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Data-efficient Domain Randomization
with Bayesian Optimization
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Abstract—When learning policies for robot control, the re-
quired real-world data is typically prohibitively expensive to
acquire, so learning in simulation is a popular strategy. Unfortu-
nately, such polices are often not transferable to the real world
due to a mismatch between the simulation and reality, called
‘reality gap’. Domain randomization methods tackle this problem
by randomizing the physics simulator (source domain) during
training according to a distribution over domain parameters in
order to obtain more robust policies that are able to overcome
the reality gap. Most domain randomization approaches sample
the domain parameters from a fixed distribution. This solution
is suboptimal in the context of sim-to-real transferability, since it
yields policies that have been trained without explicitly optimizing
for the reward on the real system (target domain). Additionally,
a fixed distribution assumes there is prior knowledge about
the uncertainty over the domain parameters. In this paper, we
propose Bayesian Domain Randomization (BayRn), a black-box
sim-to-real algorithm that solves tasks efficiently by adapting
the domain parameter distribution during learning given sparse
data from the real-world target domain. BayRn uses Bayesian
optimization to search the space of source domain distribution
parameters such that this leads to a policy which maximizes the
real-word objective, allowing for adaptive distributions during
policy optimization. We experimentally validate the proposed
approach in sim-to-sim as well as in sim-to-real experiments,
comparing against three baseline methods on two robetic tasks.
Our results show that BayRn is able to perform sim-to-real trans-
fer, while significantly reducing the required prior knowledge.

I. INTRODUCTION

Physics simulations provide a possibility of generating vast
amounts of diverse data at a low cost. However, sample-based
optimization has been known to be optimistically biased [1],
which means that the found solution appears to be better than it
actually is. The problem is worsened when the data used for
optimization does not originate from the same environment,
also called domain. In this case, we observe a simulation
optimization bias, which leads to an overestimation of the
policy’s performance [2]. Generally, there are two ways to
overcome the gap between simulation and reality. One can
improve the generative model to closely match the reality, e.g.
by using system identification. Increasing the model’s accuracy
has the advantage of leading to controllers with potentially
higher performance, since the learner can focus on a single
domain. On the downside, this goes in line with a reduced
transferability of the found policy, which is caused by the
previously mentioned optimistic bias, and aggravated if the

Fabio Muratore, Christian Eilers and Jan Peters are with the Intelligent
Autonomous Systems Group, Technical University Darmstadt, Germany.
Fabio Muratore, Christian Eilers and Michael Gienger are with the
Honda Research Institute Eustring, Offenbach am Main, Germany.
Correspondence to fabio@robot-learning.de

Figure 1: Evaluation platforms: (left) underactuated swing-up
and balance task on the Quanser Furuta pendulum, (right) ball-
in-a-cup task on the Barrett WAM robotic arm.

model does not include all physical phenomena. Moreover, we
might face a situation where it is not affordable to improve the
model. Alternatively, one can add variability to the generative
model, e.g. by turning the physics simulator’s parameters
into random variables. Learning from randomized simulations
poses a harder problem for the learner due to the additional
variability of the observed data. But the recent successes in the
field of sim-to-real transfer argue for domain randomization
being a promising method [3, 4].

State-of-the-art approaches commonly randomize the simu-
lator according to a static handcrafted distribution [5, 6, 7, 8].
Even though static randomization is in many cases sufficient
to cross the reality gap, it is desirable to automate the process
as far as possible. Moreover, using a fixed distribution does
not allow to update the prior knowledge or incorporate the
uncertainty over domain parameters. Most importantly, closing
the feedback loop over the real system will lead to policies
with higher performance on the target domain since the
feedback enables the optimization of the domain parameter
distribution. However, approaches which adapt an distribution
over simulators, yield to additional challenges. For example
algorithms that intertwine system identification and policy
optimization, e.g., [4, 9], introduce a circular dependency since
both subroutines depend on the sensible outputs of the other.
One possible failure case is a policy which does not excite the
system well enough, resulting in bad updates the simulator’s
parameters. The sim-to-real algorithm presented in this paper
does not require any system identification.

Contributions: We advance the state-of-the-art by intro-
ducing Bayesian Domain Randomization (BayRn), a method
which is able to close the reality gap by learning from random-
ized simulations and adapting the distribution over simulator
parameters based solely on real-world returns. The use usage
of Bayesian Optimization (BO) for sampling the next training
environment (source domain) makes BayRn sample efficient
w.r.t. real-world data. The proposed algorithm can be seen



as a way to vastly automate the finding of a source domain
distribution in sim-to-real settings, which is typically done
by trial and error. We validate our approach by conducting
a sim-to-sim as well as two sim-to-real experiments on an
underactuated nonlinear swing-up task, and on a ball-in-a-cup
task (Figure 1). The sim-to-sim setup examines the domain
parameter adaptation mechanism of BayRn, and shows that
the belief about the domain distribution parameters converges
to a specified ground truth parameter set. In the sim-to-real
experiments, we compare the performance of policies trained
with BayRn against multiple baselines based on a total number
of 700 real-world rollouts. Moreover, we demonstrate that
BayRn is able to work with step-based as well as episodic
Reinforcement Learning (RL) algorithms as policy optimiza-
tion subroutines.

The remainder of this paper is organized as follows: first,
we introduce the necessary fundamentals (Section II) for
BayRn (Section III). Next, we evaluate the devised method
experimentally (Section IV). Subsequently, we put BayRn into
context with the related work (Section V). Finally, we conclude
and mention possible future research directions (Section VI).

II. BACKGROUND AND NOTATION

Optimizing control policies for Markov Decision Processes
(MDPs) with unknown dynamics is generally a hard problem
(Section II-A). It is specifically hard due to the simulation
optimization bias [2], which occurs when transferring the
polices learned in one domain to another. Adapting the source
domain based on real-world data requires a method suited for
expensive objective function evaluations. BO is a prominent
choice for these kind of problems (Section II-B).

A. Markov Decision Process

Consider a time-discrete dynamical system

Sp ~ M0,5(50|5),
E~v(&d),

with the continuous state s; € S¢ C R"™¢, and continuous
action a; € A¢ C R™ at time step ¢. The environment, also
called domain, is instantiated through its parameters & € R™¢
(e.g., masses, friction coefficients, or time delays), which
are assumed to be random variables distributed according to
the probability distribution v: R"¢ — R* parametrized by ¢.
These parameters determine the transition probability density
function Pg: Sg x Ag x S¢ — R that describes the system’s
stochastic dynamics. The initial state sq is drawn from the start
state distribution p¢: S¢ — R*. Together with the reward
function r: S¢ x A¢ — R, and the temporal discount factor
v € [0,1], the system forms a MDP described by the set
Mg = {S¢, A¢, Pe, poe, 7,7} The goal of a Reinforcement
Learning (RL) agent is to maximize the expected (discounted)
return, a numeric scoring function which measures the policy’s
performance. The expected discounted return of a stochastic
domain-independent policy 7 (a¢| s¢; @), characterized by its
parameters 8 € © C R™, is defined as

St+1 ™~ PE (st+1| St;at7£) ’
a; ~ (a8 0),

T-1

J(O,E, 30) = ]ETNp(‘r)|: Z ’}/t’I"(St7 at)‘Q,S, 30:| .
t=0

While learning from experience, the agent adapts its policy
parameters. The resulting state-action-reward tuples are col-
lected in trajectories, a.k.a. rollouts, T = {s;, as, ¢ }1—,", with
ry = r(st,a:). To keep the notation concise, we omit the
dependency on sg.

B. Bayesian Optimization with Gaussian Processes

Bayesian Optimization (BO) is a sequential derivative-free
global optimization strategy, which tries to optimize an un-
known function f: X — R on a compact set X [10]. In order
to do so, BO constructs a probabilistic model, typically a Gaus-
sian Process (GP), for f. GPs are distributions over functions
f ~ GP(m, k) defined by a prior mean m: X — R and posi-
tive definite covariance function k: X x X — R called kernel.
This probabilistic model is used to make decisions about where
to evaluate the unknown function next. A distinctive feature of
BO is to use the complete history of noisy function evaluations
D = {x;,y; } o with x; € X and y; ~ N (y|f(;cl),s) where
¢ is the variance of the observation noise. The next evaluation
candidate is then chosen by maximizing a so-called acquisition
function a: X — R, which typically balances exploration
and exploitation. Prominent acquisition functions are Expected
Improvement and Upper Confidence Bound. Through the use
of priors over functions, BO has become a popular choice for
sample-efficient optimization of black-box functions that are
expensive to evaluate. Its sample efficiency plays well with
the algorithm introduced in this paper where a GP models
the relation between domain distribution’s parameters and the
resulting policy’s return estimated from real-world rollouts, i.e.
x = ¢ and y = J™(0*). For further information on BO and
GPs, we refer the reader to [10] as well as [11].

III. BAYESIAN DOMAIN RANDOMIZATION (BAYRN)

The problem of source domain adaptation based on returns
from the target domain can be expressed in a bilevel formu-
lation

¢* = argmax J*¥(0*(¢)) with (1)
Ped

9*(¢) = argmax EENV(E;(b) [‘](07 E)] ; (2)
0co

where we refer to (1) and (2) as the upper and lower level
optimization problem respectively. Thus, the two equations
state the goal of finding the set of domain distribution param-
eters ¢* that maximizes the return on the real-world target
system J™(0*(¢)), when used to specify the distribution
v(&; ¢) during training in the source domain. The space of
domain parameter distributions is represented by ®. In the
following, we abbreviate 6* (¢p) with 8*. At the core of BayRn,
first a policy optimizer, e.g., an RL algorithm, is employed
to solve the lower level problem (2) by finding a (locally)
optimal policy 7 (8*) for the current distribution of stochastic
environments. This policy is evaluated on the real system for
n rollouts, providing an estimate of the return J"#(6*). Next,
the upper level problem (1) is solved using BO, yielding a
new domain parameter distribution which is used to randomize
the simulator. In this process the relation between the domain



Algorithm 1: Bayesian Domain Randomization

input : domain parameter distribution v(&; ¢),
parameter space ® = [Pmin, Pmax), algorithm
PolOpt, Gaussian Process GP, acquisition
function a, hyper-parameters niyie, 1, J**°
output: maximum a posteriori domain distribution
parameter ¢* and policy 7 (6*)
> Initialization phase
1 Initialize empty data set and nj,; policies randomly
2D« {} ; Tr(el:ninil) — alininn ~ 0O
3 Sample niy source domain distribution parameter sets
and train in randomized simulators
4 ¢1:ninn <~ ¢15ninil ~ P
5 07, < PolOpt [ﬂ' (glznmn) ,v(&; (;Sl:nm)]
6 Evaluate the ny,;; policies on the target domain for n,
rollouts and estimate the return
7 jreal (eininn) = 1/7’L-,— E;;l J;eal( fﬁninn)
8 Augment the data set and update the GP’s posterior

distribution
9 DU{¢p;, JN (O} s GP(m, k) gP(m,k:’D)
10 do > Sim-to-real loop

11 Optimize the GP’s acquisition function

12 ¢* + argmax g a(®, D)

13 Train a policy using the obtained domain
distribution parameter set

14 6* < polopt(n(0),v(&; ¢*)]

15 Evaluate the policy on the target domain for n.,
rollouts and estimate the return

16 jreal(e*) — 1/nT Z;L;l er_eal(e*)

17 Augment the data set and update the GP’s
posterior distribution

8 | DU{¢*,J(0%)} ; GP(m, k) < GP(m,k|D)
while jml(@*) < JC and Nijer < Niermax

[
£

20 Train the maximum a posteriori policy (repeat the
Lines 12 and 14 once)

distribution’s parameters ¢ and the resulting policy’s return
on the real system .J™¥(6*) is modeled by a GP. The GP’s
mean and covariance is updated using all recorded inputs ¢
and the corresponding observations J real (§*). Finally, BayRn
terminates when the estimated performance on the target sys-
tem exceeds J*'“ which is the task-specific success threshold.
Since the GP requires at least a few (about 5 to 10) samples
to provide a meaningful posterior, BayRn has an initialization
phase before the loop. In this phase, nj, source domains
are randomly sampled from ®, and subsequently for each of
these domains a policy is trained. After evaluating the 7
initial policies, the GP is fed with the inputs ¢;.,,, and
the corresponding observations J*(@%,, ). The complete
BayRn procedure is summarized in Algorithm 1. In principle,
there are no restrictions to the choice of algorithms for solving
the two stages (1) and (2). For training the GP, we used the BO
implementation from BoTorch [12] which expects normalized
inputs and standardized outputs. Notably, we decided for the
expected improvement acquisition function and a zero-mean
GP prior with a Matérn 5/2 Kernel.

Connection to System Identification: Unlike related meth-
ods (Section V), BayRn does not include a term in the
objective function that drives the system parameters to match
the observed dynamics. Instead, the BO component in BayRn
is free to adapt the domain distribution parameters ¢ (e.g.,
mean or standard deviation of a body’s mass) while learning
in simulation such that the resulting policies perform well in
the target domain. This can be seen as an indirect system
identification, since with increasing iteration count the BO
process will converge to sampling from regions with high real-
world return. There is a connection to control as inference ap-
proaches which interpret the cost as a log-likelihood function
under an optimality criterion using a Boltzmann distribution
construct [13, 14]. Regarding BayRn, the sequence of sampled
domain distribution parameter sets strongly depends on the
acquisition function and the complexity of the given problem.
We argue that excluding system identification from the upper
level objective (1) is sensible for the presented sim-to-real
algorithm, since it learns from a randomized physics simulator,
hence attenuates the benefit of a well-fitted model.

IV. EXPERIMENTS

We study Bayesian Domain Randomization (BayRn) on
two different platforms: 1) an underactuated rotary inverted
pendulum, also known as Furuta pendulum, with the task of
swinging up the pendulum pole into an upright position, and
2) the tendon-driven 4-DoF robot arm WAM from Barrett,
where the agent has to swing a ball into a cup mounted
as the end-effector. First, we set up a simplified sim-to-sim
experiment on the Furuta pendulum to check if the proposed
algorithm’s belief about the domain distribution parameters
converges to a specified set of ground truth values. Next, we
evaluate BayRn as well as the baseline methods SimOpt [4],
Uniform Domain Randomization (UDR), and Proximal Policy
Optimization (PPO) [15] or Policy learning by Weighting
Exploration with the Returns (POWER) [16] in two sim-to-real
experiments. Additional details on the system description can
be found in Appendix A. Furthermore, an extensive list of the
chosen hyper-parameters can be found in Appendix B. A video
demonstrating the sim-to-real transfer of the policies learned
with BayRn can be found at www.ias.informatik.
tu-darmstadt.de/Team/FabioMuratore. Moreover,
the source code of BayRn and the baselines is available at [17].

A. Experimental Setup

All rollouts on the Fu-
ruta pendulum ran for 6s at
100Hz, collecting 600 time
steps with a reward r; €]0, 1].
We decided to use a Feedfor-
ward Neural Network (FNN)
policy in combination with
PPO as policy optimization
(sub)routine (Table IIa). Be-
fore each rollout, the platform was reset automatically. On
the physical system, this procedure includes estimating the
sensors’ offsets as well as running a controller which drives the
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Figure 2: Platforms with an-
notated domain parameters


www.ias.informatik.tu-darmstadt.de/Team/FabioMuratore
www.ias.informatik.tu-darmstadt.de/Team/FabioMuratore

Table I: Range of domain distribution parameter values ¢
used during the experiments. All domain parameters were
randomized such that they stayed physically plausible.

(a) swing-up and balance

Parameter Range Unit
pendulum pole mass mean  E[m,] € [0.0192,0.0288] kg
pendulum pole mass var. Vimp] € [5.76e—10,5.76e—6]  kg?
rotary pole mass mean E[m,] € [0.076,0.114] kg
rotary pole mass var. Vim,] € [9.03e—9,9.03e—5] kg?
pendulum pole length mean  E[l,] € [0.1032,0.1548] m
pendulum pole length var. V[lp] € [1.66e—8,1.66e—4] m?
rotary pole length mean E[l;] € [0.068,0.102] m
rotary pole length var. V[i;] €[7.23e—9,7.23e—5] m?
(b) ball-in-a-cup
Parameter Range Unit
string length mean E[ls] € [0.285,0.315] m
string length variance V[is] € [9e—8,2.25e—4] m?
string damping mean E[ds] € [0,2e—4] N/s
string damping variance ~ V[ds] € [3.33e—13,8.33e—10] NZ2/s?

ball mass mean E[m] € [0.0179,0.0242] kg

ball mass variance Vims] € [4.41e—10,4.41e—6]  kg?
joint damping mean Eld;] € [0.0,0.1] N/s
joint damping variance ~ V[d;] € [3.33e—8,2.08¢—4] N2 /s?

joint stiction mean
joint stiction variance

Elus] € [0,0.4] —
Vius] € [1.33e—6,3.33e—3] -

device to its initial position with the rotary pole centered and
the pendulum hanging down. In simulation, the reset function
causes the simulator to sample a new set of domain parameters
& (Figure 2). Due to the underactuated nature of the dynamics,
the pendulum has to be swung back and forth to put energy
into the system before being able to swing the pendulum up.

The Barrett WAM was operated at 500 Hz with an episode
length of 3.55s, i.e., 1750 time steps. For the ball-in-cup task,
we chose a RBF-policy commanding desired deltas to the
current joint angles and angular velocities, which are passed to
the robots feed-forward controller. Hence, the only input to the
policy is the normalized time. At the beginning of each rollout,
the robot is driven to an initial position. When evaluating on
the physical platform, the ball needs to be manually stabilized
in a resting position. Once the rollout has finished, the operator
enters a return value (Appendix A).

In the sim-to-real experiments, we compare BayRn to
SimOpt, UDR, and PPO or POWER. For every algorithm, we
train 20 polices and execute 5 evaluation rollouts per policy.
PPO as well as POWER are set up to learn from simulations
where the domain parameters are given by the platforms’ data
sheets or CAD models. These sets of domain parameters are
called nominal. Hence, PPO and PoWER serve as a baseline
representing step-based and episodic RL algorithms without
domain randomization or any real-world data. UDR augments
an RL algorithm, here PPO or POWER, and can be seen as the
straightforward way of randomizing a simulator, as done in [7].
Each domain parameter £ is assigned to an independent prob-
ability distribution, specified by its parameters ¢, i.e. mean
and variance, (Table I). Thus, we include UDR as a baseline
method for static domain randomization. Note that UDR can,
in contrast to BayRn and SimOpt, be easily parallelized which
reduces the time to train a policy significantly. With SimOpt,
Y. Chebotar et al. [4] presented a trajectory-based framework

100 200
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Figure 3: Target domain returns (a) and the associated standard
deviation (b) modeled by the GP learned with BayRn in a sim-
to-sim setting (brighter is higher). The ground truth domain
parameters as well as the maximum a posteriori domain
distribution parameters found by BayRn are displayed as a red
and orange star, respectively. The circles mark the sequence
of domain parameter configurations (darker is later).

for closing the reality gap, and validated it on two state-of-the-
art sim-to-real robotic manipulation tasks. SimOpt iteratively
adapts the domain parameter distribution’s parameters by
minimizing discrepancy between observations from the real-
world system and the simulation. While BayRn formulates the
upper level problem (1) solely based on the real-world returns,
SimOpt minimizes a linear combination of the L1 and L2 norm
between simulated and real trajectories. Moreover, SimOpt
employs Relative Entropy Policy Search (REPS) [18] to update
the simulator’s parameters, hence turning (1) into an RL prob-
lem. The necessity of real-world trajectories renders SimOpt
unusable for the ball-in-a-cup task since the feed-forward
policy is executed without recording any observations. Thus,
there are no real-world trajectories with which to update the
simulator. BayRn (Section III), SimOpt and UDR randomize
the same domain parameters with identical nominal values. At
the beginning of each sim-to-real experiment (Section IV-C),
the domain distribution parameters ¢ are sampled randomly
from their ranges (Table I). The main difference is that BayRn
and SimOpt adapt the domain distribution parameters, while
UDR does not. We chose normal distributions for masses and
lengths as well as uniform distributions for parameters related
to friction and damping.

B. Sim-to-sim Results

Before applying BayRn to a physical system, we examine
the domain distribution parameter sampling process of the BO
component in simulation. In order to provide a (qualitative)
visualization, we chose to only randomize the means of the
poles’ masses, i.e., ¢ = [E[m,],E[m,]]T. Thus, for this sim-
to-sim experiment the domain distribution parameters ¢ are
synonymous to the domain parameters &£. Apart from that, the
hyper-parameters used for executing BayRn are identical to
the ones used in the sim-to-real experiments (Appendix B).
As stated in Section III, BayRn was designed without an



BayRn SimOpt PPO

(a) swing-up and balance

—_—
(e}
1

=]
9]
1

success probability

- S

I
PoWER

5
(e}
1

T T
BayRn UDR
(b) ball-in-a-cup

Figure 4: Performance of the different algorithms across both sim-to-real tasks. For each algorithm 20 policies have been
trained, varying the random seed, and evaluated 5 times to estimate the mean return per policy (700 rollouts in total). The
median performance per algorithm is displayed by white circles, and the inner quartiles are represented by thick vertical bars.
A dashed line in (a) marks an approximate threshold where the task is solved, i.e., the rotary pole is stabilized on top in the
center. SimOpt was not applicable to our open-loop ball-in-a-cup task (b) because of its requirement for recorded observations.

(explicit) system identification objective. However, we can
see from Figure 3a that the maximizer of the GP’s mean
function ¢* = [0.0266,0.1084]" closely match the ground
truth parameters ¢gr = [0.0264,0.1045]T. Moreover, Fig-
ure 3b displays how the uncertainty about the target domain
return is reduced in the vicinity of the sampled parameter
configurations. There are two decisive factors for the domain
distribution parameter sampling process: the acquisition func-
tion (Algorithm 1 Line 12), and the quality of the found policy
(Algorithm 1 Line 14). Concerning the latter, a failed training
run is indistinguishable to a successful one which fails to
transfer to the target domain, since the GP only observes the
estimated real-world return J™(6*).

C. Sim-to-real Results

Figure 4 visualizes the results of the sim-to-real experiment
described in Section IV-A. The discrepancy between the
performance of PPO and PoOWER and the other algorithms
reveals that domain randomization was the decisive part for
sim-to-real transferability. To verify that the PPO and POWER
learned meaningful policies, we checked them in the nominal
simulation environments (not reported) and observed that they
solve the tasks excellently. In Figure 4a, we see that each
median performance of BayRn, SimOpt, and UDR are above
the success threshold. However, UDR has a significantly
higher variance. SimOpt solves the swing-up and balance task
in most cases. However, we noticed that the system identifica-
tion subroutine can converge to extreme domain distribution
parameters, rendering the next policy useless, which then
yields a collection of poor trajectories for the next system
identification, resulting in a downward spiral. BayRn on the
other side relies on the policy optimizer’s ability to robustly
solve the simulated environment (Section IV-B). This problem
can be mediated by re-running the policy optimization in
case a certain return threshold in simulation has not been
exceeded. For the ball-in-a-cup task, Figure 4b shows an
improvement of sim-to-real transfer for BayRn, especially
since the tasks open-loop design amplifies domain mismatch.
During the experiments, we noticed that UDR sometimes
failed unexpectedly. We suspect the a high dependency on the
initial state to be the reason for that.

Comparing the Furuta pendulum’s nominal domain param-
eters Poom = [Mp, My, 1y, 1:]T = [0.024,0.095,0.129, 0.085]"
to the means among BayRn’s final estimate ¢}, =
[0.023,0.098,0.123,0.087]7, we see that the domain parame-
ters’ means changed by less than 10 % each. Complementary
the variances among BayRn’s final estimate are @3,
[6.29¢e—8,5.67e—6,4.10e—5,1.19e—5]", indicating a higher
uncertainty on the link lengths (relative to the means). Thus,
the final domain parameters are well within the boundaries of
the BO search space (Table I). In combination, these small
differences result in significantly different system dynamics.
We believe this to be the reason why the baselines without
domain randomization completely failed to transfer.

V. RELATED WORK

We divide the related research on robot reinforcement
learning from randomized simulations into approaches which
use static (Section V-A) or adaptive (Section V-B) distribu-
tions for sampling the physics parameters. Bayesian Domain
Randomization (BayRn) as introduced in Section III belongs
to the second category.

A. Domain Randomization with Static Distributions

Learning from a randomized simulator with fixed domain
parameter distributions has bridged the reality gap in several
cases [3, 6, 2]. Most prominently, the robotic in-hand manip-
ulation reported in [3] showed that domain randomization in
combination with careful model engineering and the usage of
recurrent neural networks enables direct sim-to-real transfer
on an unprecedented difficulty level. Similarly, Lowrey et al.
[6] employed Natural Policy Gradient to learn a continuous
controller for a positioning task, after carefully identifying the
system’s parameters. Their results show that the policy learned
from the identified model was able to perform the sim-to-
real transfer, but the policies learned from an ensemble of
models were more robust to modeling errors. Mordatch et al.
[5] used finite model ensembles to run trajectory optimization
on a small-scale humanoid robot. In contrast, Peng et al.
[7] combined model-free RL with recurrent neural network
policies trained on experience replay in order to push an object



by controlling a robotic arm. The usage of risk-averse objective
function has been explored on MuJoCo tasks in [19]. The
authors also provide a Bayesian point of view.

Cully et al. [20] can be seen as an edge case of static and
adaptive domain randomization, where a large set of policies
is learned before execution on the physical robot and evaluated
in simulation. Every policy is associated to one configuration
of the so-called behavioral descriptors, which are related but
not identical to domain parameters. In contrast to BayRn,
there is no policy training after the initial phase. Instead
of retraining or fine-tuning, the algorithm suggested in [20]
reacts to performance drops, e.g. due to damage, by using
BO to sequentially select a pretrained policy and measure
its performance on the robot. The underlying GP models the
mapping from behavior space to performance. This method
demonstrated impressive damage recover abilities on a robotic
locomotion and a reaching task. However, applying it to RL
poses big challenges. Most notably, the number of policies to
be learned in order to populate the map, scales exponentially
with the dimension of the behavioral descriptors, potentially
leading to a very large number of training runs.

Aside from to the previous methods, Muratore et al. [2]
propose an approach to estimate the transferability of a policy
learned from randomized physics simulations. Moreover, the
authors propose a meta-algorithm which provides a probabilis-
tic guarantee on the performance loss when transferring the
policy between two domains form the same distribution.

Static domain randomization has also been successfully
applied to computer vision problems. A few examples that
are: (i) object detection [21], (ii) synthetic object generation
for grasp planning [8], and (iii) autonomous drone flight [22].

B. Domain Randomization with Adaptive Distributions

Ruiz et al. [23] proposed the meta-algorithm which is based
on a bilevel optimization problem highly similar to the one
of BayRn (1, 2). However, there are two major differences.
First, BayRn uses Bayesian optimization on the acquired
real-wold data to adapt the domain parameter distribution,
whereas “learning to simulate” updates the domain parameter
distribution using REINFORCE. Second, the approach in [23]
has been evaluated in simulation on synthetic data, except for
a semantic segmentation task. Thus, there was no dynamics-
dependent interaction of the learned policy with the real world.

With SPRL, Klink et al. [24] derived a relative entropy
RL algorithm that endows the agent to adapt the domain
parameter distribution, typically from easy to hard instances.
Hence, the overall training procedure can be interpreted as a
curriculum learning problem. The authors were able to solve
sim-to-sim goal reaching problems as well as a robotic sim-
to-real ball-in-a-cup task, similar to the one in this paper.
One decisive difference to BayRn is that the target domain
parameter distribution has to be known beforehand.

The approach called Active Domain Randomization
(ADR) [25] also formulates the adaption of the domain
parameter distribution as an RL problem where different
simulation instances are sampled and compared against a
reference environment based on the resulting trajectories. This

comparison is done by a discriminator which yields rewards
proportional to the difficulty of distinguishing the simulated
and real environments, hence providing an incentive to gen-
erate distinct domains. Using this reward signal, the domain
parameters of the simulation instances are updated via Stein
Variational Policy Gradient. Mehta et al. [25] evaluated their
method in a sim-to-real experiment where a robotic arm had to
reach a desired point. The strongest contrast between BayRn
and ADR is they way in which new simulation environments
are explored. While BayRn can rely on well-studied BO
with an adjustable exploration-exploitation behavior, ADR can
be fragile since it couples discriminator training and policy
optimization, which results in a non-stationary process where
distribution of the domains depends on the discriminator’s
performance.

Paul et al. [26] introduce Fingerprint Policy Optimization
which, like BayRn, employs BO to adapt the distribution of
domain parameters such that using these for the subsequent
training maximizes the policy’s return. At first glance the
approaches look similar, but there is a major difference in
how the upper level problem (1) is solved. Fingerprint Policy
Optimization models the relation between the current domain
parameters, the current policy and the return of the updated
policy with a GP. This design decision requires to feed the
policy parameters into the GP which is prohibitively expensive
if done straightforwardly. Therefore, abstractions of the policy,
so-called fingerprints, are created. These handcrafted features,
e.g., the Gaussian approximation of the stationary state distri-
bution, replace the policy to reduce the input dimension. The
authors tested Fingerprint Policy Optimization on three sim-to-
sim tasks. Contrarily, BayRn has been designed without the
need to approximate the policy. Moreover, we validated the
presented method in sim-to-real settings.

Yu et al. [9] intertwine policy optimization, system iden-
tification, and domain randomization. The proposed method
first identifies bounds on the domain parameters which are
later used for learning from the randomized simulator. The
suggested policy is conditioned on a latent space projection of
the domain parameters. After training in simulation, a second
system identification step is executed to find the projected
domain parameters which maximize the return on the physical
robot. This step runs BO for a fixed number of iterations and is
similar to solving the upper level problem in (1). The algorithm
was evaluated on the bipedal walking robot Darwin OP2.

In Ramos et al. [27], likelihood-free inference in combi-
nation with mixture density random Fourier networks is em-
ployed to perform a fully Bayesian treatment of the simulator’s
parameters. Analyzing the obtained posterior over domain
parameters, Ramos et al. showed that BayesSim is, in a sim-
to-sim setting, able to simultaneously infer different parameter
configurations which can explain the observed trajectories. The
key difference between BayRn and BayesSim is the objective
for updating the domain parameters. While BayesSim max-
imizes the model’s posterior likelihood, BayRn updates the
domain parameters such that the policy’s return on the physical
system is maximized. The biggest advantage of BayRn over
BayesSim is its ability to work with very sparse real-world
data, i.e. only the scalar return values.



VI. CONCLUSION

We have introduced Bayesian Domain Randomization
(BayRn), a policy search algorithm tailored to crossing the
reality gap. At its core, BayRn learns from a randomized
simulator while using Bayesian optimization for adapting the
source domain distribution during learning. In contrast to
previous work, the presented algorithm constructs a proba-
bilistic model of the connection between domain distribution
parameters and the policy’s return after training with these
parameters in simulation. Hence, BayRn only requires little
interaction with the real-world system. We experimentally
validated that the presented approach is able to solve two non-
linear robotic sim-to-real tasks. Comparing the results against
baseline methods showed that adapting the domain parameter
distribution lead to policies with higher median performance
and less variance. In order to improve the scalability of the
Bayesian optimization subroutine to higher numbers of domain
distribution parameters, one could for example incorporate
quantile Gaussian processes [28], which have shown to scales
up to problems with 60-dimensional input.
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APPENDIX A
MODELING DETAILS ON THE PLATFORMS

The Furuta pendulum (Figure 1) is modeled as an underac-
tuated nonlinear second-order dynamical system given by the
solution of

Jr+mpl? + impli(cos(a))2
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with the rotary angle 6 and the pendulum angle «, which
are defined to be zero when the rotary pole is centered and
the pendulum pole is hanging down vertically. While the
system’s state is defined as s = [0, «, 9, d]T, the agent receives
observations o = [sin(f) , cos(f) ,sin(a) , cos(a),6,a]". The
horizontal pole is actuated by commanding a motor volt-
age (action) a which regulates the servo motor’s torque
7 = km(a — km8)/Ry,. One part of the domain parameters
is sampled from distributions specified by in Table Ia, while
the remaining domain parameters are fixed at their nominal
values given in [17]. We formulate the reward function based
on an exponentiated quadratic cost

7 (8¢, ar) = exp (f (eIQet + atRat)) with
e = ([O T 0 O] —st) mod 2.

Thus, the reward is in range ]0, 1] for every time step.

The 4-DoF Barrett WAM (Figure 1) is simulated using
MuJoCo, wrapped by mujoco-py [29]. The ball is attached to
a string, which is mounted to the center of the cup’s bottom
plate. We model the string as a concatenation of 30 rigid bodies
with two rotational joints per link (no torsion). This specific
ball-in-a-cup instance can be considered difficult, since the
cups’s diameter is only about twice as large as the ball’s, and
the string is rather short with a length of 30 cm. Similar to
the Furuta pendulum, one part of the domain parameters is
sampled from distributions specified by in Table Ib, while
the remaining domain parameters are fixed at their nominal
values given in [17]. Since the feed-forward policy is executed
without recording any observations, we define a discrete
ternary reward function

1 if the ball is in the cup,
r(sr,ar) = ¢ 0.5 if the ball hit the cup’s upper rim,

0 else

where the final reward given by the operator after the rollout
(r(st,a¢) = 0fort < T) when running on the real system. We
found the separation in three cases to be helpful during learn-
ing and easily distinguishable from the others. While training
in simulation, successful trials are identified by detecting a
collision between the ball and a virtual cylinder inside the cup.
Moreover, we have access to the full state, hence augment the
reward function with a cost term that punishes deviations from
the initial end-effector position.

APPENDIX B
PARAMETER VALUES FOR THE EXPERIMENTS

Table II lists the hyper-parameters for all training runs
during the experiments in Section IV. The reported values
have been tuned but not fully optimized.

Table II: Hyper-parameter values for training the policies in
Section IV. The domain distribution parameters ¢ are listed
in Table L.

(a) swing-up and balance

Hyper-parameter Value
common
PolOpt PPO
policy / critic architecture FNN 64-64 with tan-h
optimizer Adam
learning rate policy 5.97e-4
learning rate critic 3.44e—4
PPO clipping ratio € 0.1
iterations nijger 300
step size At 0.01s

max. steps per episode 7' 600

min. steps per iteration 20T
temporal discount 0.9885
adv. est. trade-off factor A 0.965
success threshold J$U°¢ 375
Q diag(2e—1,1.0,2e—2,5e—3)
R 3e—3
real-world rollouts n. 5
UDR specific

min. steps per iteration 30T

SimOpt specific
max. iterations njger 15
DistrOpt population size 500
DistrOpt KL bound e 1.0
DistrOpt learning rate Se—4

BayRn specific
max. iterations 7ier max 15
initial solutions njy; 5

(b) ball-in-a-cup

Hyper-parameter Value
common
PolOpt PoWER
policy architecture RBF with 16 basis functions
iterations Njer 20
population size npop 100

num. importance samples nj; 10
init. exploration std oy w/12
min. rollouts per iteration 20

max. steps per episode T 1750
step size At 0.002 s
temporal discount y 1
real-world rollouts 7. 5
UDR specific
min. steps per iteration 30T
BayRn specific
max. iterations Njier 15
initial solutions 7 5
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