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Singularity-free Aerial Deformation by Two-dimensional Multilinked

Aerial Robot with 1-DoF Vectorable Propeller

Moju Zhao1, Tomoki Anzai1, Kei Okada1, Masayuki Inaba1

Abstract— Two-dimensional multilinked structures can ben-
efit aerial robots in both maneuvering and manipulation be-
cause of their deformation ability. However, certain types of
singular forms must be avoided during deformation. Hence, an
additional 1 Degrees-of-Freedom (DoF) vectorable propeller is
employed in this work to overcome singular forms by properly
changing the thrust direction. In this paper, we first extend
modeling and control methods from our previous works for
an under-actuated model whose thrust forces are not unidirec-
tional. We then propose a planning method for the vectoring
angles to solve the singularity by maximizing the controllability
under arbitrary robot forms. Finally, we demonstrate the
feasibility of the proposed methods by experiments where
a quad-type model is used to perform trajectory tracking
under challenging forms, such as a line-shape form, and the
deformation passing these challenging forms.

I. INTRODUCTION

Compared with traditional multirotors of the same size,

aerial deformability can benefit the aerial robot not only

in maneuvering in confined environments [1]–[3], but also

in aerial manipulation [4], [5]. Among various deformable

designs, the two-dimensional multilinked structure proposed

in our previous work [6] demonstrates advanced performance

in both maneuvering and manipulation. However, the main

issue of such a multilinked model is the singularity where

the controllability of one of three rotational Degrees-of-

Freedom (DoF) is lost with certain joint configurations, thus

preventing stable hover control. One typical singular form

is the line-shape form, where all rotors are aligned in the

same straight line, leading to zero rotational moment around

this line. Although the joint trajectory planning method

proposed by [7] can avoid singular forms during deformation,

advanced maneuvering, such as flight through long and

narrow corridors by deforming into a line form, cannot be

achieved. We found that a net force with variable direction

in a three-dimensional force space is the key to overcoming

the singularity. Then, [8] proposed a vectoring apparatus for

propellers that can generate a lateral component force with

variable direction; they also developed a prototype composed

of six links embedded with this propeller apparatus to

achieve flight stability in a fully-actuated manner. However,

the singularity issue is not addressed in this previous work.

Furthermore, the feasibility of such a vectoring apparatus for

model with less than six links, which is considered under-

actuated for fixed joint angles and fixed propeller vectoring

angles, has not been evaluated. Thus, in the current study,
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Fig. 1. Stable flight achieved by a two-dimensional multilinked aerial
robot with 1-DoF yaw-vectorable propeller based on the proposed modeling,
control, and planning methods. Without the vectorable propeller, these two
forms would be singular, since the rotational controllability would entirely
vanish, especially under the form of (B), where all rotors are aligned along
one straight line.

fully singularity-free aerial deformation, especially for such

an under-actuated model as shown in Fig. 1, is investigated

from the aspects of modeling, control, and planning.

In terms of the propeller vectoring apparatus used to gener-

ate a variable net force, most of the proposed designs allow a

rotor rotating around an axis perpendicular to the rotor shaft

[9]–[11]; this can be defined as a roll-vectoring apparatus.

However, a crucial shortcoming of such an apparatus is

that it cannot generate lateral force in arbitrary directions.

In contrast, the apparatus proposed by [8], named a yaw-

vectoring apparatus, has a vectoring axis perpendicular to

the plane of the two-dimensional multilinked model and

also has a rotor mount tilted from the vectoring axis at

a fixed angle to yield the lateral component force. It is

notable that, the vectoring angles cannot be easily used as a

control input, because the opposite lateral component force

demands the apparatus to rotate 180◦ back and forth at a

high rate, thereby making the flight significantly unstable.

Instead, these vectoring angles are considered configuration

parameters like the joint angles.

Regarding modeling and control, we treat the rotor speed

(i.e., thrust force) as the only control input; however, tilted

rotor mounts (and thus the propellers) indicate a full in-

fluence on the wrench space. The influence of such tilting

propellers on under-actuated models (e.g., four rotors) is

more challenging than that on fully-actuated models [12]–

[14]. Although [15] proposed a nonlinear model predictive

control method for under-actuated models, uncertain model

error is not allowed; consequently, robustness under singular

forms such as that in Fig. 1 is weak. Thus, modeling under

near-hover assumption and the cascaded control framework

proposed by [6] are applied in this work. However, a proper

orientation should be obtained for center-of-gravity (CoG)
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frame, which is always level in hover state. In addition, the

undesired lateral component force from the attitude control

should be suppressed, since the horizontally translational

motion should be controlled by the rotational motion.

