported
using an Intel® i7-7500U CPU, while the UAV has a more
powerful Intel® i7-8559U.

Even though our method has quadratic big O for matching
in the worst case, it scales with the number of polygons of
H2(t), which is smaller than the number of landmarks in a
given observation. Moreover, we can sample polygons to have
an upper bound on matching time if necessary.

For Li et al. [21], the complexity for computing the de-
scriptors is bounded by the computation of the Delaunay
triangulation. However, as stated in Sec. IV-A, the number
of triangles can be larger than the number of points, which
can be prohibitive during matching.

It is worth noting that our method and Li et al. [21] are
implemented in pure Python. For GLAROT [12], we ported
the original author’s C++ code to Python. However, during
our experiments, we run the descriptor computation in pure
Python and matching in C++ with Python bindings due to the
high execution time of the Python version.

TABLE III: Worst case big O and time benchmarks for feature
computation and matching for a pair of observations i and j.
ni is the number of landmarks in i, and gi is the number
of polygons in i. Reported times are the median time per
observation in milliseconds.

Descriptor computation Matching
Big O Time Big O Time

Ours (Py) (n log n)+ l 16 gi ∗ gj 1.24
GLAROT [12] (Py) n2 61 ni ∗ nj 2.55
GLAROT [12] (C++) n2 4 ni ∗ nj 0.007
Li et al. [21] (Py) (n log n) 15 gi ∗ gj 47

VI. DISCUSSION AND CONCLUSIONS

Place recognition and data association are challenging prob-
lems. Especially in a forest where trees that look identical are
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the only available landmarks.
We presented a method that defines sets of polygons based

on tessellations computed on the position of landmarks and
a framework that uses these polygons to identify previously
seen locations and compute landmark associations.

Our experiments show that the proposed method is more
reliable and robust compared to the benchmarks. The con-
struction of polygons from triangles narrows the search space
of possible landmarks correspondences. When combined with
consolidated shape retrieval techniques for matching, these
polygons yield a more robust framework than relying purely
on geometric properties such as polygon area and perimeter.

Using data captured from a UAV in a real forest, we show
the advantages of having reliable features that describe only
parts of the observation while merging sub-maps with partial
overlap and noise. We manually annotated landmark asso-
ciations in subsequent sub-maps and compared all methods
against the alignments obtained with these associations. Our
method outperformed both benchmarks in most metrics and
closely approximated the reference when looking at the trans-
formations directly. We also use manual landmark associations
to compare the quality of the resulting map, where again, our
method was the closest to the reference map.

One of the drawbacks of using local structures without a
global descriptor, such as GLARE, is that the number of
elements to match grows significantly faster as we accumulate
observations for tasks such as loop closure. Our method
reduces the search space compared with local methods yet still
grows in computational cost with the number of landmarks.
We presented a solution based on sampling polygons but show
that it decreases the performance of the method.

Since our framework’s input is a set of landmark positions
projected on 2-D, it can also be used for associating observa-
tions from over and under canopy data as long as these detec-
tions are partially consistent. This is valuable since it is easier
to estimate the trees’ diameter from under the canopy, while
over canopy height estimation is a well-studied problem [28].
Other directions for future work include testing in denser and
more cluttered forests, better polygon sampling techniques,
an extension of the descriptor computation and matching to
3D shapes, and ways to incorporate other properties, such as
dimensions of the objects to improve accuracy.
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