Edinburgh Research Explorer

Action Sequencing Using Visual Permutations

Citation for published version:
Burke, M, Subr, K & Ramamoorthy, S 2021, 'Action Sequencing Using Visual Permutations', IEEE Robotics
and Automation Letters, vol. 6, no. 2, pp. 1745-1752. https://doi.org/10.1109/LRA.2021.3059630

Digital Object Identifier (DOI):
10.1109/LRA.2021.3059630

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
|IEEE Robotics and Automation Letters

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75} ACCESS

Download date: 08. May. 2024

https://doi.org/10.1109/LRA.2021.3059630
https://doi.org/10.1109/LRA.2021.3059630
https://www.research.ed.ac.uk/en/publications/c96712df-4dd1-44dd-9d2c-eb9707bbb52a

arXiv:2008.01156v2 [cs.RO] 5 Feb 2021

Action sequencing using visual permutations

Michael Burke®, Kartic Subr® and Subramanian Ramamoorthy?

Abstract— Humans can easily reason about the sequence of
high level actions needed to complete tasks, but it is particularly
difficult to instill this ability in robots trained from relatively
few examples. This work considers the task of neural action
sequencing conditioned on a single reference visual state. This
task is extremely challenging as it is not only subject to the
significant combinatorial complexity that arises from large
action sets, but also requires a model that can perform some
form of symbol grounding, mapping high dimensional input
data to actions, while reasoning about action relationships.
This paper takes a permutation perspective and argues that
action sequencing benefits from the ability to reason about both
permutations and ordering concepts. Empirical analysis shows
that neural models trained with latent permutations outperform
standard neural architectures in constrained action sequencing
tasks. Results also show that action sequencing using visual
permutations is an effective mechanism to initialise and speed
up traditional planning techniques and successfully scales to
far greater action set sizes than models considered previously.

I. INTRODUCTION

Humans possess a remarkable ability to plan and select
actions to rearrange scenes and form infinitely many newly
imagined constructs, relying on visual information to guide
the process. Taking inspiration from this ability, this paper
considers the challenge of learning to sequence a set of high
level actions to solve a task depicted in a single reference
input image, using as few demonstrations as possible.

Specifically, we are interested in constrained action se-
quencing tasks where multiple actions can be selected to
solve a task, but each action can only be chosen a finite
number of times. Constraints like these are particularly
common in robotics, and typically present in all assembly
tasks. For example, assembling a stool may require that
a seat is attached to four identical legs, using 4 identical
screws. The symmetry present in this task means that we
have multiple ways of performing this assembly, resulting
in ambiguity in action sequencing. This work shows that
existing neural action sequencing approaches fail in this
setting, and introduces a model that, by construction, copes
with this ambiguity.

Traditionally, action sequencing of this form has been
the domain of planning and reasoning [1], relying on pre-
trained perception modules and known transition dynam-
ics, with clearly defined symbolic rules and constraints.
However, more recently, our community has focused on

*This research was supported by the Alan Turing Institute, as part of the
Safe Al for surgical assistance project, while M. Burke was at the University
of Edinburgh.

TElectrical and Computer Systems Engineering, Monash University,
Australia. michael.burkel@monash.edu

School of Informatics, University of Edinburgh, United Kingdom.
{k.subr, s.ramamoorthy}@ed.ac.uk

world objects — training — target image

D

action primitives

~

¥
V
S EEEEEE

,
g2
2g

“; .

Fig. 1. This paper considers the task of learning to predict a target
sequence of actions A,, given a single reference input image I, from as
few demonstrations as possible {A;, I;}. Looking at the towers above, it
is easy to see that by rearranging the blocks on the left we can build the
tower on the right. We apply this permutation perspective to the problem
of neural action sequencing.

data driven methods relying on neural network universal
function approximators to build policies trained using a range
of mechanisms, from behaviour cloning [2], [3] to deep
reinforcement learning [4], [5]. Much of our focus here
has been on training or learning mechanisms, and there has
been arguably less emphasis in robotics on the effect of the
architectures we use and the inductive biases therein.

However, the choice of neural architecture strongly dic-
tates the solutions we may find. For example, consider the
tower building task in Figure[I] where our robot is required to
select and place blocks to build the tower depicted in an input
image. One approach to solving this task may be to consider
tower building as a process of arbitrarily selecting blocks
from an existing set (a fully connected neural classification
model). Alternatively, we could frame tower building as a
sequential process, where blocks selected are conditioned
on previous block selections (a neural classification model
with a temporal output layer). Unfortunately, neither of these
approaches enforce a particularly important constraint that is
common to classical planning systems [6], but absent from
modern neural models — once a block has been placed, it can
no longer be used in future.

