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Noticing Motion Patterns: A Temporal CNN with a
Novel Convolution Operator for Human Trajectory

Prediction
Dapeng Zhao 1 and Jean Oh1

Abstract—As more and more robots are envisioned to coop-
erate with humans sharing the same space, it is desired for
robots to be able to predict others’ trajectories to navigate in
a safe and self-explanatory way. In this paper, we propose a
Convolutional Neural Network-based approach to learn, detect,
and extract patterns in sequential trajectory data, known here
as Social Pattern Extraction Convolution (Social-PEC). A set
of experiments carried out on the human trajectory prediction
problem shows that our model performs comparably to the state
of the art and outperforms in some cases. More importantly,
the proposed approach unveils the obscurity in the previous use
of a pooling layer, presenting a way to intuitively explain the
decision-making process.

Index Terms—Intention Recognition, Social HRI, Deep Learn-
ing Methods, Motion and path planning

I. INTRODUCTION

WHETHER an agent is co-working with other agents or
is navigating in a crowd, it is critical for the agent

to be able to understand and predict the motions of other
agents in the same environment to ensure safe interaction and
efficient performance. In this work, we particularly focus on
the problem of pedestrian trajectory prediction in crowded
environments. Predicting pedestrian behavior is challenging
because pedestrians’ future trajectories can be affected not
only by the physical properties that we have well-established
models to explain, such as energy or momentum, but also by
the pedestrians’ hidden objectives and subtle social norms in
crowd interactions.

The majority of existing work in pedestrian trajectory pre-
diction generally follows the encoder-decoder model where
the past trajectories are summarized to capture the context of
the crowd movements. In this paper, we propose an approach,
known here as Social Pattern Extraction Convolution (Social-
PEC), where trajectories are eventually represented as a com-
bination of motion patterns. Whereas existing approaches take
the raw trajectories to encode the social context, the proposed
idea on motion patterns is to generalize the observed trajectory
as illustrated in Fig. 1. We design our model to understand and
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(a) (b) (c) (d)

Fig. 1. Four sample scenarios of pedestrian interaction. The green triangles
and the light green triangle represent the target pedestrian’s history trajectories
and expected one-step future location; triangles in other colors, the history
trajectories of other pedestrians; and the sharp tips, the trajectory directions. In
(a), no motion patterns from others are present; therefore, the target is expected
to proceed linearly. In (b), the motion pattern of “somebody approaching me
from my front left” is present, which impacts our target to walk to the right
in order to avoid a possible collision. In (c) and (d), another motion pattern
of “somebody on my right is about to pass by me” is present; therefore, our
target pedestrian walks towards left.

learn the various motion patterns of pedestrians in crowds,
force the model to “notice” them during training and predict
upon them. We build our sequence encoder using the idea
of Temporal Convolutional Neural Networks (CNN) [1] and
propose a new convolution operator (defined in III-B) that
enables our model to actually detect, learn, and extract motion
patterns from the observed trajectories. Using a different
convolution operator is not a new idea: in [2], the conventional
correlation-based convolution operator has been modified to
successfully achieve satisfying performance on the MNIST
dataset, showcasing the applicability of the generalization of
convolution operation in CNNs.

Our model, Social-PEC, achieves comparable results with
the state-of-the-art methods on public datasets in terms of
standard evaluation metrics based on the displacement errors.
Additionally, the use of motion patterns unveils the obscurity
in social pooling, and makes the decision making process more
transparent, intuitive, and explainable.

II. RELATED WORK

Several technical approaches have been used to tackle the
pedestrian trajectory prediction problem. In early works, algo-
rithm designers tried to assert domain knowledge about social
interactions in crowds to algorithms explicitly, e.g., Social
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Force [3] and Interactive Gaussian Process (IGP) [4], [5].
However, some researchers later suggested that hand-crafting
models and rules have various limitations. These findings have
led to those approaches that would allow the machines to
learn directly from data [6], [7], [8], resulting in significantly
improved performances in general. We will mainly discuss the
latter data-driven type of techniques in this section.

