
Information-driven Gas Source Localization Exploiting Gas and Wind Local
Measurements for Autonomous Mobile Robots

Pepe Ojeda*, Javier Monroy and Javier Gonzalez-Jimenez

Abstract— Gas source localization (GSL) by an olfactory
robot is a research field with a great potential for applications
but also with numerous unsolved challenges, particularly when
the search must take place in realistic, indoor environments
that feature obstacles and turbulent airflows.

In this work, we present a new probabilistic GSL method
for a terrestrial mobile robot that revolves around the prop-
agation of local estimations throughout the environment. By
exploiting the geometry of the environment as the basis for this
propagation, we avoid relying on analytical dispersion mod-
els, eliminating the need to assume controlled environmental
conditions.

Simulated and real experiments are presented in different
indoor environments featuring multiple rooms and turbulent
flows, demonstrating the suitability of our approach for locating
the emitting gas source.

Index Terms— Autonomous Agents, Probabilistic Inference,
Environment Monitoring and Management, Robotic Olfaction,
Gas Source Localization.

I. INTRODUCTION

Gas Source Localization (GSL) is the problem of deter-
mining the coordinates of the point from which a gas (more
generally, a volatile substance) is being released. It is a
problem with numerous practical applications, such as the
control of accidental emissions of dangerous gases or the
detection of illegal substances [1].

Among the multiple strategies proposed to tackle this
problem, Mobile Robotic Olfaction (MRO) offers an interest-
ing perspective by proposing the use of gas sensing devices
(usually referred to as electronic noses or e-noses [2], [3])
to endow a mobile robot with gas detection capabilities. The
use of autonomous mobile robots to monitor gases and locate
their sources has been extensively studied in recent times [4],
[5], and shows promising results despite still facing many
unsolved challenges.

Two are the main issues that must be faced when estimat-
ing the location of a gas source based on measurements taken
by a mobile robot. The first problem is related to the com-
plexity of gas dispersion phenomena, particularly in realistic
indoor environments, where the presence of obstacles and a
turbulent airflow heavily influence the way gases disperse.
Most state-of-the-art GSL methods are designed to work in
open spaces[4], with no barriers to the wind transportation
of volatile substances – conditions under which the gas
dispersion can accurately be described by computationally
feasible analytical models. Because of the higher complexity
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of the dispersion in indoors environments, their performance
under those conditions is quite unsatisfactory and the search
often fails [6], [7].

The second problem is related to the available sensory
information, particularly the scarcity of the data that can
be gathered by the robot. The usual setup for a single
mobile robot consists of a bi-dimensional anemometer and
an array of gas sensors (e-nose), which provide the wind
vector and the gas concentration for one specific point of the
environment at each time instant. Such limited information
implies that, even if the environmental conditions allow for
the use of predictive methods, there will be a significant
degree of uncertainty in any generated prediction.

In the present work we propose a probabilistic GSL
algorithm designed to work under the challenging conditions
of realistic indoor environments. Because of the previously
discussed problems, the algorithm we propose is not based
on the use of an analytical gas dispersion model, but instead
on using the geometry of the environment to heuristically
estimate the trajectory followed by detected gas patches. To
perform this estimation, we assume that an airflow strong
enough to cause advection exists, although we do not attempt
to analytically model this effect.

We use a lattice of cells to model the connectivity of
distant areas of the map. The estimations for cells in the
vicinity of the robot position are generated from local wind
measurements, and then these short-range estimations are
propagated through unoccupied cells as a way to evaluate the
probability of far away cells of containing the gas source.

These estimations are then used to guide the movements
of the robot during the search. We propose and compare
two different strategies for this purpose, a naive best-first
approach that always navigates towards the areas with the
highest estimated probability of being the source; and an
infotactic search that attempts to maximize the information
gain in every step by also estimating what measurements
would be obtained if the robot moved to unexplored loca-
tions.

II. RELATED WORK

In this section we briefly review some of the most no-
table approaches to GSL, discussing their main advantages
and limitations. For the sake of convenience, we have
divided these into two main groups: reactive algorithms,
and estimation-based (predictive) algorithms. This is by no
means an exhaustive taxonomy, but merely serves to put
our proposal into context. For more detailed state-of-the-art
surveys see [4], [8].
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A. Reactive Algorithms

Reactive GSL is a popular approach that reduces the
search to instantaneous navigation decisions. The objective
of these algorithms is to have the robot physically reach the
gas source, not to infer its location from the measurements.