This common-sense constraint is obvious to humans, but
it is unclear how to formulate a training objective that
accounts for this, particularly if there is ambiguity arising
when multiple actions can be associated with similar visual
inputs. This paper explores a permutation perspective of
action sequencing, introducing a neural architecture with
latent permutations that allows for constrained, variable-
length action sequencing from high-dimensional pixel inputs.

We investigate this model using a series of experiments
conducted in a behaviour cloning setting, and show that while
augmenting existing neural classification models with post-
hoc symbolic constraints is reasonably effective at dealing
with action re-use constraints in small scale settings, we
gain significant improvements by directly embedding these
into neural models using latent permutations. A particularly

important finding of this paper is that action sequencing using
latent permutations scales to significantly larger action set
sizes than standard neural models, and copes well with com-
binatorially complex settings. In summary, the contributions
of this paper are:

1) the formulation of constrained action sequencing as a
problem of learning to permute a discrete set (Sec. [[I[-]
[A);

2) a latent permutation modelling approach that outper-
forms standard neural models on vision-based action
sequencing tasks (Sec. [V-A] and [V-E));

3) the application of the latent permutation model to gen-
eralise to new concepts using previously encountered
action subsets (Sec. [V-B] and [V-C);

4) a demonstration of the potential performance gains
that can be obtained by using vision-based action
sequencing to initialise optimisation-based planning
algorithms (Sec. [V-D));

II. RELATED WORK

Robotics has traditionally made a distinction between
higher-level symbolic or task-level planning, and control at
a behavioural level [7]. The former typically assumes that a
domain specific language (DSL) defining objects, predicates,
actions or operations and goals is available. For example, in
robotic assembly [8], [9], [10], the domain in which our work
has most relevance, DSLs may include placement actions
defined in a given object frame, with contact constraints
and other pre and post conditions. Similarly, in carpentry
planning this may include materials and parts, along with
associated tools and operations that can be applied to these
[11]. Here, planning is typically formulated as a constrained
search or optimisation problem, which can quickly become
computationally expensive in more complex task settings.
Early approaches dealing with this search relied on linear
programming-like possibility trees or knowledge graphs [12],
[13], which try to prune the search space over actions by tak-
ing constraints into account. More recently, Lazaro-Gredilla
et al. [14] learn concepts as cognitive programs by searching
for algorithms that could generate a demonstrated scene, but
this approach is limited to very simple scenes due to the need
for dedicated scene parsers. In more complex settings it can
be particularly challenging and time-consuming to develop a
DSL, and inferring states from partially-observable uncertain
environments is non-trivial.

In contrast, data-driven approaches like behaviour cloning
[2] or deep reinforcement learning [4] try to avoid the need
to specify a DSL or carefully program a robot, generally
relying on universal neural network function approximators
and substantial amounts of training data [15] to produce
suitable policies that act directly on high dimensional ob-
servations. These connectionist models fail to incorporate
many of the symbolic or logical constraints that are typically
present in robot task planning settings. Existing attempts to
extend neural models to handle these types of constraints
are often made in a post-hoc fashion (eg. action clipping
[16], elaboration using auxiliary losses [17]). In this paper,

we incorporate symbolic planning ideas around symmetries
and permutations, which are often exploited in constraint
programming to speed up search [18], [19], [20], into neural
models through the use of latent permutations. In so doing,
we gain generalisability and an improved ability to handle
ambiguities in action selection at scale.

Connectionist policies and model-based symbolic plan-
ning systems are by no means incompatible. As a practical
middleground, there has been increasing interest in pruning
the search space to speed up planning by using neural
networks as universal function approximators. For example,
Dreamcoder [21] relies on a neural model to propose suitable
program structures to speed up search in a program induction
setting. A similar technique has been used to interpret tran-
sition system dynamics, iteratively refining a priority queue
of candidate solutions [22]. Neural surrogate modelling has
also been broadly applied to warm start general purpose
optimisation procedures [23], [24]. Along these lines, and
closest to this work, Driess et al. [25] propose an image
conditioned recurrent model to predict sequences of up to 6
actions, which are then used to speed up symbolic robot
planning. Our approach is similar, but, as shown in this
work, action sequencing with latent permutations explicitly
allows for learning in the presence of action constraints, and
significantly outperforms temporal models in settings where
action ambiguity may exist and action set sizes are scaled.