For modeling sequential data, Recurrent Neural Network
(RNN) and its variations such as Long Short-Term Memory
network (LSTM) have been the popular choice, e.g., Social-
LSTM [7]; however, the benefit or necessity of using RNNs
for pedestrian trajectory prediction is debatable. RNNs tend
to gradually forget information from the past, hence the
idea of LSTM was proposed as a remedy to selectively for-
get/remember. An LSTM is a reasonable choice in many prob-
lem domains where the sequences can be arbitrarily and exten-
sively long, e.g., in the text-related tasks, a sequence could be
a lengthy article where important contextual information can
appear anywhere in the text. By contrast, in the pedestrian
trajectory prediction problem, except for some rare extreme
cases, the models do not need excessively long sequences as
their inputs, as it is generally enough to observe how people
have moved in the last 5 seconds, i.e., the observations from
far too past are no longer meaningful to the current interaction,
if not misleading at times. Moreover, RNNs/LSTMs have
other drawbacks [9] including vanishing/exploding gradients,
unstable and expensive training, and inefficient parameters.
Remarkable efforts were also made by Bai et al. [9] and Becker
et al. [10] to empirically evaluate RNNs for sequential data
learning.

After each sequence is modeled and encoded, information
needs to be aggregated together, for which a pooling layer
has been a popular choice. A pooling layer is widely used in
CNNs for the image processing tasks, typically after spatial
convolutional layers [11]. In these CNNs, the vectors being
pooled are quite literally the correlation between the kernels
and the signals, and a pooling operation is to extract the
strongest signal in a local region. However, the hidden space
of RNNs/LSTMs is not well understood, and it is difficult,
if not impossible, to understand its semantic meanings in a
physical space. That said, it is yet to be justified to use a
pooling layer after RNN/LSTM’s modelling sequences for
information aggregation. On this note, Mohamed et al. [12]
reached a consensus with us.

Another popular design choice is to use the graph represen-
tation. The combination of a graph with RNNs/LSTMs [13],
[14], and the combination of a graph with CNNs (Graph
CNN) [12] have both been proposed. In these approaches,
however, the size of a graph is generally dependent on the
number of pedestrians in the scene, so it can face the scalabil-
ity challenges as the number of pedestrians grows significantly
in crowded scenes.

An extensive and comprehensive survey article for human
motion prediction is done by Rudenko et al. [15], where
interested readers can find additional relevant works.

In contrast to the existing approaches, the proposed Social
Pattern Extraction Convolution (Social-PEC) model avoids
the issues pointed out above in this section. Firstly, it takes

a fixed length of history trajectory as inputs and does not
rely on RNNs to encode trajectory, thus avoids the RNN
training issue. Secondly, the trajectory encoder is based on
“motion patterns” that are intuitively reasonable and can be
easily visualized, thus avoids the obscurity during “social
pooling” which is to aggregate the encoded embedding of the
neighboring pedestrians’ trajectories.

III. TRAJECTORY PREDICTION WITH PEC

Our approach builds on an assumption that, when navigating
in a crowd, humans react to an abstract representation of a
scene, e.g., at the level of motion patterns that they have seen
frequently in their past experiences. For instance, whether they
are 2 or 3 people, whether they walk slightly faster or slower,
whether they are a few centimeters to the left or right, as long
as they approach from the same general direction at roughly
the same distance with similar speeds, we probably will react
very similarly as shown in Fig.1. Although trajectory data are
mostly stored as sequences of location coordinates, humans
do not react to precise location coordinates; instead, we react
to general motion patterns.

In this paper, we define a “pattern” to be a segment of data.
Specifically, a “motion pattern” refers to a short segment of
trajectory that can be frequently seen in real trajectory data.
A motion pattern is represented as a sequence of location
coordinates, similar to a short trajectory representation.

Logistically, our strategy is to only predict one-step future
locations, and use the predicted locations as if they are the
new observations to further predict. When predicting a one-
step future, we predict for each pedestrian at a time. The
pedestrian we predict for is referred to as a “target pedestrian”,
while all others are “context pedestrians”, and all trajectories
are transformed from the world coordinates to the target
pedestrian’s egocentric coordinates where the target pedestrian
is at the origin, facing the positive direction of x-axis.

In this section, we first clarify problem setup and notation;
then introduce our model’s key component, Pattern Extraction
Convolution (PEC); next, we introduce the actual trajectory
predictor; finally, we explain training and inference.

A. Representation and Notation

Suppose that there are M pedestrians in a scene. Given all
of their observed history trajectories in the world coordinates,
the goal is to predict the future trajectories of all pedestrians.

A trajectory is a series of states timestamped at a constant
interval. State s is defined as a 2-dimensional location coordi-
nates, s.t., s = (x,y). We note that the definition of a state
can be extended to include additional information such as
orientation or personality in the future.