In terms of planning for vectoring angles, [8] proposed

a method that jointly solves trajectories for the joint and

vectoring angles. The strength of this planning method is its

ability to find an effective joint trajectory between a start

and goal forms, thereby avoiding singular forms. However,

the multilinked model in this work should be singularity-

free, which means that planning vectoring angles for arbi-

trary forms is more important than planning joint trajectory.

Hence, a more robust planning method based on complexity

reduction for vectoring angles is developed in this work to

enable instant response to changes in joint angles.

The main contributions of this work compared with our

previous work [6]–[8] can be summarized as follows:

1) We present a modeling method for obtaining the hov-

ering thrust and a proper CoG frame for under-actuated

models with yaw-vectorable propellers.

2) We extend the cascaded control framework by adding

an additional cost term in the LQI based attitude

control to suppress the undesired lateral force.

3) We develop a real-time optimization-based configura-

tion planner for vectoring angles to achieve singularity-

free flight and deformation.

The remainder of this paper is organized as follows. The

design of the proposed multilinked model is presented in

Sec. II. The modeling and control methods are presented in

Sec. III and Sec. IV, respectively, followed by the planning

method for vectoring angles in Sec. V. We show the exper-

imental results in Sec. VI before concluding in Sec. VII.

II. DESIGN

A. Link Module

The link module, as shown in Fig. 2(A), contains a joint

part actuated by a servo motor at each end. All joint axes

are parallel, resulting in two-dimensional deformation.

On the other hand, there is a 1 DoF yaw-vectoring

apparatus at the center of the link module which employs

another servo motor under the rotor mount to rotate it

around the z axis as shown in Fig. 2(A), and we define the

rotating (vectoring) angle as ψ. Given that ψ is considered a
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Fig. 2. A: Structure of the link module consisting of a propeller yaw-
vectoring apparatus and link joints at each end.ψ is the vectoring angle
around the z axis, and q is the joint angle. B: The rotor and propeller
are tilted from the z axis at a fixed angle of β, and λ denotes the thrust
magnitude. C: Even when all links are aligned in the same straight line, the
moment around this line (which is equal to sin(β)λd) can still be generated
to avoid the control singularity under this form. d is the distance from the
propeller to the origin of the robot CoG.

configuration parameter but not a control input, a relatively

small servo motor without strong torque output can be used.

Thus the weight increase can be suppressed to some degree

compared with a model without such a vectoring apparatus.

Furthermore, there is a fixed tilting angle β between the

rotor-rotating axis and the z axis of the link module as shown

in Fig. 2(B) to enable a net force with variable direction in

the three-dimensional force space.

B. Decision on Propeller Tilting Angle

The propeller tilting angle β divides the thrust force into

the vertical component force cos(β)λ and the lateral com-

ponent force sin(β)λ. The former force is mainly used to

balance with gravity, which is related to the energy efficiency,

whereas the latter force has three aspects. First, it enhances

the overall yaw torque for all forms. Second, under the line-

shape singular form as shown in Fig. 1(B), it guarantees

the torque around the line with proper vectoring angles that

make thrust forces perpendicular to the line. Third, it affects

the horizontally translational motion, which is considered

a disturbance in the under-actuated model. Given that the

first aspect has a positive correlation with the second aspect,

we mainly focus on the second and third aspects. It is also

notable that a smaller β is preferred regarding the third

aspect. Then, we design the following optimization objective

to minimize β (i.e., the third aspect) with the consideration

of the energy efficiency and the guaranteed torque under the

line-shape form (i.e., the second aspect):

minβ, (1)

s.t. 1
cos(β) ≤ γ1,

4sin(β)d
l

≥ γ2. (2)

The first constraint term of (2) denotes the energy efficiency,

since the total thrust force needed to balance with gravity

is
∑

λi ≈ mΣg
cosβ

, where mΣ is the total mass. The second

constraint term is the ratio between the maximum torque

2sin(β)λmaxd around the singular line under the line-shape

form, and the approximated maximum torque λmaxl
2 around

the CoG under the normal form (i.e., joint angle qi = 90◦

for the four link model). l is the link length and is set as

0.6 m in our model. d is the distance from the CoG to the

propeller, as shown in Fig. 2(C), which is also critical for

generating the torque. Given that all batteries are attached

under the link rod, the CoG is relatively low, and sufficient

d (i.e., 0.1 m) is guaranteed.

Finally, we obtain the result of β = 0.34 rad ≈ 20◦ with

γ1 = 1.05 and γ2 = 0.2. This result indicates that a 5%

increase in thrust force is required to balance with gravity

compared with the model without a tiling angle, which can

however be considered relatively small and neglected.