Deep learning using latent permutations is a recent ap-
proach that has proven useful in differentiable sorting and
ranking applications [26], [27], [28], [29], and in computer
vision for a range of applications including semi-supervised
learning [28], [30], captioning [31] and point cloud segmen-
tation [32]. However, to the best of our knowledge, this work
is the first to explore their use for sequence modelling.

ITII. PRELIMINARIES

A. Problem formulation

This work considers a behaviour cloning setting, where we
are required to learn an open-loop, image-conditioned action
sequencing policy from demonstrations. More formally, as-
sume that a robot is required to correctly order N action
primitives, a; € A = {a1...an}, to accomplish some
task described by an image I, depicting a reference state
associated with the task. Our goal is to use behaviour cloning
to learn to predict an action sequence A, that will reproduce
(or deconstruct) the scene depicted in a query image I using
prior training examples comprising M action sequences and
reference images (A;,I;), j € {1,...,M}.

B. Baselines: Action sequencing using behaviour cloning
and Hungarian assignment

A naive approach to addressing the problem above would
be to train a multi-class, multi-label feed-forward convo-
lutional neural network X = gg(I) with parameters 6,
to predict action sequences directly, using a cross-entropy

Temporal modelling

Fig. 2. Sequence modelling can capture temporal ordering information in
action sequences, but does not explicitly prevent action re-use.

classification loss,

1 N N
»C:—szyld IOgCL'l’] (l)

i=1 j=1

Here, y; ; is a binary label indicating the use of action a;
in the ¢-th step of the demonstrated action sequence, while
x;; € X is a logit predicted by the neural network.

Since action sequencing is crucial to obtain a desired
goal state, failure to predict even a single action correctly
will result in failure to complete the task. This makes
action sequencing using the behaviour cloning approach de-
scribed above particularly challenging. Moreover, this naive
approach to behaviour cloning is limited as there are no
constraints on the model preventing action re-use. This poses
problems if action ambiguity is present. For example, in Fig.
E] there are two blocks of each colour, so it is possible that a
model lacking the ability to reason about objects or actions
already performed would attempt to call actions to pick and
place the same object twice when attempting assembly.

A standard approach to incorporating temporal infor-
mation like this is to rely on sequence modelling, using
recurrency [33], [34] or temporal convolutions [35], [36]
in the output sequence prediction, as illustrated in Fig.
Models like these have recently been proposed for vision-
based action sequencing [25]. However, these models do not
explicitly incorporate constraints on action re-use, which are
common in robotics. The ability to reason about permutations
is valuable across a wide range of tasks in robotics, and often
studied as a balanced linear assignment problem, with the
goal of identifying a permutation or assignment matrix P
that remaps some standard ordering A,

A, =PA, 2

S0 as to minimise some assignment cost ., Co, q,. The
Hungarian algorithm [37], [38] is a well known technique to
solve problems of this form in polynomial time. By using the
logits of the network gy(I) to produce an assignment cost,
C;,j = 1—x; j, we can apply the Hungarian algorithm to or-
der actions, and avoid issues around action re-use. However,
if the classifier is overconfident in prediction (for example,
predicts the same action twice with high probability), this
assignment operation could introduce additional errors.
Instead of applying the Hungarian algorithm as a post-
hoc assignment stage, it is natural to consider the possibil-
ity of learning with embedded inductive biases for action
assignment. Recent approaches to differentiable sorting and

ranking [26], [27], [28], [29] provide a useful mechanism to
learn about permutations in this manner.

IV. ACTION SEQUENCING USING SINKHORN
NETWORKS

Differentiable sorting networks typically rely on the
Sinkhorn operator S(X), [39], [28], acting on a square
matrix X,

SO(X) = exp(X) 3)
SNX) = Teot(Trow(S'™H(X))) “)
S(X) = lim §(X)). (5)

Here, 7T.0i(+) and 7,0, (+) denote column and row normal-
isation operations respectively. Mena et al. [28] show that
a differentiable approximation to the permutation P can be
obtained using the Sinkhorn operator,

P =l SOX/7) ®

with X = gy(-) a square matrix predicted using a suitable
feed-forward neural network. Intuitively, this soft assignment
operation can be thought of as the permutation analogue of
a softmax operation.

The Sinkhorn operation [39], applied to a square matrix,
repeatedly iterates between column and row-wise normal-
isation operators, so that the matrix resulting from this
operation is a doubly stochastic (rows and columns sum
to one) assignment matrix from the Birkhoff polytope. The
extreme points of this polytope are permutation matrices. We
can control how soft this assignment is by adding noise and
adjusting a temperature parameter, 7. This is important to
allow the backpropagation of errors in assignment through
this operation and down a neural network.

