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Task-Oriented Motion Mapping on Robots of Various
Configuration Using Body Role Division

Kazuhiro Sasabuchi , Naoki Wake , and Katsushi Ikeuchi

Abstract—Many works in robot teaching either focus only on
teaching task knowledge, such as geometric constraints, or motion
knowledge, such as the motion for accomplishing a task. However,
to effectively teach a complex task sequence to a robot, it is im-
portant to take advantage of both task and motion knowledge.
The task knowledge provides the goals of each individual task
within the sequence and reduces the number of required human
demonstrations, whereas the motion knowledge contain the task-
to-task constraints that would otherwise require expert knowledge
to model the problem. In this letter, we propose a body role division
approach that combines both types of knowledge using a single
human demonstration. The method is inspired by facts on human
body motion and uses a body structural analogy to decompose a
robot’s body configuration into different roles: body parts that are
dominant for imitating the human motion and body parts that are
substitutional for adjusting the imitation with respect to the task
knowledge. Our results show that our method scales to robots of
different number of arm links, guides a robot’s configuration to
one that achieves an upcoming task, and is potentially beneficial
for teaching a range of task sequences.

Index Terms—Dual arm manipulation, learning from
demonstration, mobile manipulation.

I. INTRODUCTION

IN ROBOT teaching, one way to teach a manipulation task
is to provide the geometric constraints involved in the task.

However, when a task is part of a longer multi-step sequence
of tasks, this approach lacks important information on how to
complete the task in a way that takes into account the entire
sequence. For example, when grasping an item from a closed
cabinet, a robot must first reach the door handle position of the
cabinet but do so in a way that enables achieving two following
tasks: opening the cabinet, and then reaching inside with another
arm. Planning a motion with the entire sequence in mind is
essential but doing so with a general motion planner requires
a very complex modeling of the task sequence.

Meanwhile, humans are able to move their body with the
entire sequence in mind. Thus, the issue with modeling the
task sequence can be relaxed if human motion mimicking is
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incorporated in the motion planning. The question is: how to
integrate motion mimicking with the planning of the geometric
task constraints.

We approach this integration problem by mimicking only
the human arm motion instead of the whole-body motion, and
by dividing the robot configuration into two groups: a group
corresponding to the human arm which follows the human arm
motion, and a remaining group that solves the task constraints.
The reason we focus on the arm motion and use such grouping
is that the strategy allows us to use the structural analogy of
the human body motion: the human arm has control over the
motion, and the human trunk acts as a range substitution [1].
Since the arm is the most dominant part of the human body
motion, the arm motion should provide us many valuable hints
for accomplishing a task under a sequence of tasks.

Our main contributions in this letter are as follows. First,
we present a motion planning method that integrates both task
constraints of each individual task (e.g., open a door) and human
motion mimicking, where the mimicking helps to incorporate
the task-to-task constraints that arise when a task is performed
under some context or multi-step sequence (e.g., open in a way
that prepares the robot for picking from inside).

Second, we present how the method scales to robots of various
configuration; including robots with fewer and equal arm links
compared to the human arm. Third, we prove the effectiveness
of our approach on several task sequences by looking at cases
with each of the two type of robots.

II. RELATED WORKS

Robot teaching is a wide area of research. Approaches using
motion include a direct joint-to-joint mapping of the human
body motion [2] or a kinesthetic demonstration [3] which
teach by passively moving the robot’s joints. Recent works
combine kinesthetic teaching with correction [4]. In most of
these approaches, observed trajectories from demonstration are
mapped to mathematical models using Hidden Markov models,
Gaussian mixture models, combinations of these models [5],
and/or by fitting to dynamic or probabilistic equations [6], [7].
However, kinesthetic demonstrations are difficult to scale when
the manipulation requires a mobile base movement. Few works
have tackled the problem of mapping or automatically achieving
mobile base movement from demonstration. Welschehold et al.
approached the problem by mapping the human torso movement
for a single arm task [8]. They have further extended their work
to learn individual actions and disambiguate overall task goals
in a mobile setting from a small number of demonstrations [9].
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One limitation to these approaches is that they require
repeating the demonstration several times [10]. While obtaining
task knowledge and intent completely from demonstration is a
motivated goal, other works try to explicitly teach constraints so
that what is taught by the human is guaranteed and mismatch
in mental models [11] are avoided. These approaches focus on
the symbolic or geometric constraints of the task. Early works in
this literature have focused on object state transitions [12]. More
recent works combine geometric constraints with keyframes in
a multi-step task demonstration [13]. Many of these approaches
focus on the end-effector movements and assume that the task
constraints can be solved by a general motion planner. However,
this is only true when the robot has enough reachability, which is
not the case with domestic robots with a compact structure [14].
An appropriate arm motion integrated with full body positioning
is essential for achieving a complex task sequence with such do-
mestic robots. In such case, additional constraints arise and must
be foreseen to appropriately plan a motion under a sequence.

In this context, our motivation is to use demonstrated motions
to implicitly augment these constraints. By combining the task
knowledge (e.g., instructions of what to manipulate) of each
individual task, we avoid requiring multiple repeating demon-
strations to learn the teacher’s intent; and by combining motion
knowledge from a single demonstration, we avoid having to
model (using expert knowledge) every ambiguity for planning
a motion suitable within the task sequence.

On the line of combining task and motion knowledge, recent
works target the use of language to combine task instructions
with teleoperated demonstrations [15]. Due to the dependency
on teleoperation, instructing and teaching complex tasks requir-
ing multiple arms or mobile base movement is yet a challenge.
Meanwhile, works that focus on full body motion is found in
computer graphics [16]. However, the main goals in computer
graphics is to solve the constraints between the agent and the
floor. A motion is not leveraged to perform a sequence of tasks
but is used to design specific character movements.

III. PROBLEM DEFINITION

In our problem, we assume some defined set of tasks where
each task has a defined list of task constraints the robot must
fulfill to perform the task. For example, let’s assume we have
a task set: reaching, picking, and door-opening. To perform
a reaching or picking task, the robot’s end-effector must end
or start at a grasp position of the grasp target; to perform a
door-opening task, the end-effector must follow the constrained
movement of the door (i.e., a door can only move around the
axis of the hinge).

On top of these hard constraints that must be fulfilled in each
individual task, we have additional constraints that arise when
the tasks are combined as a multi-step sequence. For example,
to achieve a reach and pick after opening a fridge, an additional
constraint to keep the robot positioned in front of the fridge is
required. Instead of directly defining the additional constraints
(which varies per sequence and would require careful under-
standing of each multi-step problem) we use a demonstration
containing the human arm motion to perform the task sequence.

Fig. 1. Example requiring the proposed method. The constraints of each
individual task (“open” and “pick”) can be defined a priori, but the task-to-task
constraints (open in a way so that the other arm can reach inside for a pick)
depends on the combination or the context in which the task is performed.
By combining human demonstration, the task-to-task constraints are implicitly
incorporated to the motion plan and thus, a feasible motion is generated to
perform the multi-step sequence.

Although not guaranteed, the additional constraints are likely
to be (implicitly) contained in the arm motion as the human
should have demonstrated his or her motion with the entire task
sequence in mind. In the experiment section, we show several
examples where the naïve approach is yet capable of solving
multi-step problems.

Fig. 1 shows an example application [17], [18] that has our
problem setting. The human shows a demonstration of the task
sequence alongside with a verbal instruction of what tasks
the robot should perform (a reaching task inserted whenever
specified a target object). Although the instructions provide the
list of tasks to perform, the additional constraints are not fully
explained and must be extracted from the demonstration.

Below we explain in more detail the task constraints and the
arm motion we use for planning the robot motion.

A. Task Constraints

For the task constraint, we consider a desired position goal
state (task position goal) p of the robot’s end-effector, where
the position goal state is the state achieved by an actionΔp of the
end-effector in a motion free direction. Many tasks contacting
or manipulating a rigid object require solving a list of goal states
(e.g., pick, place, door opening, pressing a button, operating a
kitchen faucet, etc.). A random solution to perform the action
Δp may drastically change the robot’s arm configuration from a
mimicked motion. Therefore, solving both a task position goal
and mimicking human arm motion is an interweaved problem.

Another constraint is the orientation of the end-effector (ori-
entation goal) when performing the end-effector action. The
orientation goal is usually defined from the properties (e.g.,
the shape) of a manipulating object, but it must sometimes be
obtained from the human demonstration to consider the entire
task sequence. An example case is when determining to either
grasp a can drink from the side or top in a picking task. Side
grasping is appropriate when placing the can drink inside a shelf,
whereas top grasping is appropriate when placing it inside a
basket. The type of grasp to use depends on the properties of
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Fig. 2. Eight-by-five discretized direction space expressing the pointing di-
rection of the human upper arm and forearm. The figure shows an example of
the right forearm pointing in a right high direction (forward is defined by the
body facing direction at the beginning of a task).

the placing location, which is not a direct task constraint of the
reaching/picking task but rather an information from the entire
task sequence. We will assume that the decision to obtain the ori-
entation goal from the object property or human demonstration
is defined a priori in a database about the manipulating object.

B. Human Arm Motion

To mimic human motion, we consider a list of desired arm
postures (arm posture goal) represented in some intermediate
representation, such as the name of the posture. To cover a
variety of arm postures, we name a motion for every possible
combination of the human upper arm and forearm pointing direc-
tions in some discretized direction space (Fig. 2). In this letter,
we will use a direction space used in existing human motion
representations [19], [20], where the direction is divided into
eight horizontal directions (forward, left forward, left,...) and five
vertical directions (south pole, low, middle, high, north pole). To
our survey, when limited to in-front single arm manipulations,
the number of valid direction combinations of the human upper
arm and forearm (the number of named postures) is 79 using
this eight-by-five discretization.

Another way to represent an arm posture is to represent the
pointing direction of the upper arm and forearm each as a
vector of continuous float values. However, a continuous data
representation will contain noise in the raw data and will require
a well-defined set of equations to convert to a robot motion.
Meanwhile, an intermediate representation allows us to define
a finite number of mapped configurations a priori and is able
to filter noisy jumps or obvious detection errors in the human
motion (e.g., unnatural arm-twisted postures can be checked
a priori in a discretized representation and then be defined as
unacceptable).

IV. BODY ROLE DIVISION METHOD

In this section, we explain our method for planning a robot
motion that satisfies both the task constraints and the mimicking
of the human arm motion. By mimicking the human arm motion,
we expect to achieve a robot motion with the entire task sequence
in mind.

As explained in Section I, we divide the robot configuration
q into two groups: a configurational group qc that are the joints
that map the human arm motion; and a positional group qp

that are the remaining joints that solve the task constraints
(desired end-effector states). An exceptional constraint that is
not solved with the positional group is the orientation goal from
Section III-A. The orientation goal is sometimes obtained
through human mimicking; thus, the group solving the goal (the
orientational group) should be a subset of the configurational
group.

The configurational group corresponds to the arm-to-hand
(upper arm, forearm, and wrist-to-hand) on the human body. In
this letter, we will consider robots that have an arm attached
to some base, and an end-effector attached to the end of the
arm. In most cases, the configurational group is the arm and the
end-effector.

The positional group corresponds to the trunk of the hu-
man body, which is the waist or torso of the robot, but since
simple-structured robots may not have such structure (or not
enough joint range as the human), we will also include the
robot’s base. Note that, the base movement does not correspond
to the human footsteps, but instead it is positioned to substitute
the arm movement (Section IV-A2). To integrate mobile base
movement, we will consider base movements as part of the robot
joint configuration by defining a virtual prismatic and/or revolute
joint attached to the robot’s base.

The orientational group corresponds to the wrist-to-hand
part of the human arm. This is usually the wrist and end-effector
on the robot, which indeed by itself is able to solve the orientation
goal if had (and mostly do) three or more degrees of free-
dom [21]. This subset of the configurational group is required
due to the characteristics of the orientation goal, but structural
facts on the human motion also insist that the human wrist
motion is independent from the upper and forearm motion [22];
therefore, defining a subset is also reasonable from a structural
analogy perspective.

Using this idea of body role division, which decomposes the
robot body into a configurational group, positional group, and an
orientational group, we solve the arm posture goal, task position
goal, and orientation goal from Section III. For simplicity, we
will begin with the case of a single arm posture goal, a single task
position goal, and a single orientation goal (e.g., the moment of
grasping). Our method uses a step-by-step calculation on each
role group, which is described below:

1) Map the arm posture goal to a mapped configuration q0
c

which define a set of joint values for the configurational
group. Set some predefined default configuration q0

p

(e.g., zero values) for the positional group.
2) By changing the joint values in the orientational group,

modify q0
c to joint configuration q1

c which satisfies the
orientational goal Ωogoal.

3) Find a final configuration q which satisfies the task po-
sition goal Ωpgoal by mainly changing the joint values
in the positional group, but also by making sure that the
configurational group is maintained using a configura-
tion constraint Ωccons, and a group connection constraint
Ωpcons.
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Fig. 3. Role division for different robots (A) equal DoF (SEED-noid)
(B) fewer DoF (HSR). Configurational group in orange, positional group in
blue, and orientational group in green.

The search of a configuration in the last two steps can be done
by applying the goals and constraints as a fitness function in a
genetic algorithm [23]. We explain the details of each step in
each of the below subsections.

A. Mapping the Arm Posture Goal

The mapping design of a named human arm posture to a
mapped configuration q0

c depends on the number of links
(excluding the end-effector) that compose the robot arm. We
define two patterns (Fig. 3): the equal degrees of freedom (DoF)
case where there are exactly two links (same as the human
demonstrator) and the fewer DoF case where there is only one
link. We will assume that the length of each robot arm link is
nearly equal to the human upper arm or forearm.

1) Equal Degrees of Freedom: Since the number of links is
equivalent, a naïve mapping approach is to copy the named
pointing direction of the human upper arm and forearm, to
the upper and lower arm link of the robot. However, this way
of mapping has no information on the joint-level interpolation
between two mapped configurations, and thus it may lack human
motion characteristics. For example, let us say an arm is reaching
straight from a bent elbow position. The straight arm is a singular
point and depending on the twist amount of the upper arm,
different end-effector movements will be generated during the
interpolation.

To achieve a smooth interpolating motion or a most-likely
collision avoiding motion, we must consider the characteristics
of the human arm motion. According to Tadokoro et al. [24],
the upper arm usually does not twist during a straight reaching
motion, but rather twists when moving the arm to different
heights. Therefore, a mapped configuration must be created in
a way such that, 1) the pointing direction is kept as much as
possible, but 2) the upper arm does not twist between reaching
transitions and only twist when there is transition in the height
direction. Since we will be using a finite set of arm postures (as
explained in Section III-B), the number of transition patterns is
also finite. When a robot cannot precisely copy the pointing di-
rection for one of its arm links (e.g., due to joint limitations), we
will prioritize the twist constraint when designing the mapped
configuration.

Fig. 4. Figure explaining the orientation goal, which uses the palm direction
representation taken from the human motion analogy.

2) Fewer Degrees of Freedom: One approach to map arm
postures to robots that have only one arm link is to sum the
named pointing direction of the human upper arm and forearm
into one direction [20]. However, while this approach may be
suitable for gesture motion, manipulation motion have a slightly
different characteristic. That is, collision between the forearm
and the environment is avoided by the positioning of the elbow
and wrist; thus, a summed pointing direction may miss the
collision-avoiding essence. To achieve a mapped configuration
that is most likely not under collision, we will mainly map the
forearm pointing direction to the arm link and refer the root
of the link as the elbow. The assumption that lies here is that
the upper arm is mainly used to adjust the forward/outward
positioning of the elbow; therefore, such motion essence can
be (in most cases) alternatively managed with the positional
group as long as the root of the arm link is capable of being
elevated or planar positioned. Likewise, the mapping scheme is
applicable for manipulating an articulated object as this is also
the case where the upper arm movement is mostly adjusting the
elbow position. To our survey, only 12 out of the 79 named arm
postures lie in an exceptional case requiring an upper arm reach,
such as reaching over a table.

To achieve the forearm direction, the arm link must be actuated
using a horizontally rotating joint and a vertically rotating joint.
For some robots, the horizontal rotation may depend on the
rotation of the base, therefore, in addition to the arm link, the
virtual base rotation may also be included in the configurational
group.

B. Solving the Orientation Goal

To represent an orientation goal in relation to human mim-
icking, we use the pointing direction of the palm [19]. Using
this palm analogy, we define a fixed palm unit vector vp on the
robot’s end-effector E represented in the E coordinate (Fig. 4).
The orientation goal is then to point this palm vector toward
a desired direction vp

goal in some fixed task coordinate. With
only this condition, the end-effector may take any rotated pose
around the palm vector. Therefore, we may choose one fixed
perpendicular unit vector vn represented in the E coordinate
(usually one that is perpendicular to the line connected by two
opposing fingers of a gripper or robotic hand) and make sure vn

points to some desired direction vn
goal in the task coordinate.

An example of vp
goal is a demonstrated direction such as

grasping a can drink from the side or top. An example of vn
goal

is a constrained direction parallel to the axis of a cylindrical
handle.
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Let Rq be a coordinate transformation matrix that transforms
vp, vn in the E coordinate to the task coordinate when the
robot’s configuration is q. Then, using a threshold θp, θn the
orientation goal is written as below:

Ωogoal(q) :

{
1− vp

goal ·Rqvp < θp

1− vn
goal ·Rqvn < θn

(1)

C. Solving the Task Position Goal

Let p be the desired position of the end-effector in the task
coordinate, and h(qs) the end-effector position when the robot’s
configuration is a sampled configuration qs (calculated using
forward kinematics). Then, using a threshold d the task position
goal is written as below:

Ωpgoal(qs) : ‖h(qs)− p‖ < d (2)

We apply two constraints while solving this task position goal.
One is a configuration constraint which ensures that the joint
values of the configurational group is kept near the values of the
mapped configuration from step 1 and 2. The other is a group
connection constraint: when the links actuated by the positional
group are the parent or child of the configurational group, a
change in value in the positional group may change the look of
the links (pointing directions) actuated by the configurational
group. The group connection constraint ensures that such situa-
tion is avoided.

1) Configuration Constraint: Letqsc = {qsci|i = 1, . . .} be
the configurational group of a sampled configuration and qs

c
i

be the i-th joint value. Let q1c = {q1ci|i = 1, . . .} be the con-
figuration solved in step 2, and dc some defined threshold. Then,
the configuration constraint is written as below:

Ωccons(qs
c) :

∑
i

|qsci − q1
c
i| < dc (3)

2) Group Connection Constraint: One way to solve the
group connection constraint is to use a similar strategy asΩccons.
Let L be a subset of the positional group that influences the
look of the links actuated by the configurational group. Let
q0

L ∈ q0
p be a partial configuration of the joint configuration

from step 1. The subset positional group in a sampled configura-
tion qs

L = {qsLi|i = 1, . . .} is kept close to q0
L = {q0Li|i =

1, . . .} within a threshold dp using below:

Ωpcons(qs
L) :

∑
i

|qsLi − q0
L
i| < dp (4)

V. USING RECORDINGS

We extend our discussion of applying our body role division
method on a single data point to a series of data obtained in
an actual demonstration. The full recording of the demonstrated
arm postures (which is then named to represent an arm posture
goal) must be aligned with the corresponding task constraints
in the instructed task sequence. Luckily, our constraints are all
related to the actions of the end-effector, therefore, the alignment
between the demonstration and constraints is possible by looking
at when the human hand trajectory visited the constraint goal
values defined for each task (e.g., position of a grasping target,

Fig. 5. Left, the detected human hand positions at key visiting waypoints
(connected with a dotted line to express time relations) during a reaching
and picking task. The image shows three visiting points extracted from the
recognized/modelled task environment: (a) point entering the fridge, (b) point
of grasping a verbally instructed object, and (c) point of exiting the fridge. Right
images show the corresponding arm motion of the human and the robot at these
points.

Fig. 6. Left, the detected raw human hand trajectory of a door-opening task (the
trajectory after the human grasped the door). Regions (a), (b), (c), (d) indicate
where the named arm posture does not change, and the right images show the
arm motion of the human and the robot at each of the four regions.

fitting to a door opening trajectory). Fig. 5 and Fig. 6 show some
examples of the aligning in an “open and pick from a fridge”
recording.

One thing to note is that the demonstrated arm posture is
suitable only when the robot performs the task under a similar
environment to when the demonstration was held. As a limitation
of this letter, we will only consider the case where the positional
change of an object in an environment is slight (which is the case
when picking a mostly-same-place-located item from a fridge).
We evaluate in the experiment section on the re-usability of the
demonstrated posture under such conditions.

Another thing to note is that the task constraint goal values to
visit could be sparse or dense. A sparse example is a reaching
or picking task. The robot is able to achieve the task as long as
the key waypoints are visited, and collision is avoided. A dense
example is a door-opening task. The robot end-effector must
follow the exact positions on a specified door-opening trajectory.

In the dense example, directly using the posture name of a
discretized posture as the arm posture goal will have an issue.
The posture rarely changes with this naming strategy (Fig. 6)
and may generate sudden jumps between postures. To prevent
such issues, we represent the arm posture goal in the dense case
with the name of the starting posture, ending posture, and an
interpolation parameter t. To obtain the mapped configuration,
the start and end posture is first mapped to configurations q(a)c,
q(b)

c, and an interpolated configuration is calculated as (1−
t)q(a)

c + tq(b)
c.
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VI. EXPERIMENT

In this section, we evaluate our method on three different
task sequences. The first sequence is “S1: pick from a fridge”
consisting of three to four tasks: “T1: reach for the fridge
handle” followed by “T2: open the fridge” and “T3-4: reach
and pick (or look for) a can from inside the fridge.” The fridge
automatically closes if not held, thus one of the robot’s arm is
always occupied for T3-4. The other sequences include a slightly
simpler task of “S2: locate a target inside a storeroom,” which
involves operating a prismatic articulated object (i.e., a sliding
door), and a slightly more difficult task “S3: take trash when
going out.” We evaluate S2 on the HSR robot [14] (fewer DoF
robot), S3 with the SEED-noid robot [25] (equal DoF robot),
and S1 with both. Since S1 is one of the complex examples that
scales for both the equal and fewer DoF robot, we discuss S1 in
most detail.

The evaluation was done in a virtual simulator using ROS
RVIZ and fake controllers provided by MoveIt. All base move-
ment errors were ignored in this condition. For all the task
sequences, the geometric model parameters of the articulated
and target object were assumed to be known, and only one
demonstration was used to compute the motion.

A. S1: Pick From a Fridge

Following the example in Section V, the task position goals
for T1 and T3-4 were represented using visiting points. The task
position goals for T2 were represented as a trajectory divided
into waypoints-to-follow for every 0.1 [radian] opening of the
door with a tolerance of 3 [mm] in each direction. Following
the notations in Section IV-B, the orientation goal for T1 and T2
used a direction within 45 degrees of the direction perpendicular
to the door plane for vp

goal, and a direction parallel to the
door handle axis for vn

goal. For T3-4, a demonstrated approach
direction was used for vp

goal, and a direction parallel to the
target object’s (can’s) axis was used for vn

goal. The arm posture
goals were obtained using an Azure Kinect depth sensor, and an
interpolation parameter as described in Section V was used for
T2. For the configuration constraint threshold, we have used
an empirical factor 0.04 (2 degrees tolerance) multiplied by the
number of joints in the configurational group. Both robots had
3DoF in the wrist. Fig. 7 shows an execution of the task sequence
using our proposed body role method on the simulated fewer and
equal DoF robot and the real equal DoF robot.

1) Comparison to Baseline: We compared our method with
a baseline method which does not use any human demonstration.
For the baseline method, we used the default inverse kinematics
solver provided by each robot. These solvers search from a
current configuration qt−1 and finds a new configuration qt
satisfying the task position and orientation goal. The SEED-noid
searches a configuration by solving the position and orientation
fitness function (1, 2) using bio-IK [23] and uses the base when
failing to find a solution with the real joints (joints excluding
virtual base joints). The HSR searches a configuration by setting
the elbow and base yaw as a variable and analytically solves the
values of the other joints by prioritizing the base movement [14].

Fig. 7. Execution of S1 using our proposed method. Top row: simulated equal
DoF. Middle row: real equal DoF. Bottom row: simulated fewer DoF.

The main differences between the baseline method and our pro-
posed method are: 1) instead of using the current configuration
qt−1 the solver searches from a configuration qt

c mapped from
a single human demonstration, 2) to mimic the human demon-
stration, the solver solves the task position goal and orientation
goal as separate steps as explained in Section IV, and 3) due to
the nature of our method, the choice of the base movement relies
on the inverse-reachability of the mapped arm configuration. In
addition to the baseline method, we also compared our method
with two other methods: A baseline’ method, which searches
from qt

c instead of qt−1 (removes difference 1 between the
baseline and our method), and a retarget method, which sets
the new configuration to qt

c without any search (the retargeted
motion from a single demonstration).

For this experiment, we used one representative demonstra-
tion (same among the two robots). The starting conditions were
identical for the compared methods. The starting real joint
configurations of the robot presented a mapping of an arm placed
downward. The starting base joint configuration (base position)
were all set to one that was calculated using our proposed
method when executing T1 (we used the one from our method
as the baseline solvers required explicitly defining an initial base
position and could not calculate one on its own).

We evaluated the motion continuity, environmental collisions,
and task achievement of each method. A motion was marked
as non-continuous if the robot gripper departed from the door
handle position during an interpolation of two solved config-
urations. A motion was marked as collided if a collision was
detected between the fridge (including the door) and any part
of the robot’s body. A task was marked as achieved if the robot
succeeded in picking the can for the equal DoF, and if succeeded
in looking at the can without occlusion for the fewer DoF.

Table I shows the results indicating that our method performs
better than the other methods in terms of motion continuity and
task achievement for both DoF cases. For the equal DoF, the
cause of the different results across methods can be explained
for the following reasons. By dividing the joints contributing to
the arm posture and the joints contributing to the task goal, we
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TABLE I
COMPARISON OF METHODS IN S1 ON ONE REPRESENTATIVE TRIAL

Fig. 8. Execution of demonstrations from three different starting configura-
tions by the equal DoF robot. Left d1, middle d2, right d3.

are able to define a metric (Equation 3) for deciding whether a
configuration deviates from the demonstrated motion. Making
sure that there is no deviation (and since motion continuity be-
tween likely transitions is guaranteed by the mapping scheme),
we are able to avoid jumping configurations and also limit the
configurations at the end of T2. The baseline solvers get stuck
at a local minimum while trying to solve the orientation goal.
This leads to jumping configurations but also configurations not
acceptable for solving T3-4 (e.g., left arm away from the fridge).
Similarly, the baseline solvers for the fewer DoF fails, as it finds
a configuration that is optimal for T2 but is not suitable for
T3-4. The baseline solver finds a solution closest to the current
configuration. This results in a far and slightly-to-the-side base
position and occludes seeing inside the fridge. In contrast, our
proposed method allows the robot to look inside the fridge from
a close and in-front position (Fig. 7).

2) Multiple Executions: To better evaluate our method on
the robustness against slight demonstration variances, we tested
three different demonstrations (d1, d2, d3) where the human
demonstrated from a different standing position for d1, and
similar positions but a different starting configuration for d2
and d3 (Fig. 8 shows an execution of the three demonstrations
by the equal DoF robot). For each demonstration, we performed
5 executions of T2 in simulation and obtained five slightly
different T2-ending configurations. Then, on each of the five
obtained configurations, we tested the performance of T3-4 on
10 varying target object locations (five locations inside the fridge
sampled left to right for a near and slightly far position) and
counted the number of successful achievements. This totals to
fifty executions per demonstration. The same task achievement
conditions from the previous experiment were used for each
robot.

Table II shows that similar results are obtained for all demon-
strations. The discretized representation of the arm postures
enables the arm motion in T2 and T3-4 to be similar among
the different demonstrations. The task of the fewer DoF robot
was simple (look at the target without occlusion), therefore the

TABLE II
PERFORMANCE ON THREE DEMONSTRATIONS IN THE S1 SEQUENCE

Fig. 9. Execution of S2 (top row) and S3 (bottom row) using our proposed
method.

robot succeeded in all trials. However, some executions failed for
the equal DoF. In these executions, the demonstrated reaching
motion in T3-4 was not suitable for the target locations (e.g.,
a reaching motion in a forward direction was required for the
location but the demonstration was shown for a different location
where the human reached diagonally). The failure cases were
mostly when the target location differed more than 15 cm from
the demonstration. Yet, when the target object was positioned
close to the position as demonstrated (which covered more than
half of the fridge’s width), our method was capable of adjusting
the mapped configuration to achieve the grasping under slight
positional changes.

B. S2 and S3

An execution by the proposed method for sequences S2 and
S3 are shown in Fig. 9 and failures by the baseline are shown in
Fig. 10. Similar to S1, the baseline planner in S2 finds an optimal
solution for manipulating the sliding door but fails to achieve the
following task of locating the target inside. With the baseline,
the robot fails to follow the intended human instructions of open
and look. Meanwhile, S3 is composed of the same tasks as S1
reach, open, and pick but with completely different constraints
when they are sequenced. The robot’s right arm is occupied and
therefore must both open and grasp the target with its left arm.
This forces the robot to release the door at grasping the target. To
accomplish this task, the robot must first open the door in a way
that the robot’s body is kept close to the door. Then, hold the door
opened with its body (i.e., base). Due to the inverse reachability
of the mapped configuration, our method is able to implicitly
achieve such a state and also achieve the following reaching
and picking task. However, the baseline fails as it finds a local
optimum solution which opens the door by only extending the
robot’s arm far away. With this state, the door closes once the
robot releases the door.
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Fig. 10. Failure cases of the baseline method. (A) S1 equal DoF shifted to
the right of the fridge. (B) S1 fewer DoF fails to look inside due to occlusion.
(C) S2 fewer DoF fails to locate the target as occluded. (D) S3 equal DoF opens
the door but the door closes when the gripper is released as nothing is supporting
the door.

VII. CONCLUSION

Applying both task constraints and implicit knowledge from
motion is essential for solving a complex task sequence. The
task constraints lack information on how to execute a task with
the entire task sequence in mind unless modeled by an expert.
The motion knowledge lacks information on how to scale the
motion in a way that achieves the task objective unless multiple
demonstrations are provided. The two knowledge are applied
by dividing a robot’s body configuration into configurational,
positional, and orientational groups. Only one human demon-
stration is needed as long as the structure of the robot is capable
of mapping the arm motion analogy.

Our method is potentially beneficial for a range of tasks where
the arm motion provides hints on the task-to-task constraints.
These constraints differ even for the same combination of tasks
and are dependent on the context or intent of the sequence.
Despite the different intents, our method was capable of fore-
seeing the reachability/eyesight and positioning required for
an upcoming task in each sequence by limiting/guiding the
configurations to ones that were appropriate. Such results were
achieved for both the equal and fewer DoF robot and the results
were more stable compared to the pure IK solvers.

A few limitations of our current work are that the tasks are very
close to the original demonstrations, the demonstration did not
involve a large movement in the trunk (such as bending toward
the floor), and the demonstrations did not involve footsteps that
rotated the entire body.

Also, achieving every intent of the task sequence is not
always guaranteed, which is a common issue in motion-based
approaches. These are future directions for extending our work.
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