III. MODELING

A. Notation

From this section, boldface symbols (e.g., r) denote vec-

tors, whereas non-boldface symbols (e.g., m or I) denote

scalars or matrices. The coordinate system in which a vector

is expressed is denoted by a superscript, e.g., {W}r express-

ing r with reference to (w.r.t.) the frame {W}. Subscripts



are used to express a target frame or an axis, e.g., {W}p{B}

representing a vector point from {W} to {B} w.r.t. {W},

whereas px denotes the x component of the vector p.

B. Wrench Allocation

As shown in Fig. 3, the wrench generated by each rotor

w.r.t. the frame {CoG} can be written as follows:

{CoG}fi = λi
{CoG}R{Fi}(q,ψ)b3, (3)

{CoG}τi =
{CoG}p{Fi}(q,ψ)×

{CoG}fi + κi
{CoG}fi,

= λi(
{CoG}p̂{Fi}(q,ψ) (4)

+ κiE3×3)
{CoG}R{Fi}(q,ψ)b3, (5)

where i = {1, 2, 3, 4}. q ∈ R3 and ψ ∈ R4 denote

the joint and vectoring angles, respectively. These variables

influence {CoG}R{Fi}(q,ψ) and {CoG}p{Fi}(q,ψ), which

are the orientation and the origin position of the rotor frame

{Fi} w.r.t the frame {CoG}. Note that the rotor frame {Fi}
is attached to the rotor mount, and the thrust force λi is along

the z axis of {Fi}. b3 is a unit vector
[

0 0 1
]T

and

κi is the rate regarding the rotor drag moment. ·̂ denotes the

operation from a vector to a skew-symmetric matrix, while

E3×3 is a 3× 3 identity matrix.

Using (3) and (4), allocation from the thrust force λ =
[λ1 λ2 λ3 λ4]

T
to the total wrench can be given by:

(

{CoG}f
{CoG}τ

)

=

4
∑

i=1

(

{CoG}fi
{CoG}τi

)

= Q(q,ψ)λ, (6)

where Q(q,ψ) ∈ R6×4.

C. Definition of CoG Frame

The origin of the frame {CoG} w.r.t the root link frame

{L1} can be straightforwardly written as:

{L1}p{CoG} =
1

mΣ

4
∑

i

mLi

{L1}pCi
(q,ψ), (7)

where mLi
is the mass of the i-th link (i.e., mΣ =

∑

mLi
).

{L1}pCi
(q,ψ) is the position of the center-of-mass of the

i-th link (i.e., Ci) w.r.t. the root link frame {L1}.

Regarding the frame orientation, given the near-hover

assumption in the control method presented in Sec. IV, the

frame {CoG} is required to be level (horizontal) in the ideal

hover state. Mathematically, the frame {CoG} should satisfy

the following equations to find the static thrust force λs:

Qt(q,ψ)λs = mΣg, (8)

Qr(q,ψ)λs = 0, (9)

where
[

Qt(q,ψ)
Qr(q,ψ)

]

= Q(q,ψ);Qt(q,ψ), Qr(q,ψ) ∈ R3×4,

g = [0 0 g]
T

is aligned on the z axis of the frame {W}.

For the multilinked model in [6]–[8], the z axis of

the frame {CoG} is set to be perpendicular to the two-

dimensional multilinked plane, since the thrust forces are

unidirectional, which satisfies (8) and (9). Then the direction
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Fig. 3. Kinematics model of the multilinked structure from the perspective
view (A) and top view (B). The frame {W} is an inertial reference frame
where the gravity is along the z axis. The frame {C} and {CoG} have
the same origin at the center-of-mass of the whole model. The orientation
of the frame {C} is identical to the frame {L1}, as shown in (B), while
the orientation of the frame {CoG} is specially designed as discussed in
Sec. III. C. The frame {Fi} is attached to each rotor mount, and the thrust
force λi yields along the z axis of {Fi} as shown in (A). Ci in (B) is the
center-of-mass of the i-th link module.

of the x and y axes is usually set to be identical with that

of the root link {L1}. However, for the proposed model in

this work, the thrust force is not unidirectional, and such an

orientation of {CoG} can hardly satisfy (8) since Qt(q,α)
has full influence on the force space. Nevertheless, there must

exist a rotation matrix R for Qt(q,ψ) and Qr(q,ψ) that

satisfies RQt(q,ψ)λs = mΣg, RQr(q,ψ)λs = 0. Thus,

R is the key to defining the orientation of {CoG} for our

model.

Now, we assume that the correct orientation of {CoG}
is unknown. Here we introduce a candidate frame {C} that

has the same orientation as that of {L1} and also satisfies

(7) as shown in Fig. 3. Then, by deriving (3) ∼ (6) with

{C} instead of {CoG}, we can obtain different allocation

matrices Q
′

t(q,ψ) and Q
′

r(q,ψ). Furthermore, we relax the

constraints of (8) and (9) for {C} by only focusing on the

z axis force and three-dimensional torque as follows:

(

Q
′

tz(q,ψ)

Q
′

r(q,ψ)

)

λ
′

=
[

1 0 0 0
]T
, (10)

whereQ
′

tz(q,ψ) ∈ R1×4 is the third row vector ofQ
′

t(q,ψ).

Note that, λ
′

can be easily obtained from (10) by calculating

the inverse matrix of the matrix in the left side. The first

element in the right side of (10) denotes 1 N on the z axis

of the force Q
′

t(q,ψ)λ
′

, and there must exist non zero values

in both the x and y axes. Then through calculation of the

norm ‖Q
′

t(q,ψ)λ
′

‖, the static thrust λs can be derived by:

λs =
mΣg

‖Q
′

t(q,ψ)λ
′‖
λ

′

. (11)

Further, the rotation matrix between the frame {C} and

the target frame {CoG} can be written by:

{CoG}R{C}Q
′

t(q,ψ)λs = mΣg. (12)

By introducing Euler angles α = [αx αy αz]
T

and

[fx fy fz]
T
= Q

′

t(q,ψ)λs, {CoG}R{C} can be further given



by:

{CoG}R{C} = RY (αy)RX(αx), (13)

αx = tan−1(fy, fz), (14)

αy = tan−1(−fx,
√

f2
y + f2

z ), (15)

where RX(·), RY (·) denote the rotation matrix, which only

rotates along the x and y axis, respectively, with certain

angles.

In summary, the position and the orientation of the frame

{CoG} can be obtained from (7) and (13) respectively. It is

notable that (13) reveals that the z axis of the frame {CoG}
is not necessarily perpendicular to the two-dimensional mul-

tilinked plane in most of case as shown in Fig. 3, and thus the

two-dimensional multilinked plane is not necessarily level in

the ideal hover state.

Finally, the allocation matrix Q(q,ψ) in (6) can be

rewritten by:

Q(q,ψ) =

(

Qt(q,ψ)
Qr(q,ψ)

)

=

(

{CoG}R{CoG}Q
′

t(q,ψ)
{CoG}R{CoG}Q

′

r(q,ψ)

)

. (16)

IV. CONTROL

The control framework in this work is similar to that in our

previous study [6], which contains a model approximation

followed by a cascaded control flow as shown in Fig. 4. The

main difference between the previous and current works is

the extended cost function for optimal control in the attitude

controller of this study.

A. Approximated Dynamics

In this work, the multilinked model is regarded as a time-

variant rigid body, since the joint motion is assumed to

be sufficiently slow, as was assumed in our previous work

[7]. Thus, the dynamics regarding the frame {CoG} can be

simplified as follows:

m∑({W}r̈{CoG} + g) =
{W}R{CoG}Qt(q,ψ)λ, (17)

{CoG}ω{CoG} ×
{CoG}I∑(q,ψ){CoG}ω{CoG}

+ {CoG}I∑(q,ψ){CoG}ω̇{CoG} = Qr(q,ψ)λ, (18)
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Fig. 4. Proposed control framework for multilinked aerial robot.
This framework involves dynamics model approximation and a cascaded
control flow, including position and attitude controllers. The reference
of this cascaded control flow is the desired 3D position {W}rdes

{CoG}

and the desired yaw angle {W}αdes

{CoG}z
. The inputs are the position

{W}r{CoG}, velocity {W}r{CoG}, Euler angles {W}α{CoG}, angular

velocity {CoG}ω{CoG}, inertial parameters m∑, I∑, static thrust λs, and

the allocation matrix Qr(q,ψ); the output is the desired thrust λdes.

where Qt(q,ψ) and Qr(q,ψ) are the allocation matrices

from (16). {W}r{CoG} and {W}R{CoG} are the position

and orientation, respectively, of the frame {CoG} w.r.t.

the world frame {W}. These states can be calculated

based on the forward kinematics from the states of the

root link (i.e., {W}r{L1}, {W}ṙ{L1}, and {W}R{L1}), while

the angular velocity {CoG}ω{CoG} can be obtained by
{CoG}ω{CoG} = {CoG}R{C}

{L1}ω{L1}. The total inertial

matrix {CoG}I∑(q,ψ) w.r.t. the frame {CoG} can also be

calculated from the forward-kinematics process.

Further, we assume that most of flight tasks are per-

formed under near-hover condition. Thus, the approximation

between the differential of the Euler angles and angular

velocity {W}α̇{CoG} ≈ {CoG}ω{CoG} is available, since
{W}α{CoG}x

≈ 0, {W}α{CoG}y
≈ 0. Then, the rotational

dynamics expressed in (18) can be further linearized under

the near-hover condition:

{CoG}ω{CoG} ×
{CoG}I∑(q,ψ){CoG}ω{CoG}

+{CoG}I∑(q,ψ){W}α̈{CoG} = Qr(q,ψ)λ. (19)

Finally, (17) and (19) are the basic dynamics used in the pro-

posed control framework. It is also notable that Qt(q,ψ)λ
in (17) has the full influence on the 3D force space, which

is the main difference from a unidirectional multirotor, but

is also the main issue to be solved in our control method.

B. Attitude Control

Given that it is necessary to suppress the lateral force

from the attitude control part in the cascaded control flow,

the optimal control (LQI [16]) is applied. LQI implements

integral control to compensate for unstructured but fixed

uncertainties, thereby helping enhance the robustness, espe-

cially under singular forms. We also augment the original

LQI framework in [7] by adding an additional cost term.

We first derive the rotational dynamics of (19) in the

manner of the original LQI framework as follows:

ẋ = Ax+Bλ+D(I−1
Σ ω × IΣω), (20)

A ∈ R9×9, B ∈ R9×4, D ∈ R9×3,

x =
[

ex ėx ey ėy ez ėz
∫

ex
∫

ey
∫

ez
]T

∈ R9,

[ex ey ez]
T
= {W}αdes

{CoG} −
{W}α{CoG}

[ėx ėy ėz]
T
= {CoG}ωdes

{CoG} −
{CoG}ω{CoG}.

A and D are sparse matrices, where

only A12, A34, A56, A71, A83, A95, D21, D42,

and D63 are 1, and B =
[

04×1 −B1 04×1 −B2 04×1 −B3 04×3

]T
,

[

B1 B2 B3

]T
= I−1

Σ Qr(q,ψ).
Regarding the cost function for the state equation (20), we

extend our previous work [7], which has an additional term

for suppressing the translational force, particularly the lateral

force, caused by the attitude control:

J =
∫∞

0

(

x̄TM x̄+ λTNλ
)

dt, (21)

N =W1 +QT
t (q,ψ)W2Qt(q,ψ), (22)



where the second term in (22) corresponds to the mini-

mization of the norm of the force generated by the at-

titude control, since ‖{CoG}f‖2 = {CoG}fT{CoG}f =
λTQt(q,ψ)

TQt(q,ψ)λ from (6). The diagonal weight ma-

trices M , W1, and W2 balance the performance of the

convergence to the desired state, suppression of the control

input, and suppression of the translational force generated by

the attitude control.

Then, a feedback gain matrix Kx can be obtained by

solving the related algebraic Riccati equation (ARE) driven

by the state equation (20) and the cost function (21). Finally,

the desired control input regarding the attitude control λdes
att

can be given by:

λdes
att = Kxx+Q#

r (q,ψ)ω × IΣω, (23)

where (·)# denotes the MP-pseudo-inverse of a full-rank

matrix.

C. Position Control

The position control is developed based on the method

presented in [17], which first calculates the desired total force

based on the common PID control, then converts the desired

total force to the desired thrust vector and the desired roll

and pitch angles. The desired total force can be given by:

fdes = mΣ(KPer +KI

∫

erdt+KDėr + r̈
des), (24)

where er = {W}rdes{CoG} −
{W}r{CoG}.

Then the desired roll and pitch angles can be given by:

{W}αdes
{CoG}x

= atan−1(−f̄y,
√

f̄2
x + f̄2

z ), (25)

{W}αdes
{CoG}y

= atan−1(f̄x, f̄z), (26)
[

fx fy fz
]T

= R−1
z ({W}α{CoG}z

)fdes,

where RZ(·) is a rotation matrix that only rotates along the

z axis with a certain angle. {W}αdes
{CoG}x

and {W}αdes
{CoG}y

are then transmitted to the attitude controller as shown in

Fig. 4.

On the other hand, the desired collective thrust force can

be calculated as follows:

fdes
T = ({W}R{CoG}b3)

Tfdes, (27)

where b3 is a unit vector
[

0 0 1
]T

, and {W}R{CoG} is

the orientation of the frame {CoG}.

Using (27), the allocation from the collective thrust force

to the thrust force vector can be given by:

λdes
pos =

λs

m∑g
fdes
T , (28)

where λs is the static thrust force vector as expressed by (11),

which only balances with the gravity force and thus does not

affect the rotational dynamics. Eventually, the final desired

thrust force for each rotor should be the sum of outputs from

the attitude and position control: λdes = λdes
att + λ

des
pos.

D. Stability

Given that the whole control framework is based on the

near-hover assumption, the desired roll and pitch angles sent

to the attitude control in the hovering task would converge to

zero under ideal conditions. This implies that the output of

the attitude control λdes
att and the lateral force generated by the

attitude control Qt(q,ψ)λ
des
att would converge to zero, and

λdes
pos would converge to m∑g . Therefore, convergence to a

fixed position can be guaranteed. Furthermore, the integral

control in both position and attitude control can compensate

for the unstructured but fixed uncertainties other than gravity.

V. CONFIGURATION PLANNING

A. Singular Form

According to [6], there are several types of singular forms

in multilinked models without tilting propellers (i.e., β = 0).

In the case of quad-types, there are two types of singular

forms, and they are shown in Fig. 1(A) and Fig. 1(B).

The group of singular forms like Fig. 1(A) can be ex-

pressed as:

S1 := {q ∈ R3 | q1 = −q3 = q, q2 = 0;−
π

2
≤ q ≤

π

2
}.

(29)

Under such forms, Qr(q,ψ) in (19) cannot be a full-rank

matrix if β = 0.

The second group of singular forms like Fig. 1(B) can be

expressed as:

S2 := {q ∈ R3 | q1 = −q2 = q3;−
π

2
≤ q1 ≤

π

2
}. (30)

Under such forms, all rotors are aligned along one straight

line, and controllability around this line is entirely lost if

β = 0.

B. Rotational Controllability

Controllability regarding rotational motion is an important

factor for checking the validity under a form with certain

joint angles q. A quantity called feasible control torque con-

vex VT (q,ψ) was introduced by [14] to validate rotational

controllability in all axes, which is given by:

VT (q,ψ) :=

{{C}τ (q,ψ) ∈ R3|{C}τ (q,ψ) =

N
∑

i=1

λivi(q,ψ), 0 ≤ λi ≤ λmax},

(31)

where vi(q,ψ) = ({C}p̂{Fi}(q,ψ) +
κiE3×3)

{C}R{Fi}(q,ψ)bz according to (4).

Inside the convex VT (q,ψ), the guaranteed minimum

control torque τmin(q,ψ) is further introduced, which has

following property:

‖{C}τ (q,ψ)‖ ≤ τmin(q,ψ) ⇒
{C}τ (q,ψ) ∈ VT (q,ψ), (32)

Using the distance dτij(q,ψ) which is from the origin

[0 0 0]
T

to a plane of convex VT (q,ψ) along its normal



vector
vi×vj

‖vi×vj‖
, τmin(q,ψ) can be given by:

dτij(q,ψ) =

N
∑

k=1

max(0, λmax
(vi × vj)

T

‖vi × vj‖
vk), (33)

τmin(q,ψ) = min
i,j∈I

dτij(q,ψ), (34)

where I := {1, 2, · · · , N}. Evidently, τmin(q,ψ) > 0 is the

condition to guarantee rotational controllability in all axes.

However, τmin in the singular groups S1 and S2 would shrink

to zero if β = 0.

C. Optimization of Vectoring Angles

If β > 0, singular forms can be resolved by proper

vectoring angles ψ ensuring τmin(q) > 0. In addition to

maximizing controllability regarding the rotational motion,

it is also important to minimize the collective thrust force

which corresponds to the energy efficiency, as well as the gap

among thrust forces which corresponds to the maximization

of the control margin. Then, an optimization problem with

an integrated cost function is designed as follows:

max
ψ

(w1τmin(q,ψ) +
w2

‖λs(q,ψ)‖
+

w3

σ2(λs(q,ψ))
), (35)

s.t. αmin ≤ αx(q,ψ) ≤ αmax, (36)

αmin ≤ αy(q,ψ) ≤ αmax, (37)

where ‖λs(q,ψ)‖ and σ2(λs(q,ψ)) are the norm and

variance, respectively, of the hovering thrust vector obtained

from (11). Given that the flight is assumed to be near-

hovering, the hovering thrust is chosen. w1, w2, and w3

are the positive weights to balance between the rotational

controllability, energy efficiency, and control margin. On the

other hand, αx(q,ψ), αy(q,ψ) in (36) and (37) are the roll

and pitch angles between the frames {C} and {CoG}, and

they are obtained from (14) and (15). These constraints are

introduced to suppress the difference between {CoG}R{C}

in (13) and the identity matrix E3×3, thereby making the

multilinked model as level as possible in the hovering state.

Fig. 5 shows several results of optimization in case of

a quad-type model as shown in Fig. 7. The guaranteed

minimum control torque (i.e., radius of the blue sphere) is

sufficiently large even under singular forms such as those in

Fig. 5(B) and Fig. 5(C).

D. Continuity of Vectoring Angles During Deformation

The optimization problem presented in (35) ∼ (37) cannot

guarantee the continuity of the change in the vectoring angles

during deformation. Thus, the following additional temporal

constraints regarding the vectoring angles are added to the

optimization problem:

ψ̄i(t− 1)− δψ ≤ ψi(t) ≤ ψ̄i(t− 1) + δψ, (1 ≤ i ≤ N), (38)

where δψ is a small constant value, and ψ̄(t − 1) =
[

ψ̄1(t− 1) ψ̄2(t− 1) · · · ψ̄N (t− 1)
]T

denotes the optimal

vectoring angles at t − 1. These constraints are not applied

for the initial form (i.e., t = 0) with the aim of performing

a global search for the initial form.

For most of joint angles q, there are dual sets of vectoring

angles that have a similar performance: a primal solution

ψ̄(q) calculated from (35) ∼ (38), and a dual solution

ψ̄(q)
′

≈
[

ψ̄1(q) + π ψ̄2(q) + π · · · ψ̄N (q) + π
]T

indicat-

ing almost opposite directions in each vectoring apparatus.

However, there exist corner cases like Fig. 6, where the

guaranteed minimum control torque shrinks to zero with the

reversed vectoring angles ψ̄(q)
′

. Such a set of joint angles is

defined as qcorner. The following are important properties of

qcorner: a) The opposite set, namely, −qcorner, also belongs

to the corner case. b) ψ̄(qcorner) is continuous with the

invalid solution ψ̄
′

(−qcorner), but is not continuous with

the valid solution ψ̄(−qcorner). Thus, linear transition from

qcorner to −qcorner (qi(t) = qcorneri − q̇t; t ∈
[

0,
2qcorneri

q̇

]

) is impossible. This also implies an impossible deformation

involving a wider linear transition from the form of Fig. 5(A)

to the opposite form. Nevertheless, this opposite form can

still be arrived from the form of Fig. 5(A) via roundabout

paths (e.g., passing through the form of Fig. 5(B)). Further-

more, the linear transition (i.e., Fig. 5(A) → Fig. 5(C)) is

also possible, since one of the two solutions of vectoring

angles in Fig. 5(A) is continuous with ψ̄(qcorner) where the

robot must pass during the transition.

VI. EXPERIMENTS

A. Robot Platform

A quad-type multilinked robot platform is used in this

work as shown in Fig. 7. An onboard computer with an Intel

Atom CPU is equipped to process the proposed flight control

and planning for the vectoring angles. The whole weight is

4.7 kg, leading to a 10 min flight. Detailed specifications

regarding the link module and the internal system can be

found in our previous work [8]. In addition, a motion capture

system is applied in our experiment to obtain the robot state

(i.e., {W}r{L1},
{W}ṙ{L1},

{W}R{L1},
{L1}ω{L1}).

The attitude control weight matrices for LQI in (21) and

(22) are M = diag(1100, 80, 1100, 80, 100, 50, 10, 10, 0.5),

(A) (B)

ìí [Nm]

ìì [Nm]
ìë [Nm]

(C)

Fig. 5. Optimization results in case of a quad-type model as shown in
Fig. 7. Light blue convex denotes the feasible control torque convex VT , and
the radius of the dark blue sphere denotes the guaranteed minimum control
torque τmin. (A) The optimal vectoring angles under the normal form (i.e.,

qi =
π

2
rad) are ψ̄ = [3.14 0.12 3.09 0.00]T rad, and τmin is 4.81 Nm;

(B) The optimal vectoring angles under the form in the singular group S1

(i.e., q =
[

−π

2
0 π

2

]T
rad) are ψ̄ = [−0.69 − 1.82 2.73 − 1.52]T rad,

and τmin is 3.28 Nm; (C) The optimal vectoring angles under the form in the

singular group S2 (i.e., qi = 0 rad) are ψ̄ = [1.39 − 1.23 − 1.77 1.77]T

rad, and τmin is 2.38 Nm.



(A) (B)

ìí [Nm]

ìì [Nm]

ìë [Nm]

Fig. 6. Corner case (qi = 0.11 rad) that does not have dual solutions

for vectoring angles. (A) The result (ψ̄ = [1.88 − 1.04 − 1.93 1.41]T

rad) obtained from (35) ∼ (38); the guaranteed minimum control torque is
3.85 Nm (i.e., the blue sphere in the subplot). (B) The form with the same
joint angles and reversed (dual) vectoring angles (i.e., ψi = ψ̄ + π). The
guaranteed minimum control torque is zero (i.e., no blue sphere in the plot).

(A)

(B)

(C)

(D)

Fig. 7. A: Quad-type multilinked platform used in this work. B: Onboard
computer (AAEON UP-BOARD with Intel Atom x5-Z8350 quad core CPU)
to process the flight control and planning for vectoring angles. C: Propeller
vectoring apparatus actuated by a servo motor (Dynamixel MX28AR)
under the propeller and rotor. D: Joint module actuated by a servo motor
(Dynamixel MX28AR).

W1 = diag(1, 1, 1, 1), and W2 = diag(20, 20, 20), while the

position control gains in (24) are KP = diag(2.3, 2.3, 3.6),
KI = diag(0.02, 0.02, 3.4), and KD = diag(4.0, 4.0, 1.55).

For the nonlinear optimization problem (35) ∼ (37), the

search space is four-dimensional in our quad-link type. A

nonlinear optimization algorithm COBYLA [18] is used with

w1 = 1.0, w2 = 2.0, w3 = 0.01, αmax = −αmin = 0.01,

and the average solving time in the onboard computer is

approximately 0.05s (i.e., 20Hz). The joint velocity for the

aerial deformation is set at 0.25 rad/s, implying that the

maximum change in the joint angle in the planning interval

is 0.0125 rad. The search range δψ in (38) was set relatively

large (i.e., 0.2 rad) so it can rapidly keep up with changes in

the model configuration, especially around singular forms.

B. Experimental Results

1) Circular Trajectory Tracking under Line-shape Form:

We first evaluated the stability during trajectory tracking

under the line-shape form of Fig. 1(B). We designed a 2D

circular trajectory regarding the frame {CoG} whose the

radius is 1 m and period is 30 s, as shown in Fig. 8(A).

Besides, we also designed the desired yaw angle to make

the robot rotate 360◦, as shown in Fig. 8(B). Tracking errors

can be obtained by comparing the desired trajectory (dashed

line) and the real trajectory (solid line) in each subplot of

Fig. 8. The maximum error in the lateral direction was 0.3

m at 8 s, as shown in Fig. 8(A), when the robot was very

close to a wall, while the maximum error of the yaw angle

was 0.22 rad at 1 s, as shown in Fig. 8(B). The RMS of

the tracking errors regarding the 3D position and the yaw

angle are [0.087, 0.094, 0.024] m and 0.112 rad, respectively.

The overall tracking stability is confirmed, demonstrating the

effectiveness of the proposed control method not only for

hovering but also for dynamic motion.

0.0
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Fig. 8. Plots of the motion performed to follow a circular trajectory in
terms of position (A), yaw angle (B), linear velocity (C), and z angular
velocity (D). The motion can be found in our attached video.

2) Large-scale Deformation: We then evaluated the sta-

bility during a large-scale deformation as shown in Fig. 9,

where the joint angle linearly changed from π
2 to −π

2 one

after another as shown in Fig. 10(C). The robot passed a

singular form of Fig. 1(A) at 4©. The maximum position

errors were [0.3 0.45 0.07] m and the maximum yaw angle

error was 0.38 rad as shown in Fig. 10(A), which increased

significantly around 4©. We consider that the self-interference

caused by the airflow from the tilting propellers acting on the

other robot components became significantly larger during

25 s ∼ 33 s. If the robot is under a fixed form, such a self-

interference would be constant; thus, can be compensated.

However fluctuating interference during deformation cannot

be easily handled by our proposed flight control. Although

slowing down the joint motion can be a straightforward

solution, it is also possible to model such self-interference

and consider it in the optimization problem of vectoring

angles, which is an important future work. Furthermore,

the vectoring angles shown in Fig. 10(B) changed continu-

ously, demonstrating the feasibility of our proposed planning

method.

3) Deformation to the Line-shape Form: We also eval-

uated the stability during deformation to the line-shape

form, as shown in Fig. 11. The tracking errors shown in

Fig. 12(A) were smaller than the tracking errors during

deformation in Fig. 9, where the largest deviation in the

lateral direction was -0.2 m at 3©. After the deformation, the

robot kept hovering under the line-shape form (i.e., 8s ∼).

The small deviation in all axes indicates convergence to the

desired fixed position and yaw angle, which demonstrates

the robustness provided by our proposed control method. On

the other hand, Fig. 12(B) also demonstrates the continuous

change in the vectoring angle. In summary, the feasibility of

the proposed methods is successfully demonstrated through

these experiments.



VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present the achievement of singularity-

free flight for a two-dimensional multilinked aerial robot by

employing 1-DoF yaw-vectorable propellers. We extended

the modeling and control method based on our previous

work to address the net force with variable direction owing

to the vectorable propeller. Then, an optimization-based

planning method for the vectoring angles was developed to

maximize the guaranteed minimum torque under arbitrary

robot forms. The feasibility of the above methods is verified

by experiments involving a quad-type model, including the

trajectory tracking under the line-shape form, as well as the

deformation passing such a challenging form.

Maneuvering and manipulation involving singularity-free

deformation will be performed in future work. On the other

hand, a crucial issue remaining in this work is the fluctuating

self-interference caused by the airflow from the tilting pro-

peller acting on the other parts of the robot, which influences

stability during deformation. An enhanced planning method

for vectoring angles that can avoid such self-interference

based on a kinematics model will, thus, be developed.
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