A. Image conditioned action sequencing

We make use of Sinkhorn networks to sequence robot ac-
tions by training a feedforward convolutional neural network
to predict matrix X = gg(I), using the Sinkhorn opera-
tor (with Gumbel-Matching [28] to determine permutation
P(gg(I)). This network can be trained to minimise a mean
squared error loss between sequenced actions,

L= la; = P(go(I))aol|. ()

Here, a, denotes a one-hot encoded base action sequence
order, and a; a one-hot encoded demonstrated action se-
quence sampled from the training set. At test time, when a
soft approximation is no longer needed, action sequencing
occurs by predicting a permutation matrix, and using the
Hungarian algorithm for hard assignment.

By construction, a permutation is unable to re-use an
actiorﬂ which forces the network to learn to deal with action
ambiguities. Our hypothesis is that behaviour cloning models
trained with explicit inductive biases towards permutations
will be better suited to constrained action sequencing than
feedforward and temporal convolutional neural networks.

!Actions that are required more than once can be dealt with by adding
additional instances of these to the action set.

Permutation

Permuted actions

Action set

Stopping mask

Target actions

Fig. 3. Framework for action sequencing using visual permutations.

B. Coping with action subsets

None of the approaches described above are able to deal
with restricted subsets of actions. For example, building a
tower using 3 blocks does not require all actions be used, but
the models above all assume that a fixed number of actions
are required to complete tasks.

We extend the model above to handle action subsets using
an auxiliary stopping network f,(I) parametrised by ¢, that
predicts the number of actions required to complete a task
for a given image. This network is trained using a standard
cross-entropy classification loss.

The extension to subsets requires that we modify the loss
in to allow for variable action sequence lengths. We
accomplish this by masking the predicted and ground truth
sequences in the respective loss functions. Fig. [3| provides
an overview of the proposed action sequencing model. A
Sinkhorn network is used to predict permutations over action
sequences conditioned on a reference scene, and a masking
network restricts the sequence of actions to only the subset
required to complete the referenced task.

V. EXPERIMENTAL RESULTS

We start by investigating the effects of including inductive
biases for permutations in the neural network used for
behaviour cloning for our running tower stacking example.

A. Fixed length action sequencing

Here, robot actions consist of picking up a block from a
known location and placing it on the previously placed block.
Once a block has been placed, this action should no longer
be called, as doing so would demolish the tower. We collect
300 tower stacking demonstrations with randomly ordered
action sequences of length 6 using CoppeliaSim and PyRep
[40], and save the corresponding image of the completed
tower (see Fig. [I).

We train on 200 demonstrations and evaluate on 100
held out demonstrations, using the mean average precision
(number of times a block of the correct colour was correctly
selected for placement) between predicted and ground truth
action sequences. This experiment is repeated 20 times for
models trained using different random seeds.

Models compared include direct behaviour cloning (BC)
with a fully connected output layer, the same behaviour

— BC

—— BC+Hungarian

—— BC+TCN

—— BC+TCN+Hungarian
BC+Sinkhorn

Density

0 -
0.0 0.2 0.4 0.6 0.8 1.0
Mean Precision

Fig. 4. Mean average precision (correct block colour) distributions show
that BC+Sinkhorn substantially outperforms behaviour cloning models that
do not explicitly account for permutations.

TABLE I
BLOCK COLOUR PRECISION AND TOWER BUILDING SUCCESS

Colour Precision | Action repetitions

(Mean, Std. Dev.) | (Tower Collapses)
BC 0.46 + 0.08 46 %
BC+Hungarian 0.53 +0.07 0 %
BC+TCN 0.63 +0.05 53 %
BC+TCN+Hungarian 0.68 £ 0.05 0 %
BC+Sinkhorn 0.72 £0.05 0 %

cloning network with post-hoc assignment using the Hungar-
ian algorithm (BC+Hungarian), and action sequencing using
Sinkhorn networks (BC+Sinkhorn). In addition, we also
investigate behaviour cloning using a temporal convolutional
neural network decoder (BC+TCN/ BC+TCN+Hungarian),
a state-of-the art sequence modelling approach commonly
used for action recognition [36], which enforces temporal
structure in the predicted output sequence.

