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Abstract—Physicians use pain expressions shown in a patient’s
face to regulate their palpation methods during physical exam-
ination. Training to interpret patients’ facial expressions with
different genders and ethnicities still remains a challenge, taking
novices a long time to learn through experience. This paper
presents MorphFace: a controllable 3D physical-virtual hybrid
face to represent pain expressions of patients from different
ethnicity-gender backgrounds. It is also an intermediate step
to expose trainee physicians to the gender and ethnic diversity
of patients. We extracted four principal components from the
Chicago Face Database to design a four degrees of freedom
(DoF) physical face controlled via tendons to span ∼ 85% of
facial variations among gender and ethnicity. Details such as skin
colour, skin texture, and facial expressions are synthesized by a
virtual model and projected onto the 3D physical face via a front-
mounted LED projector to obtain a hybrid controllable patient
face simulator. A user study revealed that certain differences in
ethnicity between the observer and the MorphFace lead to differ-
ent perceived pain intensity for the same pain level rendered by
the MorphFace. This highlights the value of having MorphFace as
a controllable hybrid simulator to quantify perceptual differences
during physician training.

Index Terms—Modeling and Simulating Humans,Medical
Robots and Systems, Gesture, Posture and Facial Expressions,

I. INTRODUCTION

ENCODING and decoding facial expressions is a complex
process of communicating non-verbal messages, often

associated with emotional states. Being able to receive and
interpret facial expressions accurately is an important ability
in communicating between one another [1], especially in
the medical field as patients provide emotional cues during
consultations, which may be verbal or non-verbal [2]. Studies
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have shown that one’s ability to interpret facial expressions
is conditioned by cultural differences [3], especially when
using avatars [4], [5]. Other demographic features such as
age [6], [7] and gender [8] also underpin the perception of
facial expressions. Therefore, it is desirable to expose medical
students to patients of various demographic features in order
to minimise the perceptual subjectivity of facial expressions.

Traditional clinical medical education is less effective than
the relatively new simulation-based education (SBE) ap-
proaches in achieving specific clinical skill acquisition goals
[9]. SBE allows students to learn in a safe and effective
environment, and helps them confront and learn from mistakes
and errors [10], [11]. Recent advancements of robotic patients
have shown promising new trends in SBE systems. Some of
the commercial robotic patient manikins such as SimMan 3G
[12] and Paediatric HAL [13] can respond to physical inputs
with movement, verbal, and haptic feedback. The Paediatric
HAL and dentistry training robots such as SIMROID [14]
are also able to render facial expressions such as pain and
discomfort, which further improves the realism of the training
experience.

Many robotic systems in domains such as social robots and
human-robot interaction (HRI) are also able to render human
facial expressions to a high degree of accuracy, such as Erica
[15] and Sophia [16]. These robots use a large number of ac-
tuators to facilitate the mechanical movements to simulate the
expressions. However, it is challenging for a purely physical
system to simulate faces of different demographics. In contrast,
virtual human face simulation systems frequently used in
computer graphics (CG) such as FACSHuman [17] can render
high-fidelity human avatars of different demographics, but
cannot respond to physical inputs. The benefits and limitations
of using these two approaches were evaluated in greater detail
in our recent review in facial expression rendering in medical
training simulators [18].

Physical-virtual (hybrid) systems are able to respond to
physical inputs and accurately render virtual human avatars,
blending advantageous features from both physical and virtual
systems. Many of the current approaches use a fixed physical
shell and have the virtual human projected either from the
front [19], or from the rear [20], [21] onto the shell. Projection
mapping of virtual human avatars of different demographic
features onto a fixed shell can result in mismatches in the
projection caused by the variability in the human face anthro-
pometry. This issue is particularly noticeable in medical train-
ing systems, where the rendered face of the patient serves as
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a major feedback modality, and the distance between the user
and the rendered face is relatively short. The solution to this
problem would be to have a system where the physical face
can morph to match the projected virtual face to accommodate
different facial dimensions.

Fig. 1. (a) The student receives real-time facial expressions from the
RoboPatient platform when they palpate the sensorised abdominal region. (a)
MorphFace consists of a tendon-driven morphable physical face and a virtual
face projected onto the physical face using a LED projector.

This paper proposes a first-ever novel hybrid morphable face
capable of synthesising faces of different gender and ethnicity.
Our proposed system uses a physical morphable robotic face
with a virtual projection system. Vertical positions of three
main facial features (eyes, nose and mouth), and the face
length can be changed in the physical face. These feature
changes are synchronised with the front projection of the
virtual faces which adds colour, texture and more facial details
to the rendered output. This development work focused on
the facial expressions in response to physical examination as
shown in Fig. 1 a, we have not at this stage included physical
signs that may be clues to their intrabdominal pathology, or
coordinate breathing with examination. An overview of the
proposed system is shown in Fig. 1 b. More specifically, our
contribution to this paper are three-fold:

1) We propose a novel data-driven approach for designing
a morphable robotic face.

2) We develop and test a hybrid morphable face which can
replicate the faces of three ethnic groups (White, Black
and Asian) and two genders (Male and Female).

3) We show how human participants perceive the same
pain level projected on the different ethnicity-gender
backgrounds of morphface.

The rest of the paper is organized as follows: section II
presents related work. Section III discusses the design and
development of the physical face and system for rendering the
virtual faces. Experiments and results are presented in section
IV. Finally in section V, important conclusions are made, while
suggesting possible future directions.

II. RELATED WORK

One of the popular methods in implementing hybrid face
rendering systems is front or rear projection. Furhat [20] is a
social robot which is capable of interacting with humans via
its face. It consists of a human head-like physical structure
and face-like shell. Virtual human faces of different gender
and ethnicity are projected onto a semitransparent shell using
a rear-mounted projector. The physical face mask can be
customised and replaced for synthesising faces of different
sizes and shapes. Mask-bot [22] uses similar approaches to
synthesize the faces with fixed face-like shells. Daher et al.
[23] used an interchangeable translucent plastic shell as the
physical structure of the patient body and face, and a virtual
patient was rear-projected onto the shell using two LED
Pico projectors to provide imagery for the patient’s head and
body. Bermano et al. [19] proposed an augmented physical
avatar using front-projector-based illumination. To make their
model synthesize more expressions, they introduced a system
that decomposed the motion into low-frequency motions that
were physically reproduced by a physical robotic head which
consists of 13 actuators, and high-frequency details that were
added using projected shading. While above-mentioned studies
used either fixed or interchangeable faces like shells or physi-
cal robotic heads, none of them have considered or attempted
to accurately represent the variations of facial features due to
gender and ethnic diversity.

Hayashi et al. [24] proposed a dynamically modifiable soft
mask face which was able to modify a life-size face mask to
different subjects and different facial expressions. This design
was fully mechanical, relatively large in size and used a large
number of actuators and motors. Using a different approach, R.
Schubert [25] proposed an adaptive filtering-based method for
removing artifacts and mismatch between the projected face
and the face-like shell in physical-virtual designs. However,
their adaptive filtering provided a tuneable trade-off, sacri-
ficing some visual detail to avoid distracting artifacts that
may provide unwanted shape cues for the underlying physical
display surface. Inspired by these two studies, MorphFace uses
a data-driven approach to select the most significant features to
be rendered mechanically, while simulating the less significant
details virtually using front projection. This approach reduces
the mechanical complexity while rendering the face to a good
level of accuracy and realism.

III. METHODS

MorphFace is consisted of a motor-actuated physical robotic
face shell and a front-mounted projector for rendering virtual
faces and facial expressions. The two systems are synchronised
using a MATLAB program to match the dimensions of the
facial features of the physical face with the projected virtual
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Fig. 2. Data-driven design process of MorphFace. Facial features were extracted from CFD (facial images are reproduced with permissions from CFD,
Center for Decision Research, The University of Chicago) to identify the principal features to actuate physically, and the physical face was informed by the
dimensions of the averaged faces. MorphFace changes the positions of the principal facial features on the physical face to match with the projected virtual
faces.

facial details and expressions. The design and development
of MorphFace is a data-driven design process using principal
component analysis (PCA) on the anthropometric measure-
ments of the frontal images from the Chicago Face Database
(CFD) (version 2.0.3) [26]. The facial features were extracted
using DLib facial landmark detection algorithm [27], and the
physical and virtual faces were developed based on averaged
faces of the CFD images. An overview of the design process
is shown in Fig. 2.

A. Facial Image Processing and Principal Component Anal-
ysis

Facial images from the CFD were used to extract the
facial anthropometric differences between people of different
gender and ethnicity. We used 50 frontal natural faces from
three ethnic groups: White, Black, Asian, and both males and
females in our analysis. 68 facial landmarks of the 300 faces
were extracted using Python with DLib, OpenCV [28] and a
pre-trained face landmark detector [29]. Then we normalized
all face images to have a resolution of 1500 × 1500 pixels,
with a fixed face width by anchoring the pixel locations of
landmark 2 and 16 (|x2 − x16|) across all images relative
to the image size using similarity transformation. A Principal
Component Analysis (PCA) was conducted to identify the key
differing features between the facial landmarks of the image
set.

14 facial measurements based on the normalised im-
ages were calculated by extracting the 68 landmarks
(L = {(x1, y1), (x2, y2)...(x68, y68)}). We chose landmark
2 (x2, y2) as the origin as all face images were standardized

along it. The 14 measurements consisted of size-related mea-
surements of facial features (right eye width (|x37 − x40|),
right eye height (|y39 − y41|), left eye width (|x43 − x46|),
left eye height (|y44− y48|), nose height (|y28− y34|), nose
width (|x32−x36|), mouth width (|x49−x55|), mouth height
(|y52−y58|), bigonial breadth (|x5−x13|), interocular breadth
(x40 − x43), face height (|y28 − y9|)) and facial-feature-
position-related measurements (eye position (|y2−y40|), nose
position (|y2−y28|), mouth position (|y2−y52|)) with respect
to the origin. The PCA was implemented in MATLAB and
the input vector to PCA consisted of 300 observations (300
selected faces) of the 14 measurements. As shown in Fig. 3,
we chose PCs with percentage of explained variance > 5%
and set a threshold > 0.4 for selecting the principal facial
features. Based on this analysis, we identified two face-size-
related features: face height and bigonial width; three face-
part-position-related features: eyes, nose and mouth positions;
and three face-part-size-related features: nose height, mouth
width and mouth height. These features represent the highest
variance among all features.

An average face for each gender and ethnicity was generated
with OpenCV. The normalised images were divided into De-
launay triangles and affine transformations were performed on
these triangles to match the position of the pixels inside each
triangle for all images. The averaged image was then generated
by dividing the sum of the RGB intensities of each pixel in the
transformed image set by the number of images. Average face
width data from Wen et al. [30] was used to convert the units
of the average faces from pixels to millimeters. The converted
dimensions of other facial features also match the result in
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Fig. 3. PCA results: (a) Percentage of explained variance and cumulative
variability vs. PCs. We chose PCs with percentage of explained variance
> 5% for our design which resulted in cumulative variability of 86%. (a)
Loading values of respective facial features contributed to PC1-PC4. We set
a threshold abs(Loading) > 0.4 for selecting the principal facial features
[colored in orange].

Fig. 4. Superimposed landmark plots of all six average faces with actual facial
dimensions. Landmark 2 was set as the origin of the measurements. Based on
this result with the PCs, we concluded that we could represent any given face
as a function of eyes, nose and mouth position, and face height. To realise
this in the physical face, we calculated the relative variations of eyes, mouth
and nose positions (Ye,k , Ym,k , Yn,k) and face height (Yc,k) where k =
[Whitemale,Whitefemale,Blackmale,Blackfemale,Asianmale
Asianfemale]. Initial positions (Oe,k , Om,k , On,k , Oc,k) were set as
maximum deviation from the origin along the y-axis.

TABLE I
LOWER FACE HEIGHT BETWEEN THE AVERAGE FACES AND FACIAL

MEASUREMENTS FROM WEN ET AL.

Asian
Male

Asian
Fe-
male

Black
Male

Black
Fe-
male

White
Male

White
Fe-
male

Mean (95%
Crl) from
Wen et, al.

67.4
(59.7,
75.1)

64.6
(60.2,
69.4)

72.2
(64.4,
80.0)

65.5
(59.9,
72.1)

69.4
(64.4,
73.9)

63.0
(60.0,
66.2)

Average
faces

66.8 62.5 72.5 67.8 68.2 65.7

[30], hence validating this approach, as shown in Table. I.
Fig. 4 depicts the supper-imposed landmark plots of the

six average faces with actual facial dimensions resulting from
the previous step. We compared this result with the principal
features found using PCA to decide which primitives should
be controlled in the physical face. Considering the physical
setup implementation, We decided to use a fixed-size nose
and mouth in this first version of MorphFace, even though
the nose height, mouth width and height were found to be
principal features. In our design, we kept the width of the
face at constant for all gender and ethnicity. This allowed us
to represent any given face as a function of the face height and
the position of the principal features along the y-direction on
the physical face to replicate the variances in different faces of
different gender and ethnicity. Therefore, we could represent
any given face by f(Ye,k, Ym,k, Yn,k, Yc,k).

B. Implementation of the Morphable Physical Face

The average images of the six demographic groups were
used as references for generating 3D meshes representing each
group. A MakeHuman [31] plugin was developed to iteratively
changing dimensions of facial features of a base human face
mesh, rendering the frontal view of the mesh, identify the
landmarks, and calculating the errors between the landmarks
of the current mesh and the reference image until the errors
of all landmarks are smaller than a threshold of 20 pixels, or
the maximum number of iterations (80) was reached. Fig. 6
shows the matching for the average White male mesh using
this algorithm.

The Asian female face was selected as the base mesh for
the physical face because it had the smallest face length.
The MHX2 file of the Asian female MakeHuman mesh was
imported into Blender, thickened to 4 mm, exported as an
STL mesh, and imported into Autodesk Fusion 360. The STL
mesh was separated into five parts: upper face, jaw, eyes,
nose, and mouth. The upper face was used as the mechanical
ground and cutouts were made to accommodate the vertical
movements of the eyes, nose, mouth, and jaw. The initial
positions of all face parts were set as their lowest vertical
positions. Each component is controlled by a modular linear
actuation mechanism as shown in Fig. 5 a.

The modular linear actuation unit consists of a linear guide
(LWL7B Miniature Linear Rail Guide 7mm(W) × 40mm(L)),
a movement piece (eyes, nose, mouth and jaw), a mechanical
ground bracket for securing the linear rail to the upper face and
cable sheath with PTFE tube insert for guiding the Bowden
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Fig. 5. Design and implementation of the physical face. (a) Autodesk Fusion 360 3D model of a modular linear actuation unit. (a) 3D printed physical face
with movable face parts (movements indicated by red arrows), Bowden cables and RC servo motors installed.

Fig. 6. Average face to MakeHuman 3D mesh matching process. The iterative
error-minimising algorithm repeatedly changes a facial feature, identify the
landmarks and compares the landmark positions against the reference photo,
(second and third image).

cable, a compression spring to restore the movement piece
position, and a RC servo motor (MG996R) to actuate the
whole unit. Clockwise-rotation of the pulley attached to the
metal gear of the servo motor tightens the Bowden cable which
pulls the linear guide and moves up the attached movement
piece, and anticlockwise-rotation of the pulley loosens the
Bowden cable and the compression spring restores the position
of the movement piece. All parts of the modular actuation unit,
the upper face, and movement pieces were 3D printed with
PLA. The layout of the modular linear actuation units and RC
servo motors are shown in Fig. 5 b.

Servo commands were updated as a servo angle vector
for each face, given by [θe,k, θn,k, θm,k, θc,k]. We calculated
this vector for each face based on the simple relationship
between servo pulley motion and linear motion of the guide
as [Ye,k, Ym,k, Yn,k, Yc,k]/r where r is the radius of the servo
pulley. All pulleys were designed to have a diameter of 12mm.
A 12-channel Pololu Maestro servo driver was used to control
the motors. Two layers of skin-color Nylon fabric were used as
the skin of the physical face. Its elasticity and opacity helped
to blend the margin space around the movable face parts and
gave the model a 3D texture visually resembles the human
skin.

C. Virtual Face Generation

Pain expressions were generated using a modified version
of FACSHuman [17], by setting the activation intensities for
action units (AUs) 4, 7, 9, and 10 at 24%, 21%, 72% and 100%
based on our survey-based preliminary study on the effective
weightings of AUs on perceived pain intensity. The resultant
expression from the combination of these AUs was applied
to the matched MakeHuman models. Two meshes for each
gender-ethnicity face were generated: a neutral one (no pain)
where the activation intensities are all 0, and a painful one
(100% pain) with the activation intensities as described. The
MakeHuman models were imported into Blender, and texture
and colour maps were applied to each mesh. The camera
position was found using the same mesh matching algorithm
and each mesh was rendered at 1080 × 720 pixels, resulting
in a total of 12 virtual faces (neutral and painful faces for 2
genders and 3 ethnicities).

D. Integration of Physical and Virtual system

We used an LED projector (AAXA P300 Neo Smart An-
droid Mini Pico Projector, AAXA Technologies) to project the
images synthesized by the virtual system, as shown in Fig. 7
a. The system was calibrated following three steps: projector
distance, throw ratio, and feature positions, as shown in Fig. 7
b. The Blender Projector plugin was used to calculate these
parameters before they were set for the physical model. The
CAD model of the face with face parts was imported into
Blender and a 2-D plane was positioned adjacent to the back
of the face. The jaw was moved up to its maximum position
so that the face length matches an Asian female’s face length.
The virtual face of an Asian female was then projected onto
the face CAD, and the matching between the projection and
the CAD model was inspected by eye. The position of the
projector and its throw ratio was tuned until the face contour
and mouth width of the projection match with the CAD model.
The vertical position of the face parts was then moved to match
with the projection.

A MATLAB program was used to synchronise the vir-
tual projection and the robotic face variations. The program
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Fig. 7. (a) Overall set-up after system integration. The projection distance of
the LED Pico projector (throw ratio: 1.4) was set using an adjustable mount.
A digital camera was mounted close to the projector to capture results. (a)
System calibration in Blender. Projector distance and throw ratio were set by
checking the matching accuracy at the contour of the face and the width of
the mouth.

changes the projected virtual faces and simultaneously cal-
culates the respective servo commands as the angle vector
[θe,k, θn,k, θm,k, θc,k], and sends them to the servo motors to
morph the physical face.

E. Validation experiments with human participants

Undergraduate students and teaching staff from Imperial
College London (n = 11, 5 females, 6 males, aged 21 to 37
(M = 23, SD = 5.56)) were invited to participates in this the
experiment (protocol approved by Imperial College Research
Ethics Committee, study number 20IC6295). 3 participants
self-identified as White, and 8 self-identified as Asian. The
experiment consisted of three parts; a perceived pain intensity
calibration process, followed by two pain intensity rating trials.
5 of the subjects were tested with 2D virtual projection in
their first pain intensity rating trial, and 6 were tested with
MorphFace to reduce the sequential effects.

1) Perceived Pain Intensity Calibration: The participants
were asked to stand about 0.5m away from the projector, and
were informed that the faces to be shown were considered as 0
pain intensity on a numeric pain scale from 0 to 10, and each
image shown in the whole experiment lasts 10 seconds. The
participants were shown 6 neutral faces projected onto a flat
tabletop (2D virtual face). They were informed those 6 faces
were considered as ”no pain” faces, and were asked whether

they thought ”the projected face looked realistic and resembles
a real person” once all faces were displayed, reporting a score
from 1 to 5 where 1 corresponds to ”strongly agreed” and
5 corresponds to ”strongly disagree”. The participants were
then shown 6 neutral faces generated using MorphFace, also
informed that those were ”no pain” faces and asked the same
question. This step calibrated the participants pain intensity
perception by acknowledging the ”no pain” (0 pain intensity)
faces of all of the virtual avatars in both face rendering
methods.

2) Pain Intensity Rating Trials: Each participant completed
two trials. Each trial involved observing 3 sets of 12 faces
(pre-randomised, as shown in Fig. 8), either as a 2D projected
virtual face or shown with MorphFace. They were asked to
write down their perceived pain intensity of each face using
a numeric scale from 0 to 10 where 0 means ”no pain” and
10 means ”worst pain possible”. There was a short break of
20 seconds between each set and each trial. The order of the
sets were different between the two rendering face methods
but consistent across all participants.

IV. RESULTS

The main contribution of this paper is the design approach
of the MorphFace. Fig. 8 shows the final outcome of Mor-
phFace with geometrical differences of the face across 6
gender-ethnicity groups implemented by controlling 4 physical
DoFs and details of skin color and facial activation units
projected onto it. For simplicity, coefficients of the linear
combination of AUs in each row are kept constant. The
second row of Fig. 8 expresses the same level of pain (100%
pain) from different gender-ethnicity backgrounds. 64% of the
participants ”strongly agree” that MorphFace looks realistic
and resembles a real person, 45% of the participants rated
MorphFace to be more realistic than the 2D virtual faces, and
the other 55% rated them equally realistic.

Next, we investigate the question as to whether images of
the same level of pain but with different gender and ethnic
backgrounds would lead to any differences in perception when
they are projected onto the 3D MorphFace vs a 2D surface.
The top plot in Fig. 9 shows difference in variances across
participants in perceiving the same incremental change of pain
levels for the same faces. The y-axis is the Numerical Rating
Scale (NPRS-11) [32] of the difference between perceptions of
a painful face and the corresponding neutral face. The bottom
plot shows larger percentage differences in perceived pain in-
tensities between Asian and White participants for Black Male
(p = 0.023, Kruskal-Wallis test), White Male (p = 0.051,
Kruskal-Wallis test), and Asian Female (p = 0.014, Kruskal-
Wallis test) when using MorphFace. The corresponding per-
centage differences was also significant for Asian Female
(p = 0.032, Kruskal-Wallis test) when observed as a 2D
virtual face. Gender did not show to have any effect in how
pain intensity was perceived from this experiment. The effect
of rendering methods between MorphFace and the 2D virtual
faces were also evaluated, and 4 participants had statistically
significant difference (p < 0.05, Mann-Whitney U-test). And
across all 6 faces, the White male and Asian male faces
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Fig. 8. MorphFace with matching physical and virtual faces. Top panel shows the faces with neutral expressions and bottom panel shows faces with the facial
expressions of 100% pain. Ambient lighting condition was maintained consistent throughout the experiment.

Fig. 9. Top: Participant’s perceptual variance of incremental pain when
the same pain level is projected to the MorphFace and on a 2D surface
representing different gender and ethnicity backgrounds. Bottom: Percentage
difference in perceived pain intensity between Asian and White participants
on different faces ((AvgAsian −AvgWhite)/AvgWhite).

showed to have the lowest statistical power (pWM = 0.14,
pAM = 0.82). This may be because the participants are all
White or Asian, and are more used to seeing these two faces
from past experiences.

Overall, these results show that there are differences in the
process of information acquisition when the same pain level
with different gender-ethnicity backgrounds rendered using
MorphFace vs projected onto a 2D surface. This is important
because the purpose of training is to develop internal models
that are relevant to real patient examination. When we take
the two perception results in Fig. 8 and Fig. 9 together, this
paper highlights the potential usefulness of MorphFace as a
controllable robotic simulator to deliver a quantifiable training

to physicians on gender and ethnicity backgrounds of patients
during physical examination.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed a novel hybrid morphable face
capable of providing pain expressions from faces representing
different genders and ethnicities. An experiment with 11 naive
participants showed that their perception of fixed incremental
pain had different variances across the 6 gender-ethnic groups
of MorphFace. Moreover, MorphFace showed to amplify per-
ceptual differences compared to an equivalent 2D virtual face.
The statistical power of faces with the same ethnicity as the
participants also showed to be the lowest, and 4 participants
had a statistically significant difference in their perception of
the same incremental pain presented from MorphFace vs. a
2D virtual face.

Hybrid systems allow for the study of emotion perception
via synthetic in vivo experimentation, providing rich virtual
contexts for participants [33], as well as high levels of accuracy
due to the controllability of emotional expressions [34]. Work
using Virtual Human (VH) interaction shows that VH is
capable of influencing humans in such interactions, but to
be perceived as engaging and believable, VH agents need
to have movable faces [35]. VH is also capable of eliciting
positive and negative emotional states in human conversa-
tional partners during both speaking and listening phases [36].
Nevertheless, VH-interactions represent 2D rather than 3D
interactions. However, the process of information interaction
from a 2D surface and a 3D landscape such as a human face
are different. Therefore, hybrid systems such as MorphFace
have the potential to build perception skills [37] that are
more relevant to real patient examinations. To the best of our
knowledge, no prior studies have used hybrid systems that
produce variations in ethnicity and/or gender to further such
training objectives.

A future study will involve conducting a detailed analysis of
the interaction effect among the participants’ gender-ethnicity
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background and that of the robotic face presenting different
pain levels, and the question as to how participants will change
perception after a training session where they are repeatedly
given feedback of the actual pain level being projected.

In addition, we will integrate the MorphFace with a robotic
patient with sensorised organs [38], [39] to test the system in
a closed-loop manner. The efficacy of this platform to carry
forward the experience of pain for future training of general
practitioners also needs to be tested. Our future developments
will also start to include other facial features that might be part
of abdominal disease. For example, the white of the eye may
be an easy place to see that the patient is jaundiced, or the
conjunctiva suggest that the patient is anaemic. We envision
that this work will open up a new dimension of research related
to robotic patients with facial expression rendering.
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