In this paper, we use a finite length Tf of timesteps. The
start and end time for history observations are 1 and Th, and
that of future prediction are Th +1 and Tf .

For pedestrian m ∈ {1, ...,M}, the trajectory of m observed
from timestep 1 to timestep Th, denoted by φ m

1:Th
, is composed

of a sequence of (x,y) coordinates as follows:

φ
m
1:Th

= {sm
t |t ∈ {1, ..,Th}} (1)
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where sm
t = (xm

t ,y
m
t ) is pedestrian m’s state at time t.

Let Φ denote the set of trajectories, s.t., Φ[m] = φ m,∀m ∈
{1, ...,M}; the dimension of Φ is thus (M,Tf ,2).

B. Pattern Extraction Convolution (PEC)
Pattern Extraction Convolution (PEC) is a mechanism that,

in an intuitive sense, detects and recognizes patterns from data,
while effectively projects trajectories from the x-y coordinate
space to a new space that is defined in terms of similarities
between patterns and the trajectory.

Let P denote the set of motion patterns, and let there be N
patterns in total. The j-th motion pattern, ∀ j ∈ {1, ...,N}, is
defined as the following:

P[ j] = {s j
t |t ∈ {1, ..,L}} (2)

where L is the pattern length, s j
t = (x j

t ,y
j
t ) is the state. The

dimension of P is thus (N,L,2).
We define PEC as an encoder that translates raw trajectory

φ to abstract trajectory ψ in terms of motion patterns P as
follows:

ψ = PEC(φ ;P) (3)

At each timestep t, for each motion pattern j, the PEC
operation is defined as:

ψ[t, j] = PEC(φ ;P)[t, j] (4)

= λλλ [ j] · log(
L

∑
k

∥∥∥φ [t−L+ k, :]−P[ j,k, :]
∥∥∥

2
)+b[ j]

where λλλ is a scaling coefficient, and b, biases. The dimension
of the resulting encoded trajectory ψ is (Th−L+1,N) where
each entry of φ [t, j] indicates the similarity between the
corresponding segment of the trajectory and pattern P[ j]. This
operation is further demonstrated in Fig.2.

Because the output ψ of the PEC operation will later interact
with an activation function such as tanh, it is necessary to
bring in the log function and the extra scaling coefficients
λλλ . Specifically, the log function helps re-range the values
of the L2-distances from [0,+∞) back to (−∞,+∞). Scaling
coefficients λλλ helps scale the output properly to better interact
with the non-linearity of the activation function. These two
practices were not necessary for the conventional convolution
operator because the dot-product operation naturally ranges
(−∞,+∞) where the magnitude of a kernel matrix adds
already an extra degree of freedom to help scale the response.

It is worth noting that the PEC operator defined in (4) is
different from the conventional convolution (CONV) opera-
tor [2], [16] which is commonly used in CNNs for image-
related tasks. The main differences are (1) PEC is based on
the L2-difference to measure the physical distance whereas
CONV is based on dot-product; (2) the conventional operator
ignores the physical meaning of the channels and simply sums
up the outputs from different channels. The necessity for using
the PEC operator for trajectory encoding is further illustrated
in Fig.3.

The set of motion pattern, P. is learned from data, trained
using the prediction loss through back propagation. More
implementation details and illustration are presented in Sec-
tions IV-B and IV-E.

(a) (b)

(c)

Fig. 2. An example showing how raw trajectories can be projected to the
motion pattern space. Red triangles represent the input trajectory. The full
trajectory φ is shown in (c) which is of shape (3,2), for T = 3. Yellow
arrows represent the set of motion patterns of shape (4,2,2), for the number
of patterns N = 4, the length of pattern L = 2, and s = (x,y) is 2-dimensional.
In (a), the similarities between the first segment of the trajectory and each
motion pattern are found and marked next to the arrow; in (b), the second
segment, similarly. The full operation on the trajectory level is shown in (c),
where the resulting matrix is ψ in the shape of (2,4) for Th−L+1 = 2 and
N = 4. The columns of this matrix φ are similarity scores from (a) and (b),
respectively.