Figure [] shows kernel density estimates over the mean
average precisions in block predictions over multiple seeds,
while Table [I| shows the average number of times a block
selection action was re-used (The tower collapses upon
action re-use). The inductive bias towards permutation pre-
diction introduced using the Sinkhorn networks clearly im-
proves action sequencing. While augmenting TCN and BC
networks with post-hoc Hungarian algorithm assignment
remedies problems where the same action is selected multiple
times, and provides substantial improvement over direct
behaviour cloning, both struggle with image conditioned
tower building. Explicitly modelling temporal action se-
quence behaviours using TCNs improves performance, but
is still outperformed by BC+Sinkhorn.

B. Generalisation to unseen configurations

In order to investigate the reasons for performance differ-
ences between BC+TCN and BC+Sinkhorn, we explore the
generalisation capabilities of the action sequencing models
using a modified tower building experiment, with 6 uniquely
coloured blocks (avoiding the potential for action ambigu-
ity). We generate a single demonstration pair for each of
the 720 possible tower permutations, and train models on
increasing numbers of demonstrations. We then test on all
720 demonstrations.

700

600

500

400

Frequency

Average Precision

w2

«=@= BC+Sinkhorn mean
=®= BC+TCN mean

== = No generalisation

0.2

—

0.0
100 200 300 400 500 600 700

Demonstrations

Fig. 5. Both BC+Sinkhorn and BC+TCN are able to generalise to
previously unseen configurations. Plots are overlaid on a histogram of
average precision scores (BC+Sinkhorn) obtained for increasing numbers
of demonstrations. With unique actions, models perform similarly.

If the behaviour cloning models are capable of general-
isation to unseen tower permutations, we would expect the
precision of predicted action sequences to be better than a
baseline approach of random ordering for unseen permuta-
tions and perfect ordering for previously seen permutations.

Fig. [B] shows these results. The dashed line shows the
hypothetical precision for action sequences that would be
obtained by an approach that memorises previously seen
action sequences and randomly guesses orders for unseen
sequences. Both BC+Sinkhorn and BC+TCN networks are
able to generalise to previously unseen action sequence
configurations, and perform similarly in this setting.

This contrasts with the previous set of experiments and
indicates that a primary advantage BC+Sinkhorn has over
BC+TCN is in dealing with symmetries that arise due to
action ambiguities, where more than one action can repro-
duce a tower, and it becomes significantly more important to
reason about prior actions taken in a sequence. When there is
no ambiguity in actions, which is rarely the case in robotics
applications, TCNs perform similarly to Sinkhorn networks.

C. Variable length action sequencing

We investigate variable length action sequencing using
a third and final tower building experiment (with actions
as in Figure [T} but with variable length action sequences
— tower heights ranging from 2 to 6 blocks). As before,
all possible permutations of demonstrations are generated
(1950), and models are trained on increasing numbers of
demonstrations. Since variable length sequences are required,
we make use of the stopping mask extension of Section
for the BC+Sinkhorn networks. We also compare against
BC+TCN+Hungarian, extended to deal with variable length
sequences through the inclusion of a stopping action class.

Fig. |§| shows these results. As before, the dashed line
shows the hypothetical precision for action sequences that
would be obtained by an approach that memorises previously
seen action sequences and randomly guesses orders for
unseen sequences. Interestingly, when training using subsets,
we obtain more rapid generalisation than in the seemingly
simpler case investigated earlier. This occurs because it

1.0

’

0.8 ” 1500
'
s Zoom
PR 1250
7 g
/’ 1000 =
. :
PRe 750 &
’/
0.2 P d =@= BC+Sinkhorn mean 500
s’ =@®= BC+TCN+Hungarian mean
== = No generalisation 250
0.0
250 500 750 1000 1250 1500 1750 0

Demonstrations

Fig. 6. Action sequencing using BC+Sinkhorn shows impressive general-
isation properties when action subsets are considered. Plots are overlaid on
a histogram (BC+Sinkhorn) of block colour precision scores for sequences
in the test set.

TABLE II
SOMA CUBE RESULTS

Initialisation Initial Planning iterations
Collapses % Mean + Std. Dev.
Random - 5.35 £ 4.12
BC+TCN+Hungarian | 54.95 4 10.99 1.90 £ 3.25
BC+Sinkhorn 51.55+6.19 1.75+ 3.19

becomes increasingly likely that action subsets have been
seen within demonstrations as more training data is used.

The task of classifying the number of actions required
for a subset is relatively simple for this tower building
task, and the stopping mask prediction network successfully
identifies the number of actions required to build a tower
after approximately 200 demonstrations have been seen.

