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Multimodal Deep Generative Models for Trajectory
Prediction: A Conditional Variational Autoencoder

Approach
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Abstract—Human behavior prediction models enable robots
to anticipate how humans may react to their actions, and hence
are instrumental to devising safe and proactive robot planning
algorithms. However, modeling complex interaction dynamics
and capturing the possibility of many possible outcomes in
such interactive settings is very challenging, which has recently
prompted the study of several different approaches. In this work,
we provide a self-contained tutorial on a conditional variational
autoencoder (CVAE) approach to human behavior prediction
which, at its core, can produce a multimodal probability dis-
tribution over future human trajectories conditioned on past
interactions and candidate robot future actions. Specifically, the
goals of this tutorial paper are to review and build a taxonomy
of state-of-the-art methods in human behavior prediction, from
physics-based to purely data-driven methods, provide a rigorous
yet easily accessible description of a data-driven, CVAE-based
approach, highlight important design characteristics that make
this an attractive model to use in the context of model-based
planning for human-robot interactions, and provide important
design considerations when using this class of models.

Index Terms—Social HRI, Autonomous Vehicle Navigation,
Deep Learning Methods

I. INTRODUCTION

HUMAN behavior is inconsistent across populations, set-
tings, and even different instants, with all other factors

equal—addressing this inherent uncertainty is one of the fun-
damental challenges in human-robot interaction (HRI). Even
when a human’s broader intent is known, there are often
multiple distinct courses of action that person may pursue to
accomplish their goals. For example, in Figure 1, a pedestrian
crossing a road may pass to the left or right of an oncoming
pedestrian; reasoning about the situation cannot be simplified
to the “average” case, i.e., the pedestrians colliding. To an
observer, the choice of mode may seem to have a random
component, yet also depend on the evolution of the human’s
surroundings. Imbuing a robot with the ability to take into
consideration the full breadth of possibilities in how humans
may respond to its actions is a key component of enabling an-
ticipatory and proactive robot decision-making policies which
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Fig. 1: There are many different ways an interaction (e.g.,
pedestrians crossing the road) may evolve. For safe human-
robot interactions, robots (e.g., autonomous car) need to reason
about the possibility of multiple outcomes (denoted by the
colored shaded arrows), and understand how their actions
influence the actions of others. Inset: Graphical representation
of the interaction.

can result in safer and more efficient interactions.
For the goal of creating robots that interact intelligently

with human counterparts, observing data from human-human
interactions has provided valuable insight into modeling in-
teraction dynamics (see [1] for an extensive survey). A robot
may reason about human actions, and corresponding likeli-
hoods, based on how it has seen humans behave in similar
settings. To implement a robot’s control policy, model-free
methods tackle this problem in an end-to-end fashion—human
behavior predictions are implicitly encoded in the robot’s
policy which is learned directly from data. On the other hand,
model-based methods decouple the model learning and policy
construction—a probabilistic understanding of the interaction
dynamics is used as a basis for policy construction. By de-
coupling action/reaction prediction from policy construction,
model-based approaches often afford a degree of transparency
in a planner’s decision making that is typically unavailable in
model-free approaches. In this paper, we take on a model-
based approach to HRI and focus on learning a model of
human behaviors, or more specifically, distributions over future
human behaviors (e.g., trajectories).

Within model-based methods for HRI, there are many
existing approaches to modeling human behaviors, and they
can broadly be categorized as ontological or phenomeno-
logical. To contextualize our work against other methods,
we will build a taxonomy of different types of ontological
and phenomenological state-of-the-art methods in this field.
We note that these methods could be categorized differently
across other dimensions (e.g., whether the model produces
probabilistic or deterministic predictions). At a high-level,
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ontological approaches (sometimes referred to as “theory of
mind”) postulate a core underlying structure about an agent’s
behavior and build a mathematical model upon it. For instance,
they may craft a set of rules that agents are required to follow,
or an analytic model describing an agent’s internal decision-
making scheme. In contrast, phenomenological approaches do
not make such strong modeling assumptions, and instead rely
on a wealth of data to model agent behaviors without explicitly
reasoning about underlying motivations.

We approach this problem phenomenologically, and in par-
ticular, focus on using a Conditional Variational Autoencoder
(CVAE) [2] to learn a human behavior prediction model well-
suited for model-based planning and control [3]. We seek to
explicitly characterize the multimodal uncertainty in human
actions at each time step conditioned on interaction history as
well as future robot action choices. Conditioning on interaction
history allows a robot to reason about hidden factors like
experience, mood, or engagement level that may influence
the distribution, and conditioning on the robot’s next action
choices takes into account response dynamics. Due especially
to this latter capability, conditional behavior prediction models
have achieved great success when applied to planning in
interactive scenarios, however, a ubiquitous problem with such
models is that they may not be able to distinguish between
correlation and causation when learned from offline data.
Though the focus of this paper is on a specific methodology
for conditional behavior prediction, we briefly note that miti-
gations for this issue are an area of active research and include
data gathering strategies to disambiguate causal confusion [4],
and enacting safety-preserving controllers at a level beneath
the planner which provide a fallback in the case of incorrect
inference [5].

Goals of this paper: The main goal of this paper is to
provide a self-contained tutorial on the CVAE-based human
trajectory prediction model proposed and developed in [3],
[6], [7], and [8]. Before we delve into the details of our
approach, we build a taxonomy of state-of-the-art methods
for human behavior prediction in interactive settings in order
to provide insight into the problem setups and system design
goals for which our work is best suited. Thus, the contributions
of this paper are five-fold: we (i) provide a concise taxonomy
of ontological and phenomenological methods for human
behavior prediction for interactive settings with discussion
tailored to motivating our approach (Section II), (ii) introduce
CVAEs in a self-contained manner and detail the proposed
neural network architecture for human trajectory prediction
(Section III), (iii) demonstrate the benefits of the model
with a focus on its scalability to multi-agent settings, use
of hetereogeneous data, and ability to produce an analytic
representation of the output trajectory distribution rooted with
a dynamics model (Section IV and V), and (iv) compare the
performance of such an approach against other state-of-the-art
phenomenological approaches as well as discuss important im-
plementation considerations for practitioners using this model
(Section VI).

II. RELATED WORK

Methods for predicting human behaviors can be classified as
either ontological or phenomenological. Ontological models
make assumptions about an agent’s dynamics or motivation.
One direction is to make assumptions about the underlying
physics that govern the system and then derive a state-space

model via first principles. For instance, the Social Forces
model [9] formulates the interaction dynamics by making
assumptions on the attractive and repulsive forces between
agents. Similarly, the Intelligent Driver Model (IDM) [10]
derives a continuous-time car-following differential equation
model. Due to the simplicity of these models, they are very
useful in simulating large-scale interactions, such as crowd
dynamics [11] or traffic flow [12]. Despite these methods
capturing the coupling between agents, they are fundamentally
unimodal representations of the interaction (i.e., do not account
for the possibility of multiple distinct futures) and do not
utilize knowledge of past interactions.

Rather than formulating the interaction dynamics explicitly,
we can instead make assumptions about a human’s internal
decision-making process. Game theoretic approaches model
the interaction dynamics by making assumptions on whether
the other agent is cooperative [13] or adversarial [14] and
leverage this information for robot planning. For socially-
aware robot navigation, [15], [16] infer a human’s emotion
or dominance and use that to inform their robot planner. A
popular approach is to model humans as optimal planners and
represent their motivations at each time step as a state/action
dependent reward (equivalently, negative cost) function. Max-
imizing this function, e.g., by following its gradients to select
next actions, may be thought of as a computational proxy for
human decision-making processes.

Inverse Reinforcement Learning (IRL) [17], [18] is a
generalization of this idea whereby a parameterized fam-
ily of reward functions is fit to a dataset of human state-
action demonstrations. The reward function is typically repre-
sented as a linear combination of possibly nonlinear features
r(x, u) = θTϕ(x, u), where the weight parameters θ are
fit to minimize a measure of error between the actions that
optimize r and the true human actions. One of the typical
strengths of IRL is its interpretability, both in terms of
the ability to include handcrafted features, as well as what
learned linear weights reveal regarding feature importance.
Maximum entropy (MaxEnt) IRL [19] applies this principle
in a probabilistic fashion; the probability distribution over
human actions is proportional to the exponential of the reward
p(u) ∝ exp(r(x, u)). This framework has been employed
to model human behaviors in the context of driving [20]
and social navigation [21] and then used to inform a robot’s
planning strategy. In theory, with sufficiently complex and
numerous features in the reward function, MaxEnt IRL could
approximate any (including multimodal) distributions arbitrar-
ily well, making this an attractive candidate for our application
of HRI. However, there are two main drawbacks with typical
applications of MaxEnt IRL that prompt us to consider an
alternative approach. First, though the learned distribution may
be multimodal, if it is represented as an unnormalized log-
probability density function (i.e., r(x, u)), there may not be
a computationally tractable way to reason about this multi-
modality when planning (e.g., by sampling). Previous work
has relied on search for explicit mode enumeration [21], or
in the case of [20], which develops a unified and tractable
framework for MaxEnt IRL-based prediction and policy con-
struction for intelligent vehicles, the resulting policy employs
gradient-based local optimization which ultimately results in a
unimodal assumption on interaction outcome despite learning
a nominally multimodal distribution. Second, IRL is typically
applied to learn importance weights for a handful of human-
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interpretable features. Using more complex, possibly deep-
learned, features to increase expressivity of the model removes
one of the key benefits of IRL, and instead promotes the use
of phenomenological methods. For example, though this is not
a fundamental limitation of IRL, to maximize interpretability
existing work has often made a Markovian assumption in
constructing features that depend only on the current state [20],
and thus do not capture interaction history when reasoning
about future behavior. In general, reward-based approaches can
be effective in settings with limited data as there are only a
few parameters to learn, and can transfer to new and unseen
tasks [22]. However, in the presence of large amounts of data
and with the desire to condition on interaction history, it is
natural to consider phenomenological approaches.

Phenomenological approaches are methods that do not make
inherent assumptions about the structure of the interaction
dynamics and/or agents’ decision-making process. Instead,
they rely on powerful modeling techniques and a wealth of ob-
servation data to infer and replicate the complex interactions.
Recently, there have been a plethora of deep learning-based
regression models for predicting future human trajectories
(e.g., [23], [24]) following the success of Long Short-Term
Memory (LSTM) networks [25], a purpose-built deep learning
architecture for modeling temporal sequence data. However,
such methods only produce a single deterministic trajectory
output and therefore neglect to capture the uncertainty inherent
in human behaviors. Safety-critical systems need to reason
about many possible future outcomes to guard against worst-
case scenarios, ideally with the likelihoods of each occurring,
to enable safe decision-making. As a result, there has been re-
cent interest in methods that simultaneously forecast multiple
possible futures, or produce a distribution over possible future
outcomes.

Due to recent advancements in generative modeling, [2],
[26], there has been a paradigm shift from deterministic
regressors to generative models, i.e., models that produce a
distribution over possible future behaviors. In particular, deep
generative methods (neural-network based models that learn
an approximation of the true underlying probability distri-
bution from which the the dataset was sampled from) have
emerged as state-of-the-art approaches. There are two main
deep generative methods that dominate the field, (Conditional)
Generative Adversarial Networks ((C)GANs) [26], [27], and
(Conditional) Variational Autoencoders ((C)VAEs) [28], [2].
Both these methods have been widely used in the context of
future human trajectory prediction in interactive settings (e.g.,
[29], [30], [31], [32]). GANs are composed of a generator
and discriminator network—to produce realistic outputs, the
generator outputs samples which are then “judged” by the
discriminator. Although GAN-based models show promising
results, there are two main limitations. First, GAN learning
often suffers from mode collapse, a phenomenon where the
model converges to the mode of the distribution and is unable
to capture and produce diverse outputs [33]. This is incom-
patible with safety-critical applications where it is important
to capture rare yet potentially catastrophic outcomes. Second,
GANs are notoriously difficult to train because the conflict
between the generator and discriminator causes instability in
the training process [34], [35]. Additionally, despite offering
flexibility in the definition of the objective function, GANs
fundamentally output an empirical distribution of samples
which may limit the types of model-based planners/controllers

that can be used (e.g., planners that rely on a parameterized
distribution).

Alternatively, (C)VAEs take on a variational Bayesian ap-
proach; they learn an approximation of the true underlying
probability distribution by distilling latent attributes as proba-
bility distributions and then “decode” samples from the latent
distribution to produce desired outputs. In contrast to GANs,
(C)VAEs optimize the likelihood over all examples in the
training set, meaning all the modes of the distribution are con-
sidered, and are less likely to suffer problems of mode collapse
and lack of diversity seen with GANs. Additionally, (C)VAEs
can produce either empirical samples from the distribution, or
an analytical representation of the distribution, making them
potentially more versatile than GANs in the context of model-
based planning and control.

There are thus many considerations when selecting a
method to model interaction dynamics and perform human
behavior prediction. In HRI settings with large amounts of
data available, and the need for high expressivity to capture
interaction nuances and multimodal distribution coverage over
the output space, we focus the remainder of this work on using
CVAEs for human trajectory prediction.

III. THE CONDITIONAL VARIATIONAL AUTOENCODER FOR
INTERACTION-AWARE BEHAVIOR PREDICTION

We describe a general CVAE model and apply it in the
context of human behavior prediction. We highlight the core
characteristics of our proposed CVAE trajectory prediction
model and illustrate them with a traffic-weaving case-study.
A. Conditional Variational Autoencoder (CVAE)
Given a dataset D = {(xi, yi)}Ni=1, the goal of conditional
generative modeling is to fit a model of the conditional
probability distribution p(y | x), which may be used for
downstream applications such as inference (i.e., calculating
the likelihood of observing a particular sample y given x), or
to generate new samples y given x. In this work we consider
parametric models, whereby we consider p(y | x) within a
family of distributions defined by a fixed set of parameters,
which we fit to the dataset with the objective of maximizing
the likelihood of the observed data. Due to their expressivity,
neural networks are often used to represent complex and high-
dimensional distributions.

A CVAE [2] is a latent conditional generative model. The
goal is still to approximate p(y | x), but before outputting
p(y | x) the model first projects the inputs into a lower
dimensional space, called the latent space, which acts as a
bottleneck to encourage the model to uncover salient features
with the intended purposes of improving performance, and
potentially aiding in interpretability. Figure 2a illustrates the
graphical model of a CVAE. An encoder, parameterized by θ,
takes the input x and produces a distribution pθ(z | x) where
z is a latent variable that can be continuous or discrete [36],
[37].1 A decoder, parameterized by φ, uses x and samples from
pθ(z | x) to produce pφ(y | x, z). In practice, the encoder
and decoder are neural networks. The latent variable z is then
marginalized out to obtain p(y | x),

p(y | x) =
∑
z

pφ(y | x, z)pθ(z | x). (1)

1For this work, we focus on a discrete latent space, but note the following
equations still apply by replacing the summation with an integral.
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(a) Graphical model of a CVAE. (b) Sequence-to-sequence CVAE architecture for human behavior prediction.

Fig. 2: A graphical model of a CVAE, and a neural network architecture of a CVAE for human behavior prediction. Solid lines
represent components for the generation process (during testing), and dashed lines represent components used for variational
inference (during training).

To efficiently perform the marginalization in (1), we desire
values of z that are likely to have produced y, otherwise pθ(z |
x) ≈ 0 and will contribute almost nothing to p(y | x).2 To this
end, we perform importance sampling by instead sampling
from q(z | x, y), a proposal distribution, which will help us
select values of z that are likely to have produced y. Since
we are free to choose q(z | x, y), we parameterize it (often
as a neural network) with ϕ, denoted by qϕ(z | x, y). We
can rewrite (1) by multiplying and dividing by the proposal
distribution, and using the definition of expectation,

p(y | x) =
∑
z

pφ(y | x, z)pθ(z | x)

qϕ(z | x, y)
qϕ(z | x, y)

= Eqϕ(z|x, y)

[
pφ(y | x, z)pθ(z | x)

qϕ(z | x, y)

]
.

The goal is to fit parameters φ, θ, and ϕ that maximize the
log-likelihood of p(y | x) over the dataset D. By taking the
log of both sides, using Jensen’s inequality, and rearranging
the terms, the evidence lower-bound (ELBO) is derived,

log p(y | x) ≥ Eqϕ(z|x, y) [log pφ(y | x, z)]−
DKL [qϕ(z | x, y) ‖ pθ(z | x)]

(2)

where DKL(p‖q) = Ep(x)
[
log p(x)

q(x)

]
is the Kullback-Liebler

divergence. The ELBO is a lower bound on log p(y | x), the
quantity that we are trying to maximize, but which is often
intractable to compute directly by (1). Instead, we maximize
the ELBO as a proxy. By using the reparameterization trick
[28], [36], [37], the ELBO is tractable to compute and can
be optimized via stochastic gradient descent. The loss for a
single training example (x, y) is,

L(x, y) = − Eqϕ(z|x, y) [log pφ(y | x, z)] +

DKL [qϕ(z | x, y) ‖ pθ(z | x)] .
(3)

During training, we minimize the Monte Carlo estimate of the
expected loss over the training set.
B. Interaction-aware Human Behavior Prediction
We are interested in learning a model that is able to predict
future trajectories of intelligent agents (i.e., we assume these
agents are humans, or human-controlled) interacting with other
intelligent agents in the environment. Specifically, we desire
a model that (i) is history dependent in order to capture
behavioral tendencies or intent, (ii) accounts for the coupled
interaction dynamics between all agents, (iii) produces a multi-
modal distribution over future human trajectories because there
are many different ways a human may behave in an interactive
setting, and (iv) is well-suited for model-based planning since

2We note that if the size of the discrete latent space is small, we can
tractably compute the summation in (1) exactly.

our ultimate goal is to design robots that can leverage these
predictions to interact seamlessly with humans. Our proposed
sequence-to-sequence CVAE trajectory prediction architecture,
shown in Figure 2b, is able to address these desiderata in the
following ways.

To address (i) and (ii) above, the input conditioning vari-
able x consists of features representing interaction history, a
sequence of features from all agents (e.g., positions, velocities,
actions) since the start of the interaction, and a future robot
trajectory, a sequence of states and/or actions that the robot
plans to follow over the planning horizon. We can additionally
include other features that may be relevant to the application,
such as a map of the environment, or camera images from the
robot (see Section V). The output y is a sequence of future
states/actions of all human agents that we are interested in.
Since the output is conditioned in part on what the robot
will do in the future, this model learns the coupled interaction
dynamics. We discuss later in Section V how we can integrate
predicted action distributions to produce full dynamically-
feasible trajectory predictions.

To address (iii), a multimodal distribution is constructed by
using a discrete latent space. Each latent vector instantiation of
z corresponds to a discrete mode (i.e., a mixture component),
and its probability pθ(z | x), is produced by the encoder
(corresponding to the mixture weight). For example, one of the
discrete modes might correspond to a human driver braking,
while another might correspond to turning right. Note that
enforcing semantic meaning to each latent value is by no
means guaranteed, and is an area of active research [38]. A
continuous latent space could be used, though in our work, we
found a discrete latent space to be more effective. For a given
mode, there are variations to how this behavior might occur
(e.g., slightly different ways to turn right). To cater for these
variations and account for dependencies in successive states
or actions, the decoder outputs an autoregressive sequence of
Gaussian mixture models (GMMs). We want to highlight that
the use of GMMs here is not the main mechanism behind
creating a multimodal distribution over trajectories; that is the
role of the latent space. At each time step of the prediction
horizon, the decoder outputs GMM components describing the
distribution of the output features, then a sample is drawn
from the GMM and is used to generate a GMM at the next
time step. Repeating this process will create a sample drawn
from p(y | x). For the case with a single GMM component
(i.e., a Gaussian), the mean and variance at each time step
can be propagated instead of a sample, enabling an analytic
representation of the output distribution (see Section V).

The flexibility in how the output distribution is represented
addresses (iv); we can tailor the outputs to the needs of
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Fig. 3: Predictions of future human action sequences depend on the future action sequence of the robot (blue dashed line). The
different colors of future human action sequences correspond to different discrete latent variable instantiations (i.e., different
modes in the multimodal output distribution). This figure has been adapted from [3].

a model-based planner. Specifically, we can choose to de-
scribe the learned distribution empirically (i.e., output sam-
ples directly), or analytically (i.e., output parameters of the
distribution). Additionally, there are many options for how
to construct the encoder and decoder. We primarily leverage
recurrent neural networks (RNN) to process time-series data
with potentially variable length without increasing the problem
size. As we will describe in Sections IV and V, we can
augment the model to consider spatio-temporal relationships
between multiple agents and heterogeneous data inputs (e.g.,
state trajectories, images, and maps).

C. Traffic-Weaving Case Study

We reproduce the traffic-weaving scenario studied in [3] to
illustrate the key characteristics of our approach. In the traffic-
weaving scenario, two cars initially side-by-side must swap
lanes in a short amount of time and distance, emulating
cars merging onto/off of a highway. This is a challenging
negotiation due to the inherent multimodal uncertainty of who
will pass whom. Before we begin, we make two remarks. First,
we use an LSTM for the encoder and decoder networks as we
found this RNN architecture provided the best performance in
terms of evaluation loss. Second, we choose to predict future
human action sequences and use future robot action sequences
as inputs as this aligned with our case study. However, for
other applications, states can be used instead of actions.

The interaction history is defined as the sequence of states
and actions from both agents since the start of the interaction.
We consider a future robot action sequence as an additional
input; together with the interaction history this forms the
conditioning variable x. The learned CVAE model defines
a distribution pθ(z | x) over the latent variable z which
is fed, with x, into the decoder pφ(y | x, z) to produce
predicted human action sequences y. The LSTM decoder
produces GMM components describing a distribution over
human actions at each time step; to produce the sequence y
an action is sampled from the GMM and is fed into back into
the LSTM cell to produce the next action, and so forth.

In Figure 3, when the robot is deciding its next action to
take, it can predict how the human may respond to each of
its candidate future action sequences (dashed blue line). The
different colors in the predictions (thin lines) showcase the
different modes, i.e., discrete latent values z, in the output
distribution. For instance, light blue trajectories correspond
to the human speeding up, while dark yellow trajectories
correspond to the human slowing down. Given this interaction
model, the robot can select next actions by searching over a
set of possible future action sequences and selecting the one

that results in the highest expected reward. This model-based
planner was tested and validated in simulation [3] and on a
full-scale test vehicle [5].

IV. SCALING UP TO MULTI-AGENT INTERACTIONS

In the real world, agents simultaneously interact with many
other agents, e.g., pedestrians walking through crowds, vehi-
cles passing through intersections or merging on highways.
Thus, the model discussed in the previous section needs to be
extended to consider a general number of agents as well as
the spatio-temporal relationships between them.
A. Modeling a General Number of Agents
A natural approach to modeling such interactions is to abstract
the scene as a spatio-temporal graph (STG) G = (V,E),
named so because it represents agents as nodes and their in-
teractions as edges, which evolve in time. An edge (u, v) ∈ E
is present if agent u “interacts” with agent v. As an input to
learned interaction models, spatial proximity is a commonly
used proxy for whether two agents may directly interact [23],
[24], [30], [31]. Specifically, agents u and v are said to be
interacting if ‖pu − pv‖2 ≤ d where pu,pv are the spatial
coordinates of agents u, v in the world, and d is a distance
threshold that sets the interaction range of agents. A benefit of
abstracting scenes in this way is that it enables any similarly-
structured approach to be applied to various environments, and
even different problem domains (e.g., modeling human-object
interactions in computer vision [24]), as STGs are general
abstractions. Figure 1 shows an example of a STG abstraction
of an autonomous driving scene.

This changes the trajectory forecasting problem from one
of modeling agents and their interactions to one of modeling
nodes and their edges. The key challenge here is that an agent
can have a general number of neighbors which change from
one scenario to another. Thus the resulting model needs to be
able to handle a general number of inputs for a fixed archi-
tecture (since neural network weights have fixed sizes). To do
this, one can extend the architecture discussed in Section III-C
so that it mimics the structure of the scene’s STG. In particular,
an LSTM is added for each edge that connects to a node
(directly modeling edges), with an intermediate aggregation
step in order to combine the influence from neighboring nodes
of the same type. This is the approach taken in [6], which
demonstrated that this structure can model neighboring agents’
influence.

While this enables one to model a general number of agents,
an additional consideration needs to be made for the fact that
V , the set of agents, and E, the set of agent-agent interactions,
are time-varying. This is especially noticeable in autonomous
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driving as a vehicle’s sensors have limited range. As a result,
agents can appear and disappear at every timestep, e.g., due
to merging on or off the highway near the ego-vehicle. Even
if the number of agents was constant, their interactions are
necessarily time-varying as agents’ spatial proximity to others
changes as they move. Thus, the edge encoding scheme
discussed in this subsection needs to be further extended to
capture time-varying structure.
B. Modeling Time-varying Interactions
Introducing time-variance modifies our STG representation
from G = (V,E) to Gt = (Vt, Et). Unfortunately, naively
recreating a new STG per timestep and applying the above
modeling methodology will be expensive and inefficient as it
does not recycle information that may persist over multiple
timesteps (e.g., keeping track of which edges are new, estab-
lished, or recently removed).

Another approach is to introduce a scalar that modulates
the outputs of each edge-encoding LSTM depending on how
recently the edge was added or removed. This is the approach
taken in [7], where the scalar varies from 0 to 1 and acts as
an additional weighting factor before the edge’s influence is
included in the rest of the model. This output re-weighting
additionally serves as a low-pass filter so that newly added or
removed edges do not wildly swing model outputs from one
timestep to another, rejecting high-frequency noise produced
by upstream perception systems (e.g., when vehicles dither
near the limits of sensor range). A key benefit of this approach
is that it is fast to update online, due to the model’s stateful
representation only needing a few matrix multiplication op-
erations to capture new observations [7]. This is especially
important in robotic use cases, which frequently require the
ability to run online from streaming data in real-time. We will
further discuss runtime considerations in Section VI-C.

V. INCORPORATING AGENT DYNAMICS AND
HETEROGENEOUS INPUT DATA

So far, we have seen how one can probabilistically model a
general, time-varying number of interacting agents in a scene.
In this section, we will dive deeper into considerations for
output structures, specifically those that ensure the feasibility
of the output trajectories, as well as methods for including
additional sources of information that are commonly available
on modern robotic platforms, such as high-definition (HD)
maps of the surrounding environment.
A. Producing Dynamically-feasible Outputs
Common to most approaches in behavior prediction is the
eventual need to produce outputs in spatial coordinates as
this is where many planning constraints are imposed; indeed
a majority of evaluation metrics in the academic behavior
prediction literature are defined over spatial coordinates [1].
As a result, most methods either directly produce trajectory
samples (e.g., GANs) or utilize intermediate models to convert
internal representations to positions with uncertainty (e.g.,
CVAE-based approaches with decoders that output bivariate
GMMs), such as the architecture discussed in the previous
sections. However, both of these output structures make it
difficult to enforce dynamics constraints, e.g., non-holonomic
constraints such as those arising from no slip conditions. The
absence of such considerations might lead to predictions that
are unrealizable by the underlying actions (e.g., predicting that
a car will move sideways).

To remedy this, we can leverage established ideas in dynam-
ics modeling. When selecting a dynamics model to enforce,
one usually finds a trade-off between modeling complexity and
computational efficiency. In the case of autonomous driving,
however, there is an additional complicating factor in the
form of perception requirements. Ideally, agent models would
be chosen to best match their semantic type. For example,
one would usually model cars on the road using a bicycle
model [39]. However, estimating the bicycle model parameters
or actions of another vehicle from perception online is very
difficult as it requires estimation of the vehicle’s center of
mass, wheelbase, and front wheel steer angle. A related model
which does not have such high estimation requirements is the
dynamically-extended unicycle model [40]. It strikes a good
balance between accuracy (accounting for key vehicular non-
holonomic constraints, e.g., no slip constraints) and efficiency
(having only four states and two actions), without requiring
complex online parameter estimation procedures (one only
needs to estimate the vehicle’s position and velocity). This
choice of dynamics model follows the one made in [8], which
shows through experiments that such a simplified model is
already quite impactful on improving prediction accuracy.

To incorporate such dynamics considerations, one should
instead view their learning architecture as producing distribu-
tions over an agent’s actions rather than positions, and focus on
the process of integration from actions to position through the
agent’s dynamics. Notably, this scheme can also propagate the
model’s uncertainty in its generated actions to uncertainty over
the resulting positions, especially if the output action uncer-
tainty at each time step has a simple parameterization, e.g., as
a Gaussian. In this case, with linear underlying agent dynamics
(e.g., single integrators, frequently used to model pedestrians),
the total system dynamics with uncertainty are linear Gaussian.
Formally, for a single integrator with actions u(t) = ṗ(t), the
position mean at t + 1 is µ

(t+1)
p = µ

(t)
p + µ

(t)
u ∆t, where

µ
(t)
u is produced by the learning architecture. In the case

of nonlinear dynamics (e.g., unicycle models, used to model
vehicles), one can still (approximately) use this uncertainty
propagation scheme by linearizing the dynamics about the
agent’s current state and action.3 This dynamics integration
scheme is used in [8] and enables the model to produce
analytic output distributions.

Importantly, even with this additional inclusion of dynamics,
no additional data is required for training (e.g., the loss was
not amended to be over actions). The model still directly learns
to match a dataset’s ground truth position, with gradients
backpropagated through the agent’s dynamics to the rest of the
model. Thus, without any extra data, this inclusion of dynam-
ics enables the model to generate explicit action sequences that
lead to dynamically-feasible trajectory predictions. Overall,
this output scheme is able to guarantee that its trajectory
samples are dynamically feasible, in contrast to methods which
directly output positions.
B. Incorporating Heterogeneous Data
Modern robotic systems host a plethora of advanced sensors
which produce a wide variety of outputs and data modalities
for downstream consumption. However, many current behavior
prediction methodologies only make use of the tracked trajec-

3Full mean and covariance equations for the single integrator and
dynamically-extended unicycle models can be found in the appendix of [8].
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TABLE I: Comparison of our CVAE-based method against
GAN-based methods for pedestrian modeling. Bold is best.

Method BoN ADE [29] BoN FDE [29] KDE NLL [7]

S-GAN [29] 0.58 1.18 5.80
S-BiGAT∗ [32] 0.48 1.00 -
Trajectron++ [8] 0.21 0.41 −1.14

∗Model not public, so we could not evaluate it on the KDE NLL metric.

TABLE II: Comparison of our CVAE-based method against
others for vehicle modeling. Bold is best.

Method FDE@1s FDE@2s FDE@3s FDE@4s

Const. Velocity 0.32 0.89 1.70 2.73
S-LSTM∗ [23], [41] 0.47 - 1.61 -
CSP∗ [31], [41] 0.46 - 1.50 -
CAR-Net∗ [42], [41] 0.38 - 1.35 -
SpAGNN∗ [41] 0.36 - 1.23 -
Trajectron++ [8] 0.07 0.45 1.14 2.20

∗We subtracted detector/tracker errors [41] as we do not use them.

tories of other agents as input, neglecting these other sources
of information from modern perception systems.

Notably, HD maps are used by many real-world systems
to aid localization as well as inform navigation. Depending
on sensor availability and sophistication, maps can range
in fidelity from simple binary obstacle maps, i.e., M ∈
{0, 1}H×W×1, to multilayered semantic maps, e.g., M ∈
{0, 1}H×W×L, where each layer 1 ≤ ` ≤ L indicates
areas with specfic semantic type (e.g., road, walkway). A
major reason for this choice of map format is that it closely
resembles images, which also have height, width, and chan-
nel dimensions. As a result, Convolutional Neural Networks
(CNNs), which are efficient to evaluate online, can be used
to incorporate them in behavior prediction models. This is the
choice made in [8], which uses a relatively small CNN to
encode local scene context around the agent being modeled.

More generally, one can similarly include further additional
information (e.g., raw LIDAR data, camera images, pedestrian
skeleton or gaze direction estimates) in the encoder of an
architecture by representing it as a vector via an appropriate
model and concatenating the resulting output to the encoder’s
overall scene representation vector.

VI. EXPERIMENTS AND PRACTICAL CONSIDERATIONS

In this section, we quantitatively compare the method de-
scribed in Section V against state-of-the-art approaches for
the challenging problem of pedestrian and vehicle motion
prediction. Additionally, we discuss important implementa-
tion considerations for practitioners seeking to employ the
approaches presented in this work.
A. Quantitative Performance
We compare Trajectron++ [8] against Social GAN [29] and
Social BiGAT [32], all of which use similar RNN-based
architectures to model temporal sequences. The approaches are
evaluated on the real-world ETH [43] and UCY [44] pedestrian
datasets, a standard benchmark in the field comprised of
challenging multi-human interaction scenarios. We evaluate
their performance with the Best-of-N (BoN) Average and
Final Displacement Error (ADE and FDE) metrics proposed
in [29] as well as the Kernel Density Estimate-based Negative
Log-Likelihood (KDE NLL) proposed in [7]. As can be
seen in Table I, the CVAE-based Trajectron++ significantly
outperforms the others on the three specified metrics. In
addition, Table II shows our method’s strong vehicle modeling

performance against a variety of approaches on the large-scale
nuScenes dataset [45]. Further experiments as well as ablation
studies can be found in [8]. More broadly, the success of
phenomenological approaches for large-data regimes has been
reflected in modern trajectory forecasting competitions. For
instance, all prize winners of the recent ICRA 2020 nuScenes
[45] prediction challenge (one of which is Trajectron++ [8])
are phenomenological, using deep encoder-decoder architec-
tures and leveraging heterogeneous input data in addition to
past trajectory history.
B. Latent Space Size
The size of the latent space (i.e., the number of latent variables)
is something not yet discussed in this work. While finding the
“optimal” size ends up being a hyperparameter search, one
should generally allocate a latent variable for each high-level
behavior or effect they wish to model. In the (common) case
where it is difficult to know exactly how many that is (e.g., in
driver modeling), one should start high and let the CVAE prune
out redundant modes by assigning them very low probabilities.
For instance, in each of [3], [6], [7], [8] we use 25 latent
variables (i.e., z can take 25 values). Of these, the CVAE only
ends up assigning significant probability to a few modes at a
time, e.g., moving straight, turning left, turning right, stopping.

In order to determine how many modes are being used,
the CVAE’s learned weights can be analyzed through the lens
of evidential theory, as proposed in [46]. Specifically, one
can identify which latent variables have direct evidence that
supports their existence, and prune the others without any loss
in performance. For instance, [46] found that only 2−12 latent
variables have direct evidence in [8] and that the rest can be
pruned without any loss in performance.
C. Online Model Runtime
A key consideration in the development of models for robotic
applications is their runtime complexity. To achieve real-time
performance, one can leverage the stateful representation that
spatiotemporal graphs provide. Specifically, the model can be
updated online with new information without fully executing
a forward pass. For instance, due to our method’s use of
LSTMs, only the last LSTM cells in the encoder need to be
fed the newly-observed data. The rest of the model can then
be executed using the updated encoder representation. This
update-and-predict scheme is applied in [7], [8], both of which
achieve real-time online performance.

VII. CONCLUSIONS AND FUTURE WORK

We have provided a self-contained tutorial on a CVAE ap-
proach to multimodal trajectory prediction for multi-agent
interactions. Additionally, we have presented a taxonomy of
existing state-of-the-art approaches, thereby identifying major
methodological considerations and placing our proposed ap-
proach in perspective. In the presence of large amounts of
data with potentially heterogeneous data types (e.g., spatial
features, images, maps), and non-Markovian settings where
future behaviors depend on the history of interaction, our
proposed CVAE approach is an attractive model for predicting
future human trajectories in multi-agent interactive settings.
In particular, our CVAE approach is very flexible, making it
easy to include heterogeneous data, account for agent dynam-
ics, and tailor it to different types of model-based planning
algorithms.

Future work includes further improvements on the model
such as developing ways to make the latent space more inter-
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pretable, e.g., through the lens of temporal logic, robustifying
against upstream sensor noise, and applying the learned model
to generate more realistic simulation agents for testing and
validation. More broadly, there are still many open questions
regarding evaluation metrics and architectural considerations
stemming from future integration with downstream plan-
ning and control algorithms. These questions are increasingly
important now that phenomenological trajectory prediction
methods have outweighed others in raw performance, and
are targeting deployment on real-world safety-critical robotic
systems.
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