These strategies are usually based on moving in the
general direction of the source, without trying to determine
its exact location. Usually, the direction of the wind [9] or the
gas concentration gradient [10] are used to guide the move-
ments of the robot on a moment-to-moment basis, according
to the specific movement pattern dictated by the algorithm.
The behavior of certain insects has been an important source
of inspiration for the design of these movement patterns [8].

Beyond the simplicity of reactive approaches, they come
with some limitations. One of the main problems is the
fact that, since no estimations of the source location are
generated, these algorithms do not offer a way to perform
source declaration, and would require the use of additional
techniques for that purpose. Also, the lack of any form of
memory can lead to behavioral loops, causing the search to
be slower or even fail.

B. Estimation-Based Algorithms

Algorithms based on probabilistic inference offer a more
sophisticate approach to source location, trying to exploit
sensory information not only to guide the movements of the
robot, but also to deduce the state of the environment [11].
By doing so, it is possible to actually offer candidate so-
lutions and measurable certainty, which greatly simplifies
the problem of source declaration. Maintaining probabilistic
estimations based on the history of acquired observations
also serves as a sort of indirect memory, allowing decisions
to be made in accordance with all the previously obtained
measurements.

Despite these advantages, the development of such strate-
gies is more complex, since they require some sort of
observation model to generate estimations from sensory
information. It is often the case that these observation models
are derived from analytical dispersion models [11], [12]. This
approach presents two main problems: (1) models that offer
accurate results for complex environmental conditions are
very computationally expensive, and (2) in order to infer a
source location from these models, some of the conditions of
the environment (such as the release rate of the source) need
to be known. If specific dispersion patterns are assumed,
the latter can be tackled by dynamically estimating the
necessary parameters, through what is usually referred to
as Source Term Estimation (STE) [13], [14]. The former
poses a more fundamental problem, since the existence of
obstacles or a turbulent airflow means it would be necessary
to use Computational Fluid Dynamics (CFD) simulations to
achieve acceptable results [15], and these are so computa-
tionally expensive that running them on-line is by no means
feasible. A common compromise is to make assumptions
about the environmental conditions that allow for the use of
a computationally lighter analytical models [16], but these
can run into problems when said assumptions are not met.

The use of pre-computed simulations as the basis for
the observation model has been proposed as well [17] to
avoid the previously mentioned problems. It is a reasonable
solution for environments with a limited set of known
possible configurations (windows that can be opened or
closed, specific potential points of gas release, etc.), but
requires extensive preparation before they can be applied,
and needing to run multiple simulations means it runs into
scalability issues when the number of possible environmental
configurations is large.

An interesting alternative observation model was proposed
by Li et al. [18], where the source location is inferred
by estimating the path followed by gas patches before
reaching the robot. This approach avoids the use of a
gas dispersion model but, because of the limited sensory
information, still relies on making assumptions about the
environmental conditions (i.e. homogeneous airflow) which
are only acceptable in open spaces. Our approach attempts
to avoid these problems, in particular the requirement of
controlled environmental conditions, by limiting the use of
sensory information to generating short-range estimations,
and then exploiting the knowledge about the geometry of
the environment to estimate the source probabilities at far
away areas.

III. PROPOSED ESTIMATION METHOD

The algorithm presented in this work follows the standard
structure of estimation-based GSL. Starting at a specific
location, the robot (1) takes a new measurement: gas and
wind in our case, (2) updates the state estimation according to
their agreement with observation models and (3) determines
where to move next. This loop continues until the source is
deemed to have been found (source declaration), which is
determined by a convergence threshold.

The observation model we propose in this work uses the
trajectory-estimation concept discussed in section II-B. For
this purpose, we discretize the environment in a number of
equally-sized cells, and whenever a patch of gas is detected,
we estimate the probability of any given cell being part of the
path the gas patch has traversed before reaching the robot.
This discretization allows us to model the geometry of the
environment as an occupancy grid, and thus make certain
that the paths we estimate the gas patches to have followed
are feasible.

Estimating these paths is not a trivial task, since the
sensory information that is available to the robot is strictly
local. For this reason, the process of generating estima-
tions is divided in two steps (Fig. 1): using the sensory
measurements to produce local estimations (section III-A)
and propagating the local estimations to the rest of the
environment (section III-B). Since the algorithm is designed
for indoors environments, we can assume that the direction
and conditions of the airflow, even if they are unstable, do
not drastically change from one instant to another, as there
are –unknown– fixed points where air can enter or exit the
environment. Thus, we can combine these new estimations
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(a) Probabilities of the neighboring
cells to be in the gas path are gen-
erated from the wind vector.

(b) In a second stage, local proba-
bilities are propagated through the
grid to all cells.

Fig. 1: Each of the points in these figures corresponds to the center
of a cell, its color represents the probability: red being the highest
and blue the lowest.

with previous ones to produce an accumulated estimation of
the probability of each cell containing the source.

A. Local Estimations

When the robot detects a gas patch, a ”local” estimator
quantifies for each of the neighboring cells the probability
that the gas has traversed through it before reaching the robot
cell.

Let cij denote the cell in the i-th row and j-th column of
the grid. Defining the set V of cells adjacent to the current
robot position which are not occupied by an obstacle, we
calculate the probability of each cell in V to have contained
the detected gas patch at a previous time. To do so we rely
on the measured local wind direction and the angle formed
by the vector that goes from the robot position to the center
of the cell (ω). Specifically, we model this probability as
a wrapped normal distribution, since the probability of a
given cell being the one that contained the gas patch in the
previous instant is maximal for the cell directly upwind, and
decreases symmetrically for values of ω that are further from
the upwind direction.

pt(cij |zt = 1, θt) = p(ω) ∼WN(θ, σ2
h) (1)

where zt represents the discretized gas measurement at time
step t, with zt = 1 indicating that the gas concentration is
above a given threshold (i.e. a hit) and zt = 0 otherwise (i.e.
a miss); and θt is the averaged upwind direction measured at
time step t, expressed as an angle in the frame of reference
of the environment. The standard deviation (σh) of this
distribution is a parameter that must be set in accordance
with the reliability of the sensors and the stability of the
airflow. Empirically, we have noted that values within the
range 0.5-2 radians do not change much the behavior of the
algorithm

When the robot does not measure any gas ((zij = 0)),
the wind measurement does not offer much information. An
example is illustrated in Fig. 2a, which shows a common
scenario where a miss cannot be interpreted as the source
is not upwind. As a consequence, the naive approach of
reversing the direction of the estimations does not produce
reliable estimations. Instead, in the event of a miss, it will be
considered that the robot has moved in the wrong direction
since the last gas hit was detected, lowering, this way, the
probabilities of cells in that same direction (Fig. 2b). Again,

(a) The robot fails to measure gas
after a movement (marked by the
black dot trail and the red arrow).

(b) Cells in the direction of
the movement are estimated a
lower probability of containing the
source.

Fig. 2: When a miss occurs, it cannot be inferred that the source is
not upwind. In this example, it occurs because the robot has just
exited the gas plume on its side.

these estimations are modeled through a wrapped normal
distribution:

pt(cij |zt = 0, φt) = p(ω) ∼WN(φ, σ2
m) (2)

This expression does not use the wind direction (θt). Instead
the normal distribution is centered at the direction of the
vector from the current robot position to the location of the
last hit (φt). Since hits tend to provide more information
about the source location than misses, the value of σm will
need to be higher than the value of σh. We have empirically
observed that values of σm = σh + 0.5 produce good
results. This makes the steepness of the probability gradient
calculated after a miss lower —compared to the one caused
by a hit—, reducing the effect of that measurement on the
accumulated probability of of each cell containing the source
after the update step (section III-C).

B. Propagation of Estimations

Due to the local nature of the sensory measurements
available to the robot, it is not possible to evaluate cells
that are far from the robot following the same principle we
use for neighbor cells. For that reason, instead of applying
expressions 1 and 2 to all cells in the grid, we propagate the
estimations made on the cells in V using information about
the geometry of the environment.

Specifically, cells that are not in V will be assigned the
probability of containing the source of the cell c ∈ V to
which the shortest free path exists. In practice, this is done
through a 8-neighbor (or 4-neighbor) propagation algorithm
(Algorithm 1).

Since the propagation occurs through free cells only –as
these are the only cells returned by the neighbors function–,
it is possible to produce results that conform to the geometry
of the environment, accounting for the presence of obstacles.
The computational complexity of this procedure is linear in
the number of cells n of the map (O(n)), since each cell
can be reached at most 8 times per iteration of the algorithm
(once for each of its neighbors). In practice, since not all
cells are free, the number of steps will often be smaller.

This propagation is, in essence, just an algorithmic way
of generalizing the idea of producing ”upwind estimations”
to any map geometry. Fig. 3a shows how, in the absence
of obstacles, all cells within a certain angle upwind are
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Algorithm 1: Propagation algorithm
activeSet = ∅;
closedSet = ∅;
openSet= V;
while | openSet |> 0 do

activeSet=openSet;
closedSet.insertAll(activeSet);
openSet= ∅;
for cell ∈ activeSet do

closedSet.insert(cell);
for n ∈ neighbors(cell) do

if n 6∈ closedSet & n 6∈ openSet then
p(n|zt) = p(cell|zt);
openSet.insert(n);

else if n 6∈ closedSet then
pt(n) = max(p(n|zt), p(cell|zt));

end
end

end
end

assigned the highest probability of containing the source.
This is a very intuitive result, since our local estimations
(that gas did travel through the immediate neighbor in the
upwind direction before reaching the robot) matches what
would be expected if gas was originating from any of those
cells. However, the existence of obstacles means that just
comparing the upwind vector to the angle from the robot to
the cell would not accurately reflect this intuition, as shown
by figure 3b.

C. Updating Estimations

After all the cells have been assigned a probability of
containing the source based on the last observation, the ac-
cumulated probabilities for the cells are recursively updated.
Assuming that the sequence of observations satisfies the
Markov Property and applying Bayes’ Theorem of Condi-
tional Probability, the new probability can be calculated as
follows:

p(cij |z1:t) = p(cij |zt, z1:t−1)

=
p(zt|cij , z1:t−1) · p(cij |z1:t−1)

p(zt|z1:t−1)

=
p(zt|cij) · p(cij |z1:t−1)

p(zt)

=
p(cij |zt) · p(zt) · p(cij |z1:t−1)

p(zt) · p(cij)

=
p(cij |zt) · p(cij |z1:t−1)

p(cij)

(3)

In this work we assume there is no initial knowledge about
which cells are most likely to contain the source, so the prior
probability of containing the gas source is identical for all
cells: ∀ij; p(cij) = 1/n, where n is the number of free cells
in the environment. Therefore, since p(cij) is a constant, this
expression can be rewritten as:

p(cij |z1:t) ∝ p(cij |zt) · p(cij |z1:t−1) (4)

(a) In an empty environment, the
propagation of local probabilities
causes a radial distribution.

(b) The resulting pattern changes
with the shape of the map, better
reflecting the paths estimated for
the gas patches.

Fig. 3: The propagation algorithm allows the resulting probability
distribution of the source location to adapt to the specific shape of
the environment.

After a new measurement is included in the accumulated
probability estimations, the probabilities of the cells are
normalized so ΣiΣjp(cij |z1:t) = 1.

IV. MOVEMENT STRATEGY

Once the robot finishes updating the probabilities of the
cells it must choose where to move to in order to take
the next measurement. We propose and compare two such
navigation strategies. The first one has the robot move
towards of the area with highest probability of containing the
gas source. The second strategy revolves around the concept
of Infotaxis [19], using existing probabilistic techniques to
predict the wind vector and gas concentration in nearby
cells, and moving the robot to the cells where the highest
information gain is expected.

A. Best-First Navigation

Since the environment has been discretized into a grid, and
grids can easily be represented by graphs, any graph-search
algorithm can be applied. The strategy we propose is a best-
first search, using the accumulated estimated probability of
containing the source as an evaluation of the cell.

Each step, the robot adds all neighboring cells that have
not yet been visited to the list of candidate next positions
(the open set). This list persists from iteration to iteration,
and so all unchosen candidates from previous iterations will
be considered again. Out of all the positions in the list
of candidates, the robot chooses the one with the highest
estimated probability of containing the gas source. This new
position is taken out of the list of candidates for future
iterations and is not considered to be visited again.

The emergent behavior resembles that of a reactive plume-
tracking method, where the robot moves upwind until it
fails to measure gas. Yet, using the accumulated probability
to guide the movements of the robot makes the strategy
more consistent than basing the movement only on the last
measurement. Thus, a single observation that contradicts the
pre-existing estimations will not cause the direction that is
currently being explored to be discarded.

Expanding the list of candidate moves with the immediate
neighbors of the currently occupied cell means the robot can
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only advance one cell at a time in the direction it is exploring,
while the not-selected candidates still remain eligible for
future iterations, thus the robot can backtrack eventually.

B. Infotactic Navigation

Infotaxis [19] offers an interesting approach for designing
sophisticate movement strategies. The functioning principle
of Infotaxis is the maximization of the expected information
gain; that is, the robot will move to the point in which it
estimates to gain the most information possible.

The original infotaxis algorithm attempts to maximize
the reduction of the Shannon’s entropy of the probability
distribution of the source location as a way to optimize
information gain. More recently [12] the use of the Kullback-
Leibler Divergence (KLD) has been proposed for as a
measure of information gain. The use of KLD equates to
considering that any change in the probability distribution
of the source location is a net gain of information, even if
the resulting entropy is higher. This has the added benefit of
letting the distribution to escape from local minima of the
entropy. This is the technique we adopt here.

We denote the set of candidate moves —generated as
explained in section IV-A— as M . For each m ∈ M ,
the estimated probability of a gas hit occurring in the new
position is gm, and the estimated wind vector to be measured
is wm. We refer to the current probability distribution of the
source location as P t, and to the distribution that results
in the next time step after a given measurement as P t+1

z ,
where z is a pair (hit/miss, wind vector) that represents
the measurement. The expected information gain Ψ of each
movement m ∈M is thus:

Ψ(m) =gm ·KLD(P t, P t+1
hit,wm

)

+ (1− gm) ·KLD(P t, P t+1
miss,wm

)
(5)

This calculation requires estimating the gas and wind mea-
surements the robot would obtain in each of the candidate
new locations. Several techniques have been proposed to
estimate the gas concentration of nearby cells from local
measurements [20], [21]; however, because most of them are
designed to generate a map of the gas distribution —rather
than to guide GSL algorithms— they offer powerful tools
for interpolating sparse measurements in the areas already
visited, but are not as effective for predicting the state of the
distribution in areas yet to be explored (i.e. extrapolation).

In this work, we use the probabilistic estimations of the
source location to infer the probability of measuring a gas
hit in a given cell. Since the probability of a cell being the
source of the gas has been calculated by estimating the path
that previously measured patches of gas have followed, it can
also be interpreted as the probability of that given cell having
contained gas, and therefore can be utilized to estimate the
likelihood of obtaining a gas hit in that same position.

Estimating the wind vectors that would be measured
in other cells challenging, since our algorithm does not
assume a stable, homogeneous airflow. The application of
Computational Fluid Dynamics (or CFD) techniques for this
purpose poses a problem: the complexity of the required

(a) (b)

Fig. 4: (a) Shows an example of the fully 3-dimensional environ-
ments used for simulated experiments. (b) Shows an image of the
robot taken during the real-world experimentation.

calculations makes them intractable for a real-time search.
For this purpose we employ a technique proposed by Monroy
et al. [22], [23], based on Gaussian Markov Random Fields
to extrapolate the wind vectors to nearby points of the
environment from the available local measurement and the
geometry of the environment, that is, a local map around the
robot location.

V. EXPERIMENTAL VALIDATION

A. Setup

For the simulations we use GADEN [24], a 3-D Gas Dis-
persion Simulator (GDS) specifically designed for Robotic
Olfaction (Fig. 4a). The real-world experiment was carried
out in the interior of a house, using only natural ventilation.

Fig. 5a shows a top-down view of the setup of each of
the simulated experiments. Experiment A takes place in a
room with a central obstacle that breaks the gas plume and
causes it to bend. Experiment B takes place under heavily
turbulent airflow that prevents the formation of an actual
plume. Experiment C takes place in a larger environment
that features a more complex geometry with multiple rooms,
with a source that releases gas at a steady rate allowing
the formation of a continuous plume. Experiment D takes
place in that same environment, but with a lower release
rate. Figure 5b shows the floor map of the environment in
which the real-world experiment was carried out.

For each set of environmental conditions, we test our
GSL algorithm, presented in section III, with both of the
navigation strategies presented in section IV. Additionally,
to have a reference to help evaluate these results, we also
perform the search with Surge-Cast Plume Tracking, one
of the most popular state-of-the-art GSL algorithms, which
has shown to produce good results in a wide range of
environmental conditions [7].

For our algorithm, a given run is considered to be a
success if the final declared source position is within a certain
distance of the ground-truth source location (0.5m for the
simulated experiments, 1m in the real-world experiment);
for Surge-Cast, it is considered to be a success if the robot
physically reaches that same radius around the source before
300s (600s for the real-world experiment). The difference in
this criteria is motivated by the fact that Surge-Cast, being a
purely reactive method, does not preform source declaration.
The robot used for the experiments is equipped with a
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(a) Top-down view of the setup for each of the simulated experiments,
and examples of the paths followed by the robot.

(b) Floor map of the environment in which the real-world experiment
was carried out.

Fig. 5: Set of environmental conditions under which the algorithms were tested.

Algorithm Success
rate

Navigation
time (s)

Declaration
time (s)

Cells
explored Error (m)

Best-First 100%
µ = 78.95 µ = 95.54 µ = 22.9 µ = 0.37

σ = 8.65 σ = 12.80 σ = 2.21 σ = 0.09

Infotaxis 100%
µ = 99.26 µ = 125.30 µ = 27.46 µ = 0.17

σ = 10.32 σ = 8.81 σ = 1.62 σ = 0.08

Surge-Cast 100%
µ = 70.50

- - -
σ = 9.22

(a) Results for experiment A.

Algorithm Success
rate

Navigation
time (s)

Declaration
time (s)

Cells
explored Error (m)

Best-First 93%
µ = 146.94 µ = 155.24 µ = 25.39 µ = 0.86

σ = 43.25 σ = 43.36 σ = 6.12 σ = 1.52

Infotaxis 97%
µ = 158.49 µ = 168.54 µ = 26.03 µ = 0.62

σ = 33.29 σ = 34.26 σ = 4.58 σ = 0.95

Surge-Cast 30%
µ = 160.94

- - -
σ = 44.02

(b) Results for experiment B.

Algorithm Success
rate

Navigation
time (s)

Declaration
time (s)

Cells
explored Error (m)

Best-First 100%
µ = 81.38 µ = 108.18 µ = 21.03 µ = 0.27

σ = 27.74 σ = 29.67 σ = 4.50 σ = 0.11

Infotaxis 93%
µ = 119.69 µ = 144.58 µ = 22.79 µ = 0.38

σ = 22.01 σ = 25.30 σ = 2.82 σ = 0.13

Surge-Cast 66%
µ = 151.87

- - -
σ = 42.28

(c) Results for experiment C.

Algorithm Success
rate

Navigation
time (s)

Declaration
time (s)

Cells
explored Error (m)

Best-First 90%
µ = 160.59 µ = 192.00 µ = 29.22 µ = 0.88

σ = 25.02 σ = 25.74 σ = 3.01 σ = 1.19

Infotaxis 93%
µ = 158.63 µ = 194.77 µ = 24.25 µ = 0.69

σ = 30.63 σ = 40.61 σ = 4.49 σ = 0.79

Surge-Cast 77%
µ = 129.02

- - -
σ = 23.20

(d) Results for experiment D.

TABLE I: Results obtained in the simulated experiments.

Algorithm Success
rate

Navigation
time (s)

Declaration
time (s)

Cells
explored Error (m)

Best-First 90%
µ = 273.18 µ = 310.75 µ = 28.00 µ = 0.76

σ = 44.96 σ = 41.03 σ = 2.79 σ = 0.27

Infotaxis 80%
µ = 220.76 µ = 254.98 µ = 23.12 µ = 0.80

σ = 13.64 σ = 31.65 σ = 1.53 σ = 0.33

Surge-Cast 60%
µ = 496.21

- - -
σ = 46.67

TABLE II: Results obtained in the real-world experiment.

photoionization gas detector (PID) and a 2-D anemometer,
both in the real-world experiments and in simulations.

The gas used in all experiments is ethanol. For the pur-
poses of reproducibility, all the source code and configuration
files of the simulated environments (source release rate,
characteristics of the airflow, parameters of the algorithm,
etc.) are available in an online open repository1.

B. Results
Simulated experiments were carried out 30 times for each

combination of algorithm and environment, and the real
1
https://github.com/MAPIRlab/Gas-Source-Localization

world experiment was carried out 10 times per algorithm.
Results are shown in tables I and II. Column ”Navigation
time” shows how long it takes for the robot to reach a 0.5m
radius around the source location, and column ”Declaration
time” shows how long before the algorithm converges and a
final estimation of the source location is declared. Column
”Error” shows how far the declared source position (i.e.
the center of the declared cell) is from the ground-truth on
average, including failed runs.

It can be observed that, in all cases, our proposed method
obtains a success rate equal or greater than that of Surge-
Cast, though the time required to reach the source in suc-
cessful runs is not necessarily better. Both of these results
can be attributed to the fact that our algorithm does have a
memory of past states: after losing the gas plume, the robot
can easily backtrack to the point where gas was last found,
and it is less prone to changing the direction of exploration
after a single miss, which makes the search more consistent;
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however, this also means it might take a longer time for the
robot to adapt to an actual change in the direction of the
plume, sometimes needing to explore several empty cells
before making a turn.

It must also be considered that there is a certain degree
of survivorship bias in the time results. If an algorithm often
fails at regaining a lost plume, the runs that are most likely
to succeed are the ones in which the robot never strays far
from the gas plume, which are the fastest.

In the case of the real-world experiment it must also be
taken into account that navigation through narrow spaces is
challenging [25], and the robot must often waste time re-
computing the path or executing recovery behaviors. Our
algorithm shows a significantly better average time than
Surge-Cast mainly because the existence of the cell centers
as navigation waypoints greatly reduces the effect of this
problem, which is not directly related to the search strategy.

Despite the high success rate, it should be pointed out
that when our algorithm fails to declare the correct source
position it is often several meters off, not being able to
provide an approximate location with reliability.

Both proposed movement strategies show similar results,
although the infotactic variant is generally able to converge
to the final estimated location after exploring fewer cells.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have presented a new GSL algorithm
based on estimating the paths followed by gas patches,
proposing a grid-based framework as a way to generate
estimations that are consistent with the geometry of the envi-
ronment and without assuming any environmental condition.

The results obtained from a set of experiments are encour-
aging, with a high success rate under all tested environmental
conditions. Still, further testing and comparisons with similar
strategies would be necessary to more accurately analyze the
performance of the algorithm. Several lines are proposed
for future work, including the inclusion of more sophisti-
cate GDM techniques for measurement predictions in the
infotactic search; and the use of more complex environment
representations, such as Hilbert Maps [26], which may facili-
tate the modification of the probability propagation procedure
to account for the three-dimensionality of the environment
and the adaptation of the algorithm to work with on-line
mapping.
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[6] J. D. Rodrı́guez, D. Gómez-Ullate, and C. Mejı́a-Monasterio, “On
the performance of blind-infotaxis under inaccurate modeling of the
environment,” European Physical Journal: Special Topics, vol. 226,
no. 10, pp. 2407–2420, 2017.

[7] P. Ojeda, J. Monroy, and J. Gonzalez-Jimenez, “An evaluation of
gas source localization algorithms for mobile robots,” in International
Conference on Applications of Intelligent Systems, no. 24, 2020.

[8] G. Kowadlo and R. A. Russell, “Robot odor localization: A taxonomy
and survey,” International Journal of Robotics Research, vol. 27, no. 8,
2008.

[9] T. Lochmatter and A. Martinoli, “Tracking Odor Plumes in a Laminar
Wind Field with Bio-inspired Algorithms,” in Experimental Robotics,
2009, vol. 54.

[10] R. A. Russell, A. Bab-Hadiashar, R. L. Shepherd, and G. G. Wallace,
“A comparison of reactive robot chemotaxis algorithms,” Robotics and
Autonomous Systems, vol. 45, no. 2, nov 2003.

[11] T. Wiedemann, D. Shutin, V. Hernandez, E. Schaffernicht, and A. J.
Lilienthal, “Bayesian gas source localization and exploration with a
multi-robot system using partial differential equation based modeling,”
in International Symposium on Olfaction and Electronic Nose, 2017.

[12] M. Hutchinson, C. Liu, and W. H. Chen, “Information-Based Search
for an Atmospheric Release Using a Mobile Robot: Algorithm and
Experiments,” IEEE Transactions on Control Systems Technology,
2018.

[13] F. Rahbar, A. Marjovi, and A. Martinoli, “Design and performance
evaluation of an algorithm based on source term estimation for odor
source localization,” MDPI Sensors, vol. 19, no. 3, 2019.

[14] M. Hutchinson, H. Oh, and W. H. Chen, “A review of source term
estimation methods for atmospheric dispersion events using static or
mobile sensors,” Information Fusion, vol. 36, 2017.

[15] S. Sklavounos and F. Rigas, “Validation of turbulence models in heavy
gas dispersion over obstacles,” Journal of Hazardous Materials, vol.
108, no. 1-2, apr 2004.

[16] T. Wiedemann, A. J. Lilienthal, and D. Shutin, “Analysis of model
mismatch effects for a model-based gas source localization strategy
incorporating advection knowledge,” MDPI Sensors, 3, vol. 19, 2019.

[17] C. Sánchez-Garrido, J. Monroy, and J. Gonzalez-Jimenez, Probabilis-
tic Estimation of the Gas Source Location in Indoor Environments by
Combining Gas and Wind Observations, 2018.

[18] J. G. Li, Q. H. Meng, Y. Wang, and M. Zeng, “Odor source localization
using a mobile robot in outdoor airflow environments with a particle
filter algorithm,” Autonomous Robots, vol. 30, no. 3, 2011.

[19] M. Vergassola, E. Villermaux, and B. I. Shraiman, “’Infotaxis’ as a
strategy for searching without gradients,” Nature, 7126, 445, 2007.

[20] J. Monroy, J. L. Blanco, and J. Gonzalez-Jimenez, “Time-variant gas
distribution mapping with obstacle information,” Autonomous Robots,
vol. 40, no. 1, jan 2016.

[21] S. Asadi, H. Fan, V. H. Bennetts, and A. J. Lilienthal, “Time-
dependent gas distribution modelling,” Robotics and Autonomous
Systems, vol. 96, 2017.

[22] J. Monroy, M. Jaimez, and J. Gonzalez-Jimenez, “Online estimation
of 2d wind maps for olfactory robots,” in International Symposium on
Olfaction and Electronic Nose, 2017.

[23] A. Gongora, J. Monroy, and J. Gonzalez-Jimenez, “Joint estimation
of gas & wind maps for fast-response applications,” Applied Mathe-
matical Modelling, 2020.

[24] J. Monroy, V. Hernandez-Bennetts, H. Fan, A. Lilienthal, and
J. Gonzalez-Jimenez, “GADEN: A 3D gas dispersion simulator for
mobile robot olfaction in realistic environments,” MDPI Sensors,
vol. 17, no. 7, 2017.

[25] F.-A. Moreno, J. Monroy, J. R. Ruiz-Sarmiento, C. Galindo, and
J. Gonzalez-Jimenez, “Automatic waypoint generation to improve
robot navigation through narrow spaces,” MDPI Sensors, 20, 1, 2020.

[26] F. Ramos and L. Ott, “Hilbert maps: Scalable continuous occupancy
mapping with stochastic gradient descent,” The International Journal
of Robotics Research, vol. 35, no. 14, pp. 1717–1730, 2016.

Authors’ accepted manuscript: IEEE Robotics and Automation Letters (RAL), 2021. 
The final publication is available at: http://dx.doi.org/10.1109/LRA.2021.3057290

http://mapir.isa.uma.es/mapirwebsite/index.php/mapir-downloads/papers/284
http://mapir.isa.uma.es/mapirwebsite/index.php/mapir-downloads/papers/284

	Introduction
	Related Work
	Reactive Algorithms
	Estimation-Based Algorithms

	Proposed Estimation Method
	Local Estimations
	Propagation of Estimations
	Updating Estimations

	Movement Strategy
	Best-First Navigation
	Infotactic Navigation

	Experimental Validation
	Setup
	Results

	Conclusions and Future Work
	References



