
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. NOVEMBER, 2020 1

Efficient Trajectory Planning for Multiple
Non-holonomic Mobile Robots via Prioritized

Trajectory Optimization
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Abstract—In this paper we present a novel approach to
efficiently generate collision-free optimal trajectories for multiple
non-holonomic mobile robots in obstacle-rich environments. Our
approach first employs a graph-based multi-agent path planner to
find an initial discrete solution, and then refines this solution into
smooth trajectories using nonlinear optimization. We divide the
robot team into small groups and propose a prioritized trajectory
optimization method to improve the scalability of the algorithm.
Infeasible sub-problems may arise in some scenarios because of
the decoupled optimization framework. To handle this problem,
a novel grouping and priority assignment strategy is developed to
increase the probability of finding feasible trajectories. Compared
to the coupled trajectory optimization, the proposed approach
reduces the computation time considerably with a small impact
on the optimality of the plans. Simulations and hardware exper-
iments verified the effectiveness and superiority of the proposed
approach.

Index Terms—Multi-robot systems, motion and path planning,
collision avoidance.

I. INTRODUCTION

AUTONOMOUS multi-robot systems are attracting sig-
nificant attention from the industry since they can pro-

vide more diverse functionality and efficiency than single-
robot systems. Many applications of multi-robots systems
require coordination of mobile robots navigating in a complex
environment, e.g., material handling in warehouses [1] and
drone delivery [2]. In these scenarios, collision-free trajectories
connecting initial and final positions for the robots need to
be generated, which is referred to as the labeled multi-robot
trajectory planning problem [3].

It is challenging to obtain optimal trajectories for a large
team of robots in an efficient way. In [4], [5], the opti-
mal trajectory generation problem is formulated as mixed-
integer quadratic programming (MIQP) or sequential convex
programming (SQP) problems. These methods try to jointly
optimize the trajectories of all robots. Though the optimality
is guaranteed, the application of these methods is limited to
small teams with few obstacles in the environment.
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To improve computational efficiency, decoupled planning
methods have been proposed. A widely used decoupled
scheme for multi-robot trajectory planning is sequential plan-
ning [6]. In sequential planning, the trajectory of each robot
is decoupled and coordinated by avoiding the previously
planned robots. The trajectory optimization methods in [7],
[8] utilize sequential planning to decouple inter-robot collision
constraints and achieve significant improvement in compu-
tational efficiency. These decoupled planning methods are
relatively fast but typically suffer from incompleteness. In
certain scenarios, a feasible solution for the robots exists but
cannot be found.

In obstacle-rich environments, the trajectory planning prob-
lem is generally solved using a two-stage pipeline [9], i.e.,
path finding and trajectory optimization. A great number of
works have been done in single-robot cases [10]–[12]. The
basic idea of such methods is to first generate a geometric
path and then optimize the path to a smooth and dynamically
feasible trajectory. This two-stage pipeline can also be applied
in the multi-robot trajectory planning problem. In [13]–[15],
collision-free discrete paths are first generated for all robots.
Then based on the results, a quadratic program (QP) problem
is formulated for each robot to generate the optimal trajectory.
The multi-robot trajectory planning algorithms using the two-
stage pipeline are guaranteed to be complete [13], [14].
Besides, since the path finding stage provides a good initial
guess for the multi-robot trajectory optimization, the efficiency
of solving the optimization problem is significantly improved
by using the two-stage pipeline.

The aforementioned multi-robot trajectory planning algo-
rithms [13]–[15] focus on robots with linear dynamics. In
this case, the trajectory optimization can be formulated as a
QP problem, which is convex and easy to solve. However,
in modern industry, most mobile robots are differential-drive
and inherently subject to nonlinear dynamics. When nonlinear
dynamics is considered, the trajectory optimization can only
be formulated as a general nonconvex nonlinear programming
(NLP) problem, which makes the existing multi-robot tra-
jectory planning methods [13]–[15] inapplicable. Currently,
the problem of motion planning for multiple differential-
drive robots is generally addressed via discrete formula-
tions [16]–[18]. However, since the planned piecewise linear
paths contain corner turns that are dynamically infeasible for
differential-drive robots, these paths are difficult for the robots
to execute.