Importantly, the performance gains by BC+Sinkhorn over
BC+TCN+Hungarian indicate that an inductive bias towards
assignment assists with representation learning when there is
ambiguity (colour repetitions) in the action set.

D. Soma puzzle: initialising plans with sequence predictions

The ability to reason about action sequence permutations
is particularly important in assembly or disassembly tasks.
We investigate the ability of behaviour cloning to solve more

Soma Cube

Visual input

Collapse

Fig. 7. Soma puzzle disassembly. Here, the task is to predict the block
removal sequence in order to disassemble the Soma cube, given a set of four
input images of the cube, captured from different sides. Failure to correctly
predict the removal sequence will result in the cube collapsing, placing the
environment in a state where pre-scripted action sequences can no longer
be used.

BC+TCON+Hungarian BC+Sinkhorn

@ 1400
=1
D .
25 1200
IS5
[+
2]
=4 1000
n
:5 3 800
s 600
T2
g 400
=1
= . 200
“o o
0 2 1 6 0

Number of repetitions in sequence \11111])(1 of repe 1111()11\ in sequence

Fig. 8.

Accuracy

Frequency

B BC+TCN+Hungarian
BN BC+Sinkhorn
T

Tile recognition error increases for TCN’s as the number of tile repetitions in the test sequence increases, but the failures themselves are spread

relatively evenly across tiles when tested using the full scrabble tile set. Bracketed numbers indicate frequency of occurrence in the tile set.

5000

1000

3000 =

2000 £

Mean Precision

0.2
=@ BC+Sinkhorn
BC+TCN+Hungarian

1000

0.0

20 40 60 80

Number actions

Fig. 9. Performance as action set size increases.

complex tasks, using a Soma puzzle [41]. As illustrated in
Fig. [/} Soma puzzles consist of 7 distinctly shaped blocks,
which can be assembled into arbitrary shaped objects. Here,
we consider the task of disassembling a 3x3 Soma cube,
which can be constructed in 240 distinct ways (ignoring
reflections and rotations).

The Soma puzzle has a long history in robotics and robot
learning [42], [43], and has been the study of extensive
research due to the complexity of shapes that can be con-
structed with it. The geometry of the puzzle parts means that
disassembling the puzzle using pre-scripted actions requires
that parts be removed in a precise order. Failure to do so
will result in the puzzle collapsing, placing the environment
in a state where pre-scripted actions can no longer be used.
Correctly predicting part extraction order from images of the
cube is challenging as it requires a model that can reason
about how parts interlock and their relative positioning.

This problem is also a challenge for traditional planning al-
gorithms, requiring a careful, and non-trivial, specification of
relationships between components and problem constraints
and a backtracking search over numerous possible action
sequences. To investigate this setting, models were trained
using a dataset comprising images of the 240 possible initial
puzzle configurations, and a manually defined extraction
order for each puzzle, randomly (repeated 100 times with
different seeds) split into 120 training and validation exam-
ples, and 120 test examples.

As shown in Table |lI} despite outperforming the temporal
convolutional architecture (BC+TCN+Hungarian), Sinkhorn

behaviour cloning (BC+Sinkhorn) is still only successful on
about half of the test cases when predicted action sequences
are directly applied. However, when the predicted action
sequences are used to initialise a suitable planning algorithnﬂ
there are substantial gains in planning time, with a clear
reduction in the number of iterations used to search for a
suitable planning order. This ability to speed up symbolic
planning using surrogate neural models is particularly valu-
able in more general robot assembly tasks.

In this case, there is a small performance difference
between the TCN and Sinkhorn models. However, as will
be shown next, results on larger actions sets indicate that
Sinkhorn networks scale far better than TCNs, and these per-
formance differences become substantially more pronounced
as more actions are considered.

E. Scrabble: scaling to larger action sets

A simplified Scrabble setting is used to evaluate the ability
of BC+Sinkhorn to scale to larger action sets. Here, a
standard English Scrabble tile set is used to generate images
(10000) of random letter combinations with lengths 3 to 6,
sampled from an increasingly large subset of the full tile set.
We test on a set of randomly generated test words (5000).

The scrabble setting is also useful as it shows how
permutations could be used when an action needs to be used
more than once, as certain letters can be used multiple times.

An analysis of the prediction errors made by the TCN (see
Fig. [8)) shows consistent performance degradation across all
letters, regardless of frequency of repetition, but that failures
are more likely in sequences with more character repetitions.

Fig. 0] shows the decrease in performance (mean average
spelling precision) as the number of actions used to generate
training and test data is increased. BC+Sinkhorn shows
extremely impressive scalability, with only small decreases
in performance as the action set size increases. This could
be remedied by additional training data, although training
becomes time consuming with larger action setﬂ In contrast
BC+TCN+Hungarian networks become increasingly unre-
liable as the action set size is increased, with significant
performance drops.

2 A backtracking search using the simulator in the loop to test for failures.

3 As the number of actions increased, we observed that we needed to train
for substantially longer before reaching convergence, with our largest model
(98 actions) requiring approximately 5000 epochs to converge.

By virtue of the inductive bias for permutations, Sinkhorn
networks provide a more principled way of dealing with
action ambiguities in the architecture, forcing the network to
rule out/select actions by taking into account other actions
that are taken in the sequence. This appears to produce
representations that are better equipped to deal with this
ambiguity, and results in improved performance.

VI. CONCLUSION

This paper introduces a permutation prediction approach
to vision-based neural action sequencing. Action sequencing
using latent permutations predicted by Sinkhorn networks is
most effective in tasks where there are potentially multiple
actions leading to a desired state, and where there are
constraints on the number of times an action can be used.
Results show that neural action sequencing provides valuable
improvements in planning speed when used to initialise
planning algorithms, and experiments showed that impressive
generalisation can be obtained using these networks. Impor-
tantly, Sinkhorn networks are able to scale to far greater
action set sizes than temporal convolution networks. Tempo-
ral convolution and Sinkhorn networks are similar capacity
models, and there are no major computational differences
in the forward pass, which means that latent permutations
are a promising and useful approach to surrogate sequence
modelling for planning enhancement in robotics.

APPENDIX

See below for a summary of experimental settings. The
accompanying video illustrates failure modes and example
use cases.

Tower building

B A E - B R e s A B s R e s

Fig. 10. Training data for tower building experiments consists of pick and
place action sequences and the corresponding images of completed towers.
Action sequences are coloured in accordance with the block they correspond
to moving for visual clarity. Our goal is to predict the correct sequence of
actions required to reproduce an input image scene.

Six blocks (2 blue, 2 yel-
low, 2 red) were used for
tower building (baseline and
subsets experiments) in Cop-
peliaSim, with primitive ac-
tions to pick up a block from
a pre-defined start position
and place it above the last
placed block (no action is
taken to place the first block
in the sequence). 6 uniquely
coloured blocks were used for ablation generalisation exper-
iments.

Both Sinkhorn and TCNs used a CNN encoder with
parameters listed to the left. Behaviour cloning and Sinkhorn

CNN Encoder

32 5x5 kernels, ReLU
64 5x5 kernels, ReLU
2x2 MaxPool2D

128 5x5 kernels, ReLU
2x2 MaxPool2D

256 5x5 kernels, ReLU
2x2 MaxPool2D
Dropout (p=0.5)

128 Neuron FC, ReLU

Confusion matrix: BC+Sinkhorn
EINERE 0.66 0.28 0.05 0.01 0.0 0.0

Confusion matrix: BC+TCN+Hungarian

EINP R 0.26 0.63 0.05 0.06 0.0 0.0

RISIVBE 0.07 0.08 067 0.15 0.01 0.02 [(XRIVEE 0.01 0.01 [0:6910.13 0.06 0.1

[P E 0.0 0.02 0.2 .0,02 0.0

[P WER 0.04 0.01 0.06 0.07 0:63 0.19

Allow 2

Red 1

PR 0.0 0.0 0.02 0.02 0.2 .

Sy SN 2N Ny NN
Q\o?» ®¢0 .@\0«‘.«}\0 & Q.‘?‘é Q’\Qz Q’\\)e, *e\o«\.@\oq\ & Qg’b

(PR .01 0.04 0.05 0.01 0.24 1065

Fig. 11. Confusion matrices for a tower model trained using 200 examples
indicate that models with the latent permutation inductive bias better
associate visual input with actions than TCNs.

networks were trained with batch sizes of 16 for 10000
epochs, while the TCNs were trained for 2000 (all models
were trained until convergence, but we found TCNs con-
verged far faster than alternative models), both using Adam
[44] and a learning rate of 3e-4. TCNs used 6 layers of length
6, the length of the maximum action set size.

Soma puzzle

Soma puzzles consist of 7 distinctly shaped blocks, which
can be assembled into arbitrary shaped objects. Here, we
consider the task of disassembling a 3x3 Soma cube, which
can be constructed in 240 distinct ways (ignoring reflections
and rotations). Soma solutions were obtained using Polyform
Puzzler, http://puzzler.sourceforge.net, a set
of solvers for polyforms.

For Soma puzzle extraction planning, a backtracking
search was used to find collapse free extraction orders. Here,
actions that trigger collapse were randomly swapped with
later actions, using the simulator in the loop to identify col-
lapses. Experiments compared planning speed when search
was initialised using a random starting sequence and using
sequence predictions from the neural networks.

Soma puzzle parts were modelled in PyRep [40] using
independent cubes, and collapse detection was implemented
by checking if any of the cubes had moved after a part had
been deleted from the scene.

The same CNN encoder architecture used for tower build-
ing was used here, but models were trained with batch sizes
of 32, using Adam and a learning rate of 3e-4.

Scrabble
A standard English scrab-

ble tile set (98 possible

AJAJAA|AAA|A|A]B,

E,‘E,‘E"E‘IE.{E,]E.lE.;E,:F,

P66/ GnH 111, tiles without blanks) is used
LKL .

L M[M/N.N/N/N/N,N, 0, to generate images of ran-
0/0,0, o,TQ,LO,ﬂo.]P /o, . ..

R RR|RR S domised letter combinations.

Letters can be used multi-
ple times, which introduces
additional complexity when
grounding image components
and actions. Images are re-
stricted to 6 characters or fewer, due to resolution constraints.

Both BC+TCN and BC+Sinkhorn used a Resnetl8 en-
coder [45] for input images and were trained using Adam
with a learning rate of le-4. Models were trained with
a batch size of 64. TCNs used 6 temporal convolution

<A

Fig. 12. Tile set used for image
generation and demonstration in
Coppeliasim.

https://youtu.be/F86hHFQDGW4
http://puzzler.sourceforge.net

layers of length 7, the maximum number of actions in an
action sequence. Sinkhorn networks used a fixed size latent
bottleneck state of 128 dimensions, while TCNs used 7 latent
states of 16 dimensions each. Both models were trained for
5000 epochs.

[1]

[2]

[4]

[5]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

M. Fox and D. Long, “PDDL2.1: An extension to PDDL for ex-
pressing temporal planning domains,” Journal of Artificial Intelligence
Research, vol. 20, pp. 61-124, 2003.

D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in Advances in neural information processing systems, 1989,
pp. 305-313.

F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from obser-
vation,” in Proceedings of the 27th International Joint Conference on
Artificial Intelligence, 2018, pp. 4950-4957.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529-533, 2015.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “In-
cremental task and motion planning: A constraint-based approach,” in
Proceedings of Robotics: Science and Systems, AnnArbor, Michigan,
June 2016.

G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From skills
to symbols: Learning symbolic representations for abstract high-level
planning,” Journal of Artificial Intelligence Research, vol. 61, pp. 215—
289, 2018.

L. I. Lieberman and M. A. Wesley, “Autopass: An automatic pro-
gramming system for computer controlled mechanical assembly,” IBM
Journal of Research and Development, vol. 21, no. 4, pp. 321-333,
1977.

I. Rodriguez, K. Nottensteiner, D. Leidner, M. KaBecker, F. Stulp,
and A. Albu-Schiffer, “Iteratively refined feasibility checks in robotic
assembly sequence planning,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 1416-1423, 2019.

R. A. Knepper, T. Layton, J. Romanishin, and D. Rus, “Tkeabot: An
autonomous multi-robot coordinated furniture assembly system,” in
2013 IEEE International Conference on Robotics and Automation,
2013, pp. 855-862.

C. Wu, H. Zhao, C. Nandi, J. I. Lipton, Z. Tatlock, and A. Schulz,
“Carpentry compiler,” ACM Transactions on Graphics, vol. 38, no. 6,
p. Article No. 195, 2019, presented at SIGGRAPH Asia 2019.

R. J. Popplestone, A. P. Ambler, and I. Bellos, “An interpreter for
a language for describing assemblies,” Artificial Intelligence, vol. 14,
no. 1, pp. 79-107, 1980.

R. J. Popplestone, Y. Liu, and R. Weiss, “A group theoretic approach
to assembly planning,” Al Magazine, vol. 11, no. 1, p. 82, Mar. 1990.
M. Lazaro-Gredilla, D. Lin, J. S. Guntupalli, and D. George, “Beyond
imitation: Zero-shot task transfer on robots by learning concepts as
cognitive programs,” Science Robotics, vol. 4, no. 26, 2019.

B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman,
“Building machines that learