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Abstract— Existing neural network-based autonomous sys-
tems are shown to be vulnerable against adversarial attacks,
therefore sophisticated evaluation on their robustness is of
great importance. However, evaluating the robustness under the
worst-case scenarios based on known attacks is not comprehen-
sive, not to mention that some of them even rarely occur in the
real world. In addition, the distribution of safety-critical data
is usually multimodal, while most traditional attacks and eval-
uation methods focus on a single modality. To solve the above
challenges, we propose a flow-based multimodal safety-critical
scenario generator for evaluating decision-making algorithms.
The proposed generative model is optimized with weighted like-
lihood maximization and a gradient-based sampling procedure
is integrated to improve the sampling efficiency. The safety-
critical scenarios are generated by efficiently querying the task
algorithms and a simulator. Experiments on a self-driving task
demonstrate our advantages in terms of testing efficiency and
multimodal modeling capability. We evaluate six Reinforcement
Learning algorithms with our generated traffic scenarios and
provide empirical conclusions about their robustness.

I. INTRODUCTION

Robustness and safety are crucial factors to determine
whether a decision-making algorithm can be deployed in the
real world [1]. However, most of the data collected from
simulations or in the wild are skewed to redundant and highly
safe scenarios, which leads to the long tail problem [2].
Furthermore, a self-driving vehicle has to drive hundreds
of millions of miles to collect safety-critical data [3], re-
sulting in expensive development and evaluation phases.
Meanwhile, a large number of safe Reinforcement Learning
(RL) algorithms [4] have been proposed recently, yet the
evaluation of these algorithms mostly use uniform sampling
scenarios, which have been proven to be insufficient due to
poor coverage of rare risky events.

Adversarial attack [5], [6] is widely used to obtain specific
examples when assessing the robustness of the model. This
method only addresses extreme conditions, thus it does
not provide comprehensive performance evaluations of the
system. Researchers [7], [8] point out that there will always
be loopholes in a neural network (NN) that can be attacked,
hence, testing at different stress levels is deemed to provide
more information about the robustness of the system. On
the other hand, although the perturbation is limited during
the attack, there is no guarantee that obtained samples are
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Fig. 1. Examples of multimodal safety-critical traffic scenarios. For each
vehicle, there is a two-mode distribution of cyclist’s spawn point that leads
to high probability of collision. Pink trajectories represent samples from the
distributions.

likely to occur in the real-world. It is a waste of resource to
request robots to pass the tests that are unlikely to happen
in practice.

The real-world scenarios are complicated with a huge
number of parameters, and risk scenarios do not always
happen within certain modality [9]. Multimodal distribution
is a more realistic representation, for example, accidents
could happen in different locations for a self-driving car as
shown in Fig. 1. Though previous works [10], [11] tried to
search the risk scenarios under the RL framework, they only
use the single-mode Gaussian distribution policy, leading
to the over-fitting and unstable training problems. Covering
diverse testing cases provides a more accurate comparison
of algorithms. Even if a robot overfits to one specific risk
modality, it will fail to handle other potential risk scenarios.
To the best of our knowledge, few people have explored the
multimodal estimation of safety-critical data.

In this paper, we use a flow-based generative model to
estimate the multimodal distribution of safety-critical sce-
narios. We use the weighted maximum likelihood estimation
(WMLE) [12] as the objective function, where the weight
is related to the risk metric so that the log-likelihood of the
sample will be approximately proportional to the risk level.
We treat the algorithm that we want to evaluate as a black
box, then get the risk value through the interaction with
the simulation environment. To increase the generalization
of generated scenarios, our generator also has a conditional
input, so that the generated samples will be adaptively
changed according to characteristics of the task.

We model the whole training process as an on-policy
optimization framework which shares the same spirit as
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Cross Entropy Method (CEM) [13], and we propose an
adaptive sampler to improve the sample efficiency. Under this
framework, we can dynamically adjust the region of interest
of the sampler according to the feedback of the generator.
The adaptive process is guided by the gradient estimated
from the Natural Evolution Strategy (NES) method [14].
During the training stage, the sampler focuses on the unex-
plored and risky areas, and finally completes the multimodal
modeling. We also consider the distribution of real-world
data when designing the metric of risk to ensure that the
generated data has a high probability of occurrence in the
real world.

We carried out extensive experiments on the decision-
making task of autonomous driving in an intersection en-
vironment. A safety-critical generator is trained, analyzed,
and compared with traditional methods. Our generator out-
performs others in terms of the efficiency and multimodal
covering capability. We also evaluate the robustness of sev-
eral RL algorithms and claim that our generator is more
informative than uniform sampling methods. In summary,
the contribution is three-fold:
• We propose a multimodal flow-based generative model

that can generate adaptive safety-critical data to effi-
ciently evaluate decision-making algorithms.

• We design an adaptive sampling method based on
black-box gradient estimation to improve the sample
efficiency of multimodal density estimation.

• We evaluate a variety of RL algorithms with our
generated scenarios and provide empirical conclusions
that can help the design and development of safe
autonomous agents.

II. RELATED WORK

A. Deep generative model

Our method is based on deep generative models. The
current popular generative models are mainly divided into
three categories: normalizing flow [15] and autoregressive
model [16] directly maximize the likelihood, Variational
Auto-encoder (VAE) [17] optimizes the approximate likeli-
hood using variational inference, and Generative adversar-
ial network [18] implicitly computes the likelihood with
a discriminator. The essence of these methods is to fit
a distribution with parametric models that maximizes the
likelihood according to the empirical data. In this paper, our
data is collected from on-policy exploration. We select the
flow-based model as the building block since we want to
optimize the weighted likelihood directly and easily sample
from the model.

B. Adversarial Attack

Another topic that is closely related to ours is the ad-
versarial attack, which reduces the output accuracy of the
target model by applying small disturbances to the original
input samples. According to the information from the target
model, this method falls into two types: white-box attack
and black-box attack. Our method assumes that the internal
information of the task algorithm cannot be obtained, so we

are more relevant to the second one. This kind of method
can be further divided into two mainstreams: substitute
model [19] and query-based model [20]. The former is to
train a completely accessible surrogate model to replace
the target model, while the latter is based on the query of
the target model to estimate the optimal attack direction.
The NES gradient estimation method used in this paper has
shown promising results in the latter method [21].

C. Safety-critical Scenario Generation

Some previous works have used the generative model to
conduct safety-critical scenarios search. [22] modifies the last
layer of a generative adversarial imitation learning model to
generate different driving behaviors. [23] and [24] generate
different levels of risky data by controlling the latent code
of VAE. Besides, some frameworks [10], [11], [25] combine
RL and simulation environment to search for data that
satisfies specific requirements. However, they only consider
single-modal Gaussian policy. Adaptive stress test [26], [27]
is also a kind of methods using the Monte Carlo Tree
Search and RL to generate collision scenarios. Most of these
methods use the Gaussian distribution policy to describe the
result of searching, without considering the case of multiple
modality. In addition, lots of literatures borrow the idea
from evolution algorithms [28], reinforcement learning [29],
Bayesian optimization [30], and importance sampling [31] to
generate adversarial complex scenarios, resulting in diverse
directions and platforms. In previous works, [32] is the most
similar to this paper. They use the multilevel splitting method
[33] to gradually extract risk scenarios by squeezing the
searching area. However, it is sensitive to level partition
and the efficiency of Monte Carlo Markov Chain (MCMC)
method is limited by query times and data dimension.

D. Sampling Methods

In online decision-making, especially RL tasks, explo-
ration has always been a popular topic. The adaptive sampler
proposed in this paper can also be categorized into this
field. For the simple multi-arm bandit problem, traditional
solutions are Upper Confidence Bound (UCB) [34] and
Thompson sampling [35]. Recently, exploration methods
based on curiosity [36], and information gain [37] also cause
much attention. Also, works like [38] are based on the
disagreement of ensemble models. To some extent, all these
methods aim at modeling the environment and the explored
area, so as to guide the sampler with the desired direction.

The gradient information usually facilities samplers faster
convergence. Hamiltonian Monte Carlo (HMC) is a variant
of MCMC method that is more efficient than vanilla random
walk counterparts. Motivated by this, our proposed adaptive
sampler also use a black-box estimator to obtain the gradient
of a non-differential target function.

III. PROPOSED METHOD

A. Notation and Preliminaries

The variable x ∈ X represents parameters that build a
scenario, for instance, the initial position of a pedestrian
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Fig. 2. Diagram of proposed framework.

or the weather conditions in the self-driving context. The
variable y ∈ Y represents the properties of the task, such
as the goal position or target velocity. H(µ|x,y) is the
task algorithm that takes the scenario observation and task
condition as input and outputs a decision policy µ ∈ M.
With a risk metric r : X × M → R, each scenario is
corresponding to a value that indicates the safety under H .
For simplification, we omit the notation µ in r(x,µ|y).

Instead of exploring the extreme scenarios that output low
r(x|y) as in adversarial attack field, we aim at estimating
a multimodal distribution p(x|y) where the log-likelihood
is proportional to the value of risk measure. Then we can
efficiently generate scenarios that have different risk levels by
sampling from p(x|y). The condition y follows a distribution
p(y). A sampler π(x|y) is used to collect training data. We
also assume real-world data of similar scenarios is accessible
and has a distribution q(x). The pipeline of our proposed
evaluation method is shown in Fig. 2. We explain the details
of three learnable modules in following sections.

B. Pre-trained Prior Model

Firstly, we consider the probability that each scenario
happens in real-world to make the result practical. For that,
we pre-train a generative model q(x;ψ) to approximate the
distribution of the real data D. The objective of the training
is maximizing the following log-likelihood:

ψ̂ = argmax
ψ

Ex∼D log q(x;ψ) (1)

We select RealNVP [39], a flow-based model to implement
q(x;ψ) for exact likelihood inference. In flow-based model,
a simple distribution p(z) is transformed to a complex
distribution p(x) by the change of variable theorem. Suppose
we choose z ∼ N (0,1) to be the simple distribution.
Then we have the following equation to calculate the exact
likelihood of x:

p(x) = p(z)

∣∣∣∣∂z∂x
∣∣∣∣ = p(f(x))

∣∣∣∣∂f(x)∂x

∣∣∣∣ (2)

where we have an invertible mapping f : X → Z . For more
details about the flow-based model, please refer to [39].

After training, scenarios can be generated by x = f−1(z)
where z is sampled from N (0, σ). A smaller σ will make
the samples more concentrated, therefore generated scenarios
will have higher likelihood. Since our model is trained with
WMLE, the high likelihood samples are also corresponding

to high risk. Details about the network structure and hyper-
parameters can be found in Appendix.

C. Generator

We formulate the safety-critical data generation as a den-
sity estimation problem. The traditional way to estimate the
multimodal distribution p(x|y) by a deep generative model
is maximizing the likelihood of data. To integrate the risk
information, we solve the problem by WMLE [12]. For one
data point xi, we have:

L(xi|yi;θ) = p(xi|yi;θ)w(xi) (3)

logL(xi|yi;θ) = w(xi|y) log p(xi|yi;θ) (4)

where w(xi) is the weight and p(xi|yi;θ) is our generator
with learnable parameter θ, corresponding to the i-th data
point. Assume we have a sampling distribution π(x|y) of x,
then our objective is:

θ̂ = argmax
θ

Ex∼π(x|y),y∼p(y) logL(x|y;θ) (5)

The definition of w(x|y) is relevant to both r(x|y) and
q(x;ψ):

w(xi) = r(xi|y) + βq(xi;ψ) (6)

where β is a hyperparameter to balance r(x) and q(x;ψ).
We implement p(x|y;θ) by a modified flow-based model

that has a conditional input [40]. Suppose y ∈ Y is the
conditional input, then the mapping function should be f :
X × Y → Z and (2) will be rewritten as:

p(x|y) = p(f(x|y))
∣∣∣∣∂f(x|y)∂x

∣∣∣∣ (7)

D. Adaptive Sampler

The uniform distribution is a trivial choice for π(x|y) in
5 to search the solution space. However, uniform sampling
is inefficient in high-dimensional space, especially when the
risky scenarios are rare. Therefore, we propose an adaptive
sampler that leverages the gradient information to gradually
cover all modes of risky scenarios. Suppose we have a metric
c(x|y) that indicates the exploration value: the higher c(x|y)
is, the more worth exploring x is. We then use NES, a black-
box optimization method, to estimate the gradient of the
c(x|y). The sampler π(x|y) then follow the generating rule
(we omit y in gradient derivation):

xt+1 ← xt + α∇xc(xt) (8)

where α is the step size. The gradient ∇xc(xt) in (8) can
be estimated by:

∇xc(xt) =∇xEx∼N (xt,σ2I) [c(x)]

=
1

σ
Eε∼N (0,I)

[
ε · c(xt + σε)

] (9)

In practice, we will approximate the above expectation with
the Monte Carlo method:

∇xc(xt) =
1

σ

M∑
i=1

εi · c(xt + σεi), εi ∼ N (0, I) (10)



Fig. 3. A GMM example to illustrate our method. The condition y has
two values to simulate conditional distribution.The ground truth r(x|y)
is denoted by pink color, which is the likelihood of a 4-mode Gaussian
distribution for each condition. The exploration value c(x) is denoted by
blue color, which gradually reduces as the samples expand. The generator
p(x) is denoted by yellow color, which gradually covers all modalities.

The design of c(·) heavily influences the performance
of the adaptive sampler. Inspired by some curiosity-driven
literature [36], where the uncertainty, Bayesian surprise, and
prediction error are used to guide the exploration, we choose
a metric that involves the generative model p(x|y):

c(x|y) = r(x|y)− γ · p(x|y;θ) (11)

where γ is a hyperparameter that balance r(x) and p(x|y;θ).
Intuitively, when one mode (some similar risky scenarios)
is well learned by p(x|y;θ), the metric c(x) will decrease
and force the sampler to explore other modes. Finally, the
multimodal distribution will be captured by p(x|y;θ). The
diagram of this pipeline is shown in Fig. 3 with a Gaussian
Mixture Model (GMM) example.

IV. EXPERIMENTS

In this section, we firstly demonstrate the advantage of
our proposed adaptive sampler with a toy example. After
that, we show the generated safety-critical scenarios with
different settings in an intersection environment. Finally, we
evaluate the robustness of several popular RL algorithms
using our generated scenarios and provide conclusions about
their robustness.

A. Efficiency of Adaptive Sampler

Environment settings. As discussed in Section III-C, we
shall expect that the estimated gradient of c(x|y) improves
the efficiency of the sampling procedure. To assess this, we
compare our method with two baselines in a similar GMM
example to Fig. 3 under y = 0. In the first baseline, we
use c(x) = r(x), a straightforward and common choice in
the adversarial attack literature. In the second baseline, we
use the variance of the posterior of Gaussian Processes (GP)
to model the uncertainty of search space and combine this
uncertainty with r(x).

Fig. 4. A toy example to compare different adaptive samplers. The left-
most figure shows the samples from r(x), which is multimodal with four
modalities. The other three figures show the samples obtained from three
different samplers. Blue points indicate the early exploration stage and pink
points indicate the later stage.

Explanation: The comparison results is displayed in
Fig. 4. Both two baselines are facing the mode collapse prob-
lem to varying degrees, while our method effectively covers
all modes. The reasoning is as follows. The first baseline uses
only limited information about the multimodal landscape,
thus is easily trapped into one modality. The second baseline,
which gradually decreases the importance of the explored
points, can cover all modes even other unimportant points.
However, the rapidly descending uncertainty and the lack of
adaptivity to the generator p(x) lead to suboptimal results
and unbalanced data collection. Our proposed method uses
the feedback of the generator that gives the sampler both
the capability of uncertainty exploration and balanced data
collection, hence attaining all the modalities.

B. Safety-critical Scenario Generation

Environment settings. An intersection environment is
used to conduct our experiment in the Carla simulator [41].
We represent the scenario as a 4-dimensional vector x =
[x, y, vx, vy], which represents the initial position and initial
velocity of a cyclist. The cyclist is spawned in the environ-
ment and travels at a constant speed. Then we place an ego
vehicle controlled by an intelligent driver model. The target
route of the ego vehicle is represented by condition y. The
minimal distance between the cyclist and ego vehicle is used
to calculate r(x):

r(x) = exp{−‖pv − pc‖2} (12)



Fig. 5. Samples from prior model q(x) that is learned from InD
dataset [44]. Different colors represent different velocity angles.

where pv and pc represents the position of the vehicle and
the cyclist respectively. A lower distance corresponds to a
higher r(x). This scenario is defined as a pre-crash scenario
in [42] and also adopted in 2019 Carla Autonomous Driving
Challenge [43]. This setting allows us to test the collision
avoidance capability of decision-making algorithms H . Other
more intelligent algorithms can replace the current agent
during the evaluation stage.

Real-world data distribution. There are numerous
datasets collected in the intersection traffic environment. We
train our prior model q(x) with trajectories from the InD
dataset [44]. A well-trained prior model can be used to infer
the likelihood of a given sample and generate new samples
as well. We display the position and velocity direction of
some generated samples in Fig. 5. These samples roughly
describe the distribution of a cyclist in an intersection.

Generated scenarios display. We train a generator p(x|y)
to generate safety-critical scenarios given the route condition
y. In Fig. 6, we compare the samples from two generators:
one does not use prior (middle row) and the other uses
q(x) as the prior model (bottom row), where the same color
map is used as in Fig. 5. The top row of Fig. 6 shows the
collected scenarios by our adaptive sampler. Each of these
samples is corresponding to a risk value that is not shown
in the figure. In Fig. 6, it is shown that without real-world
data prior, the generator learns the distribution of all risky
scenarios collected by the adaptive sampler (first row). After
incorporating the prior model (samples shown in Fig. 5), the
generator concentrates more on the samples that are more
likely to happen in the real world. This results in the removal
of samples that has opposite directions to the real data.

x
Baseline and metric settings. We select seven algorithms

as our baseline. The details of each algorithm is discussed
below:
• Grid Search: We set the searching step for all parameters

to 100. Since we x has four dimensions, the entire
searching iterations should be 108.

• Human Design: We use the rules defined in Carla AD
Challenge, which basically trigger the movement of the
cyclist according to the location of the ego vehicle.

• Uniform Sampling: The scenario parameter x is uni-
formly sampled from the entire space. This method

Fig. 6. Each point represents one risky scenario x = [x, y, vx, vy ]. The
color represents the direction of the velocity (same as Fig. 5). Condition y
represents the orange route.

is widely used in the evaluation of safety decision-
making algorithms. For instance, obstacles are randomly
generated to test the collision avoidance performance in
the Safety-Gym environment [45].

• REINFORCE [11]: This method uses the REINFORCE
framework with a single Gaussian distribution policy.
This kind of policy can only represent single modality.

• REINFORCE+GMM: The policy distribution of [11] is
replaced with a GMM. The purpose is to explore the
multimodal capability of the REINFORCE algorithm.

• Ours-Uniform: We replace the adaptive sampler in our
method with a uniform sampler.

• Ours-HMC: We replace the adaptive sampler in our
method with a HMC sampler to explore the efficiency
of gradient-based MCMC method.

We use the query time and collision rate as our metrics.
The query time means the number queries to the simulation
during the training stage. Methods without training have 0
query time. A rough value is recorded when the distribution
of samples is stable measured by human. The second metric
is collision rate, which is calculated after the training stage.
We sample 1000 scenarios for 10 different routes and get a
collision rate for each route. We then calculate the mean and
variance across the 10 routes.

Comparison with baseline methods. The results are
shown in Table. I. Grid search is the most trivial way
comparable with our method in finding the multimodal risk
scenarios. However, the query time grows exponentially as
the dimension of x and the step size increase. In the simu-
lation, human design is a possible way to reproduce the risk

https://github.com/carla-simulator/scenario_runner
https://github.com/carla-simulator/scenario_runner
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Fig. 7. Relationship between risk and log-likelihood of p(x).

scenarios happen in the real world, but these scenarios are
fixed and not adaptive to the changes of the task parameters
y, leading to a low collision rate. Our experiment also found
that the uniform method attains less than 10% collision rate.
In dense reward situations, uniform sampling could be a good
choice, while in most real-world cases, the rare events risk
scenarios makes this method quite inefficient. REINFORCE-
Single searches the risk scenario under RL framework [11].
Although this method converges faster than ours, it cannot
handle the multimodal cases with a single Gaussian distri-
bution policy. The REINFORCE-GMM method extends the
original version with a multimodal policy module. However,
it has similar results as REINFORCE-Single. The reason
is that on-policy sampling method in REINFORCE is easy
to be trapped into a single modality, even the policy itself
is multimodal. The final weight in GMM is highly imbal-
anced and only one component dominates. The ablation
study reveals that our adaptive sampler (Ours-Adaptive) is
more efficient than the uniform version (Ours-Uniform). The
MCMC version (Ours-HMC) requires less query time than
our adaptive sampler, while its samples only concentrate on
one modality.

Relationship between risk level and log-likelihood.
Since our generator is trained with WMLE, we make usage
of all collected samples rather than only the risky ones as
in [32]. We compare two generators that are trained with
MLE and WMLE and plot the results in Fig. 7. The generator
trained with MLE by only using the risk data concentrates on
the high-risk area, while our WMLE generator has a linear
relationship between the risk and log-likelihood. Therefore,
our generator can not only generate risky scenarios but also
generate scenarios with different risk levels by considering
the likelihood of samples.

C. Evaluation of RL algorithms

To prove that our generated scenarios help improve the
evaluation of algorithms, we implemented six popular RL
agents (DQN [46], A2C [47], PPO [48], DDPG [49],
SAC [50], Model-based RL [51]) as H(µ|x,y) on the navi-
gation task in the aforementioned environment. The target of
agent is to arrive at a goal point [xg, yg] and avoid reaching
the non-driving area. At the same time, we place a cyclist on
the intersection to create a traffic scenario. Finally, the state
of the agent is:

s = [xg, yg, xa, ya, vax, v
a
y , x, y, vx, vy] (13)

TABLE I
PERFORMANCE COMPARISON

Methods Queries (↓) Collision Rate (↑)

Grid Search 1× 108 100%
Human Design - 35%± 21%

Uniform Sampling - 9%± 1%
REINFORCE-Single [11] 1× 103 97%± 2%

REINFORCE-GMM 1× 103 98%± 1%
Ours-Uniform 1× 105 100%

Ours-HMC 1× 103 100%
Ours-Adaptive 3× 103 100%

where [xa, ya, vax, v
a
y ] and [x, y, vx, vy] represents the posi-

tion and velocity of the agent and the cyclist, respectively.
The agents should also avoid colliding the cyclist otherwise
they will receive a penalty. The reward consists of three parts:

R(x) = rg + rs × Is(x) + rc × Ic(x) (14)

where rg is calculated by reduction of distance between
the agent and the goal, rs and rc indicates the penalty of
non-driving area violation and cyclist collision. Is(x) and
Ic(x) are two indicator functions that equal to 1 when the
two events happen. The episode terminates when the agent
collides into the cyclist or the agent reaches the target. We
implement DQN and A2C on discrete action space with
a controller that follows a pre-defined route. Their action
space only influences the acceleration. The other agents have
continuous action space that controls throttle and steering.

We have two environments for training and testing: 1)
Uniform Risk Scenarios (URS): the initial state x of the
cyclist is uniformly sampled; 2) Generated Risk Scenarios
(GRS): the initial state x is sampled from our generated
p(x|y;θ) with σ = 0.2. We train and test six RL algorithms
with different environments and Fig. 8 displays the testing re-
ward and testing collision rate. According to the comparison
between different settings, we draw three main conclusions:

Column 1 v.s. Column 2: Agents tested on URS have
similar final rewards and collision rates. These nearly in-
distinguishable results make it difficult to compare the ro-
bustness of different algorithms. In contrast, the results on
GRS show a great discrepancy, which helps us obtain clearer
conclusions.

Column 1 v.s. Column 3: We train the agents on URS
and GRS but test them both on URS. We notice that the
performance of both settings are similar, which means all
agents do not sacrifice their generalization to URS.

Column 2 v.s. Column 4: The expected results should
be that all agents have improvement in column 4. However,
we notice that different algorithms still show different ro-
bustness due to the their mechanisms. We roughly divide
the six algorithms into three categories and explain them
respectively. 1) Improved a lot: MBRL is robust to the risk
scenario, even if it is not trained on GRS. The reason is
that the target of MBRL is to learn a dynamics model and
plan with it. Even if it is trained on normal scenarios, it
learns how to predict the trajectory of the cyclist. Then
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Fig. 8. Testing reward and testing collision rate in four different settings. Note that the action space of DQN and A2C is different from others, thus their
results should not be compared to other methods. They are displayed together because they share the same reward space.

when it is tested on risky scenarios, MBRL can easily avoid
collision. Training on GRS will not make it perform better.
2) Improved a little: DDPG, DQN and SAC slightly improve
the performance. From the bottom figure of column 4, we
notice the collision rates of them firstly increase but quickly
decrease, which means they learn how to deal with most
of the risk scenarios. However, their rewards are lower than
MBRL because they cannot handle all risky scenarios. The
explanation for the little improvement is that these are off-
policy methods with memory buffers. The average of stored
risky scenarios from the buffer makes the training stable,
therefore makes the agents successfully handle the scenarios
they have met. However, they still fail in some unseen risky
scenarios. 3) Not Improved: PPO and A2C are on-policy
methods, which learn policy according to current samples.
However, the risky scenarios cause the instability of training,
because our generator finds different modes (types) of risky
scenarios. In contrast, normal scenario will not cause such a
problem because the state of the cyclist does not have much
influence. In column 4, the collision rates of PPO and A2C
gradually increase and never decrease, which means they
cannot handle most risky scenarios.

Note that the above empirical conclusions might only be
valid for in this environment. Further comparison of these
RL algorithms should be carefully designed in multiple other
settings. Nevertheless, our generator indeed is proven to
be more insightful than the uniform sampler. Beyond RL
algorithms, our proposed generating framework can also be
used to efficiently evaluate other decision-making methods
that are developed for dealing with more risky scenarios.

V. CONCLUSION

In this paper, we train a flow-based generative model
using the objective function of weighted likelihood to realize
the generation of multimodal safety-critical scenarios. Our
generator can generate scenarios with various risk levels, pro-
viding efficient and diverse evaluations of decision-making
algorithms. To speed up the training process, we propose
an adaptive sampler based on feedback mechanism, which
can adjust the sampling region according to the learning
progress of the generator, and finally cover all risk modes
in a faster way. We test six RL algorithms with scenarios
generated by our generator in a navigation task and obtain
some conclusions that are not easy to get with traditional
uniform sampling evaluation. This achievement provides an
efficient evaluation and comparison test-bed for the safety
decision-making algorithms which have recently attracted
more and more attention. A potential extension of this work
is combining the evaluation and training process to build an
adversarial training framework. We expect this combination
can boost existing algorithms under safety-related tasks.
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