The multi-robot motion coordination problem can also be
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solved in a distributed way. Reactive methods such as buffered
Voronoi cells [19] and velocity obstacle (VO) [20], [21] are
developed. Besides, in [22], [23], distributed trajectory plan-
ning methods are proposed based on the distributed model pre-
dictive control (DMPC). In these methods, the robot follows
the shortest path to its destination and resolves conflicts in
real time when future collisions are detected. Some algorithms
have been extended to nonlinear dynamics and applied to non-
holonomic robots [24], [25]. Distributed planning methods are
computational efficient, but cannot guarantee no deadlock and
are poorly suited to problems in maze-like environments.

Based on the above considerations, in this paper, we aim
to propose an efficient trajectory planning approach that gen-
erates safe, dynamically feasible and near-optimal trajectories
for multiple non-holonomic mobile robots. Our approach first
uses a multi-robot path planner to generate an initial solution
for the problem, and then it is refined into smooth trajectories
by solving a trajectory optimization problem. In both stages,
the nonlinear motion model of the mobile robots is directly
considered to guarantee the feasibility of the trajectories. In
particular, we introduce a prioritized trajectory optimization
method to improve the computational efficiency such that
the algorithm is applicable to large-scale robot teams. To
the best of our knowledge, this paper is the first attempt to
develop a centralized multi-robot trajectory planning method
for non-holonomic mobile robots in continuous space. The
main contributions of this work are as follows:
• An efficient multi-robot trajectory planning approach

which generates collision-free optimal trajectories for a
large team of non-holonomic mobile robots.

• A prioritized optimization method which decouples the
multi-robot trajectory optimization problem and improves
the computational efficiency significantly.

• Extensive evaluations of the proposed approach via sim-
ulations and real-world experiments.

The remaining of this paper is organized as follows. In
Section II, we state the problem formulation. In Section III,
the proposed approach is described in detail. We evaluate our
approach in Section IV and present a real-world experiment
in Section V. Finally, Section VI concludes the paper and
discusses future work.

II. PROBLEM FORMULATION

Consider a multi-robot system consisting of N mobile
robots which operate in a 2-D workspace W ⊆ R2. The
obstacles in the environment are assumed to be known and
denoted as O. The free workspace of the robots is given by
F =W\O. The collision model of each robot is defined as a
circle with radius R. The subset ofW occupied by the body of
a robot at position x ∈ R2 is denoted by R(x). For each robot
i, a task is assigned to move from its start position si ∈ F
to its goal position gi ∈ F . To guarantee that there is no
inevitable collision at the start and goal positions, we assume
the tasks 〈si, gi〉i=1...N must satisfy R(sj) ∩ R(sk) = ∅ and
R(gj) ∩R(gk) = ∅ for all j 6= k.

A sequence of waypoints which connect the start and goal
positions of the robot is denoted by path p = {rk}Np

0 , where

rk = [xk, yk, θk]T denotes the kth waypoint on the path
and Np denotes the total number of waypoints. A trajectory
ν is path p parameterized by time t. Let pos(r) denote
the 2-D position of waypoint r. For each robot i, its body
should not collide with any obstacle in the environment when
following its trajectory νi, i.e., R(pos(ri(t))) ⊆ F . Besides,
the collisions between any two robots should be avoided, i.e.,
R(pos(ri(t))) ∩R(pos(rj(t))) = ∅, ∀i 6= j.

Furthermore, the planned trajectory should be dynamically
feasible for each robot. The kinematic model of each robot is
defined as

ż = f(z, u), u ∈ U . (1)

In this paper, the unicycle model for differential wheeled
robots is considered. The state z is defined as [x, y, θ]T which
consists of the 2-D position and orientation. The robot is
controlled by the linear and angular velocity u = [v, ω]T, and
its motion equations are given by

ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = ω. (2)

Besides, each robot is limited by its maximum velocity, i.e.,
Ui = {[vi, ωi]

T : |vi| < vmax
i , |ωi| < ωmax

i }. In this
paper, we aim to generate dynamically feasible and optimal
trajectories ν1, . . . , νN for a group of mobile robots with
nonlinear dynamics, such that each robot can reach its goal,
and avoid collisions with obstacles and other robots.

III. METHODOLOGY

The overall architecture of the proposed multi-robot trajec-
tory planning approach is shown in Fig. 1. Firstly, we use
a graph-search based method to find shortest collision-free
paths for all robots with the non-holonomic constraint (2).
Then the safe corridor is constructed around each robot’s path,
which is a collection of convex polyhedra that models the
safe space of the robot. Finally, we formulate a constrained
nonlinear optimization problem based on the planned discrete
paths and safe corridors. By efficiently solving the problem
using prioritized trajectory optimization, safe and near-optimal
trajectories for all robots are obtained. The detail of our
approach is described in the following subsections.

A. Discrete Path Planning

The workspace of the robots is abstracted as an undirected
graph G = {V, E} where each vertex v ∈ V corresponds
to a location agents can cover and each edge (vi, vj) ∈ E
corresponds to a path the agents traverse when moving from
vertex vi to vj . In this work, occupancy map of the environ-
ment is transformed into a 2-D grid graph. In general, each
vertex and one of its 4 neighbors can form an edge (Fig. 2a).
As mentioned before, the state of each robot contains both
the position and orientation information. The traditional grid
graph only considers the position and neglects the orientation
information, so it is not suitable for non-holonomic mobile
robots. To handle this problem, we propose a new graph
representation for the multi-robot path planning.

Firstly, in the graph G, each vertex v ∈ V is now three
dimensional and corresponds to a robot state consisting of
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g2

g1

Discrete Path Planning Safe Corridor Construction  Trajectory Optimization

Fig. 1: Overall architecture of the proposed multi-robot trajectory planning approach. Gray squares show the static obstacles in
the environment. In this example, the start and goal positions of agent 1 and 2 are assigned as s1 = (4, 0), g1 = (−4, 0), s2 =
(0, 4), g2 = (0,−4). Firstly, we find shortest collision-free paths for the robots. Secondly, safe corridors (red and blue blocks)
are constructed along the planned paths. Finally, a constrained trajectory optimization problem is solved to generate smooth
and dynamically feasible trajectories for the robots.

(a) (b)

Fig. 2: Edges in the grid graph. Fig. 2a shows the traditional
4-connected edges. Considering the kinematic constraint of
differential wheeled robots, the edges in the graph are defined
by motion primitives, as shown in Fig. 2b.

the position and orientation. The heading of the robot can
be chosen from the four main directions, i.e., north, south,
east, and west. Let P(v) denote the 2-D position of vertex
v, then each vertex should satisfy R(P(v)) ⊆ F in order to
avoid possible collisions. Secondly, based on the kinematic
model (2), we define the possible one-step state transitions of
the robot, which is also referred to as motion primitives [26].
There are three available actions for each robot to take at each
step, i.e., moving forward, moving backward and turning 90
degrees. Combining these possible actions, we can obtain all
the motion primitives which are shown in Fig 2b. Let A denote
the set of all the motion primitives. Each one-step transition in
A is considered as an edge in the graph G. The edge is valid
only when no collision is found when any one of the robots
traverses that edge.

Since the kinematics of the robot is considered in the graph
construction process, the feasibility of the motion primitives
needs to be guaranteed. Let D denote the grid size of graph
G, ∆T denote the time required for the robot to traverse one
edge. Due to the physical limits of each robot, the following
condition should be satisfied to guarantee the feasibility of the

diagonal one step transition:

vmax
i ∆T ≥ π

2
D, wmax

i ∆T ≥ π

2
, ∀i ∈ {1, · · · , N}. (3)

It can be observed that if the diagonal one-step transition is
guaranteed to be feasible, then all actions in A are feasible.
Since both ∆T and D in (3) are user-defined parameters, we
can construct suitable graph representations for different scales
of environments based on the proposed method.

Conflicts may occur when each robot plans its path individ-
ually. In the same graph G which is shared by all robots, two
kinds of conflicts are considered, i.e., vertex conflict and edge
conflict. At each timestep k, if two robots i and j occupy two
vertexes which are too close to each other, it is a vertex conflict
denoted by 〈i, j, k〉. At any time between two consecutive
timesteps k1 and k2, if two robots are too close to each other
when traversing their own edge, it is an edge conflict denoted
by 〈i, j, k1, k2〉. The vertex conflict set at timestep k and edge
conflict set at timestep (k1, k2) are described as:

VCon(k) = {〈i, j〉 | (4a)

R(pos(rki )) ∩R(pos(rkj )) 6= ∅},
ECon(k1, k2) = {〈i, j〉| (4b)
R(pos(ri(t))) ∩R(pos(rj(t))) 6= ∅,∀t ∈ (k1∆T, k2∆T )}.

Finding shortest conflict-free paths for multiple agents in the
defined graph is known as a multi-agent path finding (MAPF)
problem. Solving MAPF optimally is NP-hard [17] and suffers
from a scalability problem. In this work, enhanced conflict-
based search (ECBS) [27] is leveraged as the multi-robot
discrete path planner. This algorithm can obtain a bounded
suboptimal solution efficiently and guarantee completeness.

ECBS works in two-levels. At the high-level, a binary
constraint tree (CT) is constructed to resolve the detected
conflicts. At the low-level, optimal paths for individual agents
are planned which are consistent with their own constraints.
In the beginning, the root node of the CT contains no con-
straints and the low-level search returns an initial solution.
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Fig. 3: Construction of the safe corridor. Blue squares show
an original discrete path, which cannot be directly used to
construct the safe corridor. The green box shows a failure case.
Red dots show a sampled path. By expanding each point of
this path in x and y axes, the safe corridor can be constructed
successfully, which is shown as red blocks.

The solution is checked for conflicts in chronological order
by (4). Suppose a vertex conflict 〈i, j, k〉 is found, then two
child nodes are generated to resolve this conflict. The first node
adds a constraint for agent i to avoid staying at rki at timestep
k. The second node adds a constraint for agent j to avoid
staying at rkj at timestep k. An edge conflict 〈i, j, k1, k2〉 can
be resolved in a similar way. Each time a CT node is created,
the low-level search for the agent with added constraint is
executed, which returns a new solution. ECBS performs a best-
first search on the CT where nodes are ordered by their costs.
The expansion of the CT continues until a solution without any
conflict is found. By implementing a focal search with conflict
heuristic in both high-level and low-level, ECBS solves the
MAPF problem efficiently.

Since the relative distance between robots will be checked
at each timestep in the trajectory optimization process, the
length of each robot’s discrete path should be the same. In
this case, we denote the length of the longest path as M . For
each agent i, we append its goal position gi at the end of its
path pi until the length of pi is M .

B. Safe Corridor Construction

The planned discrete path of each robot is denoted by p =
{rk}M0 , where each waypoint rk is in the free space F . The
kth line segment in the path is denoted by Ik = 〈rk−1 → rk〉.
We generate a convex polyhedron around each line segment
in the path to construct a valid safe corridor. The generated
convex polyhedron around the line segment Ik is denoted as
Sk. To ensure an agent in the polyhedron Sk does not collide
with any obstacle in the environment, the following condition
should be satisfied:

R(a) ∩ O = ∅, ∀a ∈ Sk. (5)

The collection of these convex polyhedra constitutes the safe
corridor, which is denoted by SC(p) = {Sk | k = 1, . . .M}.
Note that the safe corridor needs to be sequentially connected,
and hence satisfies the following condition:

Sk ∩ Sk+1 6= ∅, ∀k ∈ {1, · · · ,M − 1}. (6)

An axis-search method inspired from [15] is leveraged in
this work to build the safe corridor. The safe corridors are
expanded in both x and y axes until the maximum possible

Algorithm 1 Safe corridor construction

Require: discrete path p = {rk}H0
1: function SAFE CORRIDOR (p)
2: for k ← 1 to H do
3: if rk ∈ Sk−1 then
4: Sk ← Sk−1
5: else
6: Sk ← rk

7: D ← {+x,−x,+y,−y}
8: while D 6= ∅ do
9: for d in D do

10: S̃k ← expand Sk in the direction d
11: if Sk ⊆ F then
12: Sk ←S̃k
13: else
14: D ← D\d
15: return SC(p) = {Sk|k = 1, · · · , H}

free space has been covered. To ensure the continuity of the
safe corridors, Sk should be initialized to be the set containing
the consecutive waypoints rk−1 and rk. In our approach,
since the motion primitives are included in the discrete path
planning stage, the planned paths consist of horizontal, vertical
and diagonal line segments. However, the initial safe corridor
around a diagonal line segment may not be completely within
the free space. Fig. 3 shows an example.

To solve this problem, firstly we divide each line segment
in the path into h equal parts. The new sampled path now
consists of H = 1 + h(M − 1) waypoints. Then we initialize
Sk to be the point rk, and expand it in x and y axes until the
maximum possible free space is covered. The safe corridor
initialized in this way is completely within the free space. To
guarantee the continuity of the safe corridor, the minimum
safe regions around two consecutive waypoints need to be
overlapped, which means that the following condition should
be satisfied:

√
2D

h
< 2Ri, ∀i ∈ {1, · · · , N}, (7)

where Ri is the radius of the collision model of the robot i.
Additionally, if the point rk is found to be within the previous
safe region Sk−1, the safe corridor expansion process is not
needed and the convex polygon Sk should be exactly the same
as Sk−1. The whole safe corridor construction process of each
robot’s path is summarized in Alg. 1.

C. Trajectory Optimization Problem

The discrete paths are refined into smooth and feasible
trajectories in the trajectory optimization phase. For each
robot, we assign a time tk = k∆t to each waypoint in its
sampled path p = {rk}H0 so that the path becomes a reference
trajectory νr = {rk, tk}H0 . As mentioned before, each line
segment in the original path is divided into h equal parts, so
∆t = ∆T/h. Based on the reference trajectory νr and the
constructed safe corridor SC(p), we aim to obtain the optimal
trajectory ν = {zk, tk}H0 for each robot such that the group
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of robots can reach their goals and avoid any collision. The
nonlinear optimization problem is formulated as:

minimize
N∑
i=1

(

H−1∑
j=1

∆uji
T
P∆uji +

H∑
j=1

ẑji
T
Qẑji ) (8a)

s.t. z0i = si, z
H
i = gi ∀i (8b)

zj+1
i = f(zji , u

j
i ), ∀i, j (8c)

pos(zji ) ∈ Sji , ∀i, j (8d)

uji ∈ Ui, ∀i, j (8e)∥∥∥pos(zji1)− pos(zji2)
∥∥∥ ≥ Ri1 +Ri2 , ∀i1, i2, j, i2 6= i1

(8f)

where ∆uji = uji − uj−1i , ẑji = zji − rji , and P ∈ R2×2

and Q ∈ R3×3 are two positive definite weighting matrices.
The objective function consists of two parts. In the first
part, differences between two successive control inputs are
penalized for the smoothness of the trajectories. In the second
part, since the reference trajectory νr of each robot is already
a feasible solution, to keep the feasibility of the nonlinear
optimization problem (8), we penalize the deviation between
the optimal trajectory and the reference trajectory. The state
transition at each timestep is determined by (8c), where the
nonlinear model f is the discrete-time version of (2). The
position of each waypoint on the trajectory is limited by the
constructed safe corridor in the constraint (8d). The control
inputs of each robot is limited to physically admissible values
in (8e). Moreover, the safe distance between each pair of
robots is limited by (8f).

D. Prioritized Trajectory Optimization

Problem (8) is not efficiently solvable for large-scale robot
teams. Therefore, we propose an efficient prioritized trajectory
optimization method to solve the problem. The robots are
first divided into some groups with unique priorities. Then
the trajectory optimization subproblem is solved sequentially
from the highest-priority group to the lowest-priority group. In
each iteration, trajectories of the current group of robots are
optimized under the constraint that they must avoid collisions
with all the higher-priority robots. The trajectory optimization
process runs relatively fast using this decoupled framework.
However, if the priority is not carefully defined based on
the specific scenarios, prioritized optimization may lead to
infeasible subproblems for lower-priority robots due to lack
of consideration by higher-priority robots. To handle this
problem, a novel grouping and priority assignment strategy
is proposed to enable the algorithm to find a near-optimal
solution with a higher probability.

The main concern of the prioritized trajectory optimization
is the inter-robot constraint (8f). Since the optimal trajectories
are close to the reference ones according to the cost function
(8a), we can analyze the inter-robot constraints based on the
reference trajectory νr1 , . . . , ν

r
N . At each timestep t, we search

for a triple of robots (i1, i2, i3)t which satisfies:∥∥pos(rta)− pos(rtb)
∥∥ ≤ Dth, ∀a, b ∈ {i1, i2, i3}, b 6= a (9)

Algorithm 2 Grouping and priority assignment

Require: reference trajectories νr1 . . . ν
r
N

1: function PRIORITY ASSIGNMENT({νri }i=1...N )
2: for t← 1 to H do
3: (i1, i2, i3)t ← find triple satisfies (9)
4: Insert (i1, i2, i3) into L
5: while L 6= ∅ do
6: e← most common element in L
7: Append e to the group list G
8: for l in L do
9: for robot m in e do

10: if robot m in l then
11: Remove m from l
12: for n← 1 to N do
13: if n not in G then
14: Append n to G
15: return G

where Dth =
√

2D is a threshold. Each triple represents a
situation where three robots are close to each other at a specific
timestep. In the discrete path planning stage, only when four
robots are located at the four vertexes of a grid cell at the same
time, we can find a situation where four agents simultaneously
satisfy (9). Therefore, in this case, we only analyze inter-robot
collisions among three robots rather than four or more robots.

If the robots in a triple are assigned different priorities, the
higher priority robots will plan their trajectories first. Then
these trajectories are considered as hard constraint in the
optimization problem of the low priority robots. In this case,
the feasibility of the original problem may be lost. Therefore,
the three robots in a triple should form a group and be assigned
the same priority. The list of all triples satisfying (9) is denoted
by L.

If the number of robots in the workspace is large, L will
contain a great number of elements and thus a robot may be
included in different triples. In this case, the robots cannot
be grouped directly. Since each triple represents a situation
where three robots are close to each other, if one triple repeats
many times in L, that means the trajectories of these three
robots are highly coupled. A group of robots with higher
coupling effect should be assigned with a higher priority, so we
propose a priority assignment algorithm based on the number
of occurrences of each triple.

In the beginning, the most common element in L is selected
as the first-priority group. Since the robots in this new group
may be included in other triples in L, we remove all of them
from L and obtain a new list L′. As a result, each element of
L′ may contain three, two, or just one robot. Then we continue
to select the most common element in the new list L′ as the
second-priority group. The process is repeated until the list
is empty. Finally, we need to check the completeness of the
algorithm. If a robot does not have any significant coupling
with other robots, then it will not be included in the original
list L. In this case, the robot is regarded as a single-robot
group and assigned the lowest priority. Using the proposed
algorithm, all robots in a team can be grouped and assigned
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Fig. 4: An example of the prioritized trajectory optimization.
In each iteration, the current group of robots need to avoid all
higher-priority robots. The trajectories of the current group of
robots and the higher-priority robots are depicted as colored
lines and black lines, respectively.

priorities successfully and completely. The whole process is
summarized in Alg. 2.

As mentioned before, next we formulate and solve the
problem (8) for each group sequentially from high-priority
to low-priority. Fig. 4 shows an example of the overall
prioritized trajectory optimization process. Firstly, we group
the 8 robots using Alg. 2. The groups are listed from high-
priority to low-priority, i.e. [(2, 3, 5), (7, 8), (4, 6), (1)]. In each
iteration of the prioritized trajectory optimization, in addition
to the inter-robot constraints inside the current group, inter-
robot constraints between the current group of robots and the
optimized higher-priority robots should also be considered to
ensure no collisions. The optimized trajectories of each group
of robots are shown in Figs. 4a–4d.

IV. SIMULATIONS

A. Implementation Details

The proposed algorithms are implemented in C++ and exe-
cuted on a laptop running Ubuntu 16.04 with Intel i5-6300HQ
@2.30GHz CPU and 12GB of RAM. We use OctoMap [28]
to represent the occupancy map of the environment and an
interior-point nonlinear programming solver IPOPT [29] to
solve the trajectory optimization problem. Our code is released
as an open-source package1.

In the simulation, the radius of the collision model of each
robot is set to R = 0.15m and the velocities of each robot are
limited by vmax = 1m/s, ωmax = 1rad/s. We plan the discrete
paths in the grid graph with grid size D = 1m. In this case,
the time interval ∆T is set to 1.6s so that the condition (3) is

1https://github.com/LIJUNCHENG001/multi robot traj planner

TABLE I: Computation time

Number
of agents

Discrete path
planning (s)

Safe corridor
construction (s)

Trajectory
optimization (s)

Total
(s)

4 0.001 0.008 0.142 0.151
8 0.002 0.019 0.360 0.381
16 0.006 0.031 1.042 1.079
24 0.326 0.046 2.526 2.898
32 2.175 0.062 3.853 6.090

satisfied. Besides, in the safe corridor construction, each line
segment is divided into h = 5 equal segments.

B. Computational Efficiency and Solution Quality

Material handling in warehouses is the main target ap-
plication of our developed approach. Here, we construct a
warehouse environment to evaluate the performance of the
proposed approach. The environment has a size of 10m ×
12m and contains 6 shelves of size 3m × 0.6m. The start
and goal positions of each robot are randomly assigned at the
boundary of the environment or at the pick-up points near
the shelves. Based on the environment settings, we set the
suboptimal bound of ECBS as 1.5 to fulfill the requirement on
computation efficiency. Fig. 5 shows an example of 32 robots
navigating in the simulation environment. We conduct the
simulations for 40 times and calculate the average computation
time, which is shown in Table I. The scalability of our
approach is shown to be very good according to the results.
The proposed approach takes about 6.1s to complete the whole
trajectory planning process for 32 mobile robots.

In this paper, the method which directly solves the original
large-scale trajectory optimization problem (8) is referred to
as coupled trajectory optimization method. As shown in Fig.
6a, the proposed prioritized optimization method shows much
better computational efficiency compared to the coupled trajec-
tory optimization method. Specifically, if the number of agents
is 4 or less, the two methods achieve comparable performance.
As the number of agents becomes larger, the coupling effect
between the robots becomes stronger. Since the proposed
method decouples the large-scale optimization problem, the
computational efficiency is improved significantly. The cou-
pled optimization takes about 27.2s to solve the 32-agents case
while our method only takes about 3.9s. It can be observed that
the runtime of the proposed method increases almost linearly.
We mention that prioritized optimization uses a decoupled
framework, so it typically leads to inferior solutions compared
to the coupled optimization. As shown in Fig. 6b, the total
cost of the proposed method is on average 3.7% higher than
that of the coupled optimization, which is relatively small and
acceptable in practice.

C. Success Rate

To avoid infeasible subproblems generated in the prioritized
trajectory optimization, a novel grouping and priority assign-
ment strategy is also developed in this paper. Fig. 7 shows the
success rate of the prioritized optimization using two different
grouping strategies. Both methods can achieve 100% success
rate when the number of agents is small. As expected, as the

https://github.com/LIJUNCHENG001/multi_robot_traj_planner
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(a) t = 5s (b) t = 10s (c) t = 15s (d) t = 20s

Fig. 5: Trajectories of 32 agents in a warehouse environment.
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Fig. 6: Comparison of the proposed approach and the coupled
trajectory optimization.
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Fig. 7: Success rate of the trajectory planning using different
grouping strategies.

number of agents increases from 8 to 32, the success rate of
the method using randomized grouping decreases from 100%
to 60%. However, because we assign priorities to the robots
based on the specific scenario, the proposed method achieves
higher success rates for all cases in the test environment. In
the 32-agent case, the success rate of the proposed method is
on average 90%.

V. EXPERIMENT

We conduct a real multi-robot navigation experiment with
3 Pioneer 3-AT robots in a 7m × 8m indoor testing area,
which is shown in Fig. 8. One robot is equipped with a
Velodyne VLP-16 3D lidar, and each of the other two robots
is equipped with a Hokuyo 2D lidar which has a maximum

Fig. 8: Three robots navigating in the real environment.
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Fig. 9: Experiment results. Fig. 9a shows the 3D map of the
environment and the planned trajectory. Fig. 9b shows the
trajectory tracking results, where dash and solid lines represent
the planned and real trajectories, respectively.

range of 30m. At the beginning, the map of the test environ-
ment is constructed using a 3D lidar odometry and mapping
method, LeGO-LOAM [30]. We construct the 3D map because
obstacles of different heights need to be considered in the
trajectory planning algorithm to guarantee safety. The radius
of the collision model of each robot is set to R = 0.3m and
the velocities of each robot are limited by vmax = 0.6m/s,
ωmax = 0.6rad/s. Besides, the time interval ∆T is set to
2.65s in the experiment and all the other parameters remain
the same as described in Sec IV-A. The planned trajectories
in the experiment are shown in Fig. 9a. We upload the
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trajectories to the three robots and use a MPC-based trajectory
tracking control method [31] to execute the trajectories. The
localization of the robots is obtained through AMCL ROS
package. As shown in Fig. 9b, the team of robots can track
their reference trajectories accurately and complete the task
without any collision. The experimental video is available at
https://youtu.be/GRl3LM8xBUQ.

VI. CONCLUSION

In this paper, we presented an efficient trajectory planning
algorithm for multiple non-holonomic robots navigation in
obstacle-rich environments. The trajectory planning problem
is decoupled as a front-end path searching and a back-end
nonlinear trajectory optimization. We adopt a multi-agent path
searching method to find collision-free time-optimal initial
paths, which are further refined into smooth and dynami-
cally feasible trajectories. A prioritized trajectory optimization
method is proposed to improve the scalability of the back-
end algorithm. We split the team of robots using a novel
grouping and priority assignment strategy, and then solve
the optimization problem sequentially. The effectiveness and
superiority of the proposed method are validated in both
simulations and real-world experiments.

In future work, we plan to integrate our work with dis-
tributed multi-agent navigation methods, so that the trajectory
of each robot can be replanned online to handle unknown
dynamic obstacles in the environment.
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