Fig. 3. An example showing the incompetency of the conventional convo-
lutional operator for trajectories. Suppose red trajectory φ is {(10,1),(20,1)},
and two patterns p0 and p1 are {(10,0),(20,0)} and {(50,0),(60,0)}. Ideally,
the magnitude of the convolution response (or output) is determined by the
similarity only, i.e., the larger the more similar, but if CONV is used the
magnitude of response would also be influenced by the magnitude of the
input signals or kernels. In the example, the similarity between φ and p0
should be larger than p1, but CONV(φ ,p0) = 500 < 1700 = CONV(φ ,p1).

C. Human Trajectory Predictor

Our strategy is to predict one-step future locations first, and
then use the predicted locations as if they are new observations
to further predict. At each timestep, every pedestrian is treated
as target pedestrian by turns.

For each target pedestrian m ∈ {1, ...,M}, the location
coordinates of all trajectories are first transformed from the
world coordinates to the new coordinates where pedestrian m
is at the origin, oriented towards the positive direction of the
x-axis, as in the Convert function in Algorithm 1. Next,
Location Predictor takes all of these trajectories as inputs,
and outputs m’s next location, which is modeled as bivariate
Gaussian distribution [7]. Finally, this location is converted
back to the world coordinates and appended to Φ for location
prediction for the next timestep.

Given target pedestrian m, let −m denote the rest of the
pedestrians except m, referred to as Context. First, Φ′[m] and
Φ′[−m] are encoded respectively by two different encoder
networks. The reason for having two different networks is that
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Algorithm 1: Trajectory Predictor

1 Φ←{φ m|m ∈ [1 : M]}
2 Function TrajPredictor(Φ):
3 for t = Th +1, ..,Tf do
4 for m = 1, ..,M do
5 Φ′← Convert(Φ[:, t−Th : t],m)
6 µ ′,Σ′← LocPredictor(Φ′[m],Φ′[−m])
7 s′ ∼N (µ ′,Σ′)
8 sm← ConvertBack(s′)
9 Φ[m, t]← sm

10 return Φ[:,Th +1 : Tf ]

Fig. 4. Location Predictor that predicts one-step location for pedestrian m. Φ′

is the set of trajectories already transformed to target pedestrian’s coordinates.
ω is the trajectory embedding, explained in Equation (5).

motion pattern set and context trajectories are expected to be
different for Context and Target. Trajectory Encoder works on
one trajectory at a time. The Target trajectory embedding ω

can be written as follows:

ω = CNN(σ(ψ))

= CNN(σ(PEC(φ ;P))) (5)

where φ is the raw trajectory in location coordinates space; ψ ,
the trajectory encoded by PEC; and σ , the activation function.
By applying CNN to the encoded trajectory ψ , combinations
of basic motion patterns are further extracted by the CNN on
higher levels as more sophisticated patterns.

Now that the model is ready to predict future trajectory for
target pedestrian, observations of all other pedestrians should
be aggregated to provide the social context. Context Pooling
layer is applied to compute context trajectory ω̄ as follows:

ω̄[t,k] = max
m∈−m

(ωm[t,k]) (6)

where ω̄ has the same shape as the target’s encoded trajectory
ωm, t and k are time and pattern indices.

To make predictions, both encoded target trajectory ωm and
social context ω̄ are fed into Multilayer Perceptron (MLP) in
the end:

x,y,a,b,c = MLP(ωm, ω̄). (7)

The µ ′ and Σ′ of location’s Gaussian distribution are then
constructed from the raw MLP outputs:

µ ′ = [x,y]

σ ′xx,σ
′
yy = exp(a),exp(b)

σ ′xy = σ ′xx ∗σ ′yy ∗ tanh(c)

Σ′ =

[
σ ′xx σ ′xy
σ ′xy σ ′yy

] (8)

where superscript ′ indicates that variable is in the target-
centered coordinates instead of the world coordinates. Con-
struction in (8) is necessary because the value range of raw
MLP outputs, [−∞,∞], does not satisfy the constraints of the
covariance matrix.

D. Training and Inferencing

During training, the future prediction length is set to be 1,
s.t., Tf = Th+1, because all parameters that need to be trained
are all within Location Predictor.

Parameters are learned by minimizing the following nega-
tive log-likelihood loss:

L =−
M

∑
m=1

log(P(Φ′[m,Th +1]
∣∣µ
′m,Σ′m)) (9)

During inferencing, the future prediction can have an arbi-
trary length, and the prediction output is Φ[:,Th + 1 : Tf ] as
stated in Algorithm 1.

IV. EVALUATION AND DISCUSSION

A. Datasets and Metrics

Our model is evaluated on two datasets: [18] and [19]. They
contain 5 crowd sets in different scenes with a total number
of 1,536 pedestrians exhibiting complex interactions such as
walking together, groups crossing each other, joint collision
avoidance and nonlinear trajectories.

As for metrics, like [7], [8], [17], [14], [12], we use
Average/Final Displacement Error (ADE/FDE) [12], which
have been conventionally used for this problem.

In order to make full use of the data for evaluation and also
to evaluate how well models generalize to unseen datasets, we
use the leave-one-out approach where a model is trained and
validated on 4 datasets and tested on the remaining set. To
ensure a fair comparison, we use identical dataset step and
train/validation/test split which are also used in S-SLSTM[7],
S-GAN[8] and S-STGCNN[12].

The data used in our work are annotated every 0.4 seconds.
Observation length is set to be 8 timesteps (3.2 sec) and future
prediction length is set to be 12 timesteps (4.8 sec).

B. Implementation Details

As shown in Fig.4, our model mainly contains 3 modules,
Context Trajectory Encoder, Target Trajectory Encoder, and
Location Extrapolator.

Context Trajectory Encoder consists of a Pattern Extrac-
tion Convolution (PEC) layer and a conventional convolution
(CONV) layer, each followed by activation function tanh, with
a max pooling layer in between. For the PEC and CONV, the
number of kernels are 100 and 160, the kernel lengths are 2
and 2; the pooling stride is 2. If the number of input channels is
2 (x-y coordinates) and the data temporal length is 8 (length of
observations), s.t. an input is in the shape of (2,8), the resulting
output’s shape will be (160,3).

Target Trajectory Encoder is very similar to Context Tra-
jectory Encoder, except that the number of kernels are only
50 and 80, because there are much less varieties among target



ZHAO and OH: NOTICING MOTION PATTERNS 5

TABLE I
ADE/FDE IN METERS FOR DIFFERENT METHODS, THE LOWER THE BETTER. LINEAR EXTRAPOLATION IS INCLUDED AS BASELINE AND ITS OUTPUT IS

DETERMINISTIC, WHEREAS ALL OTHER MODELS PREDICT 20 TRAJECTORIES AT ONCE, AND ONLY THE BEST ONE IS COUNTED FOR EVALUATION.

Model ETH Hotel Univ. Zara1 Zara2 Ave.
Linear 1.33 / 2.94 0.39 / 0.72 0.82 / 1.59 0.62 / 1.21 0.77 / 1.48 0.79 / 1.59

S-LSTM[7] 1.09 / 2.35 0.79 / 1.76 0.67 / 1.40 0.47 / 1.00 0.56 / 1.17 0.72 / 1.54
SGAN(20VP20)[8] 0.87 / 1.62 0.67 / 1.37 0.76 / 1.52 0.35 / 0.68 0.42 / 0.84 0.61 / 1.21

STSGN[17] 0.75 / 1.63 0.63 / 1.01 0.48 / 1.08 0.30 / 0.65 0.26 / 0.57 0.48 / 0.99
S-BiGAT[14] 0.69 / 1.29 0.49 / 1.01 0.55 / 1.32 0.30 / 0.62 0.36 / 0.75 0.48 / 1.00

S-STGCNN[12] 0.64 / 1.11 0.49 / 0.85 0.44 / 0.79 0.34 / 0.53 0.30 / 0.48 0.44 / 0.75
Social-PEC 0.61 / 1.11 0.31 / 0.52 0.47 / 0.82 0.43 / 0.77 0.35 / 0.60 0.43 / 0.76

trajectories because the irrelevant variance have been removed
by transforming the coordinate system with respect to target
trajectory in Convert of Algorithm 1.

Location Extrapolator are 4 fully-connected layers, followed
by leaky Re-LU activation. The width of the layers are 300,
120, 80, and 5.

For training, the batch size is 64, and it trains for 150 epochs
using the Adam Optimizer [20] with the learning rate set as
0.001. The model is trained on GeForce RTX 2080 Ti.

C. Quantitative Results

As shown in Table 1, our model outperforms almost all
models and performs comparably well with the current state-
of-the-art, Social-STGCNN [12]. Other works are mostly
RNN-based, while ours and Social-STGCNN are CNN-based.
Our results suggest that CNNs might be a better option for
modeling some types of sequences, e.g., pedestrian trajec-
tories; more in-depth discussions related to the comparison
between CNN and RNN can also be found in [10] and [9].

D. Qualitative Analysis

Some sample results are shown in Fig.5. Typically, linear
trajectories are trivial to predict; however, our results seem to
support that the proposed model also performs well for some
non-linear trajectories, especially in more crowded scenes,
e.g., red in (a), purple and orange in (b), and brown in (f).
The success here might indicate that the proposed model is
able to make use of social context effectively to make more
accurate and more reasonable predictions.

Some of the predictions deviate from the true future trajec-
tories significantly, e.g., brown in (a), red in (e), and pink
in (f). These predictions, however, still appear reasonable,
that is, based on the observed trajectories, the prediction
may appear arguably more reasonable than the true future.
Such “mispredictions” are inevitable to some extent as some
of the observed history trajectories might not carry enough
information to allow anyone to accurately predict their future.

Sometimes, the proposed is able to recognize the groups in
crowd and predict accordingly, although we did not explicitly
design the model to incorporate social group awareness [21].
In (f), the history observations of orange and blue are highly
similar, thus their future trajectories are predicted to be very
similar too, even the way how they deviate from ground
truth are also similar. Comparatively, also in (f), the history

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Some samples of our model’s prediction. Our model predicts 20
possible future trajectories for each pedestrian, of which the one with the
smallest ADE is highlighted. This figure is best viewed in color.

observations of red and green did not demonstrate enough
similarity, thus in the model’s prediction they do not walk
together any more.

In some cases, the model successfully shows appropriate
precaution for collision avoidance. In (e), the interaction
between red and green is notable. Red took a different path
that is farther away from green and both were predicted to
move slower than ground truth, a plausible explanation is that
the proposed model was trying to avoid the two pedestrians
colliding with each other. In the same scene, the orange is
predicted to move faster than ground truth, because its front
space appears to be clear enough to allow faster speed.

E. Motion Pattern Illustration

The weights for the PEC layer in Trajectory Encoder are
motion patterns. Fig.6 presents two sets of patterns trained
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(a) (b)

(c) (d)

Fig. 6. Two sets of initialization and learned motion patterns for Context
Trajectory Encoder. (a) and (b) are initialization, while (c) and (d) are their
corresponding learned patterns after training. The number of patterns is 100;
length of patterns is 2. The coordinates are with respect to the target pedestrian
marked by a blue triangle at (0,0).

from two very different initialization, which demonstrates that
the training is robust enough to allow different initialization
to converge to similar patterns. It is noted that the learned
patterns are not identical though similar; however, no signif-
icant performance difference has been observed in terms of
ADE/FDE.

Fig.7 illustrates the core idea of “Noticing Motion Patterns”
with an example scenario, where observed history trajectory
data are matched to learned motion patterns at each timestep.
This is done by the first layers of Trajectory Encoders, Pattern
Extraction Convolution (PEC) layers.

Under the scheme of “motion pattern”, social pooling finally
is no longer obscure. We are not pooling in any unknown
latent space, but pooling in well-understood pattern space. The
physical meaning of each entry in tensor ω is the similarity
indicating how much of that particular motion pattern is
present in the current scene. The larger the entry value is, the
more similar the raw trajectory is to the motion pattern. Thus,
stronger motion patterns should have a bigger impact on the
target pedestrian’s decision making. By only considering the
prominent presence for each motion pattern, the model can
already be well-informed about its social context, of which
Fig.1(c)(d) are good examples.

V. CONCLUSION

In this paper, we propose a CNN-based model for human
pedestrian trajectory prediction with the idea of motion pat-
terns. The main contributions of this work include:
• we present Pattern Extraction Convolution (PEC) as an

intuitive and explainable mechanism to learn, detect,

and extract patterns from data, which is used to encode
trajectories in this work;

• we further apply PEC to human trajectory prediction
problem as the model of Social-PEC, and achieve com-
parable performance with the current state-of-the-art;

• the use of PEC avoids the obscurity in information ag-
gregation (pooling layer) that was present in the previous
work; and

• this study further challenges the community to re-examine
the use of RNN in sequential data learning tasks.

In the future, for the problem of human motion prediction,
we will try to incorporate physical environmental constraints
into our model. Since the proposed idea on the PEC encoder is
more general than the scope of trajectory prediction, we plan
to apply PEC to other problem domains and further explore
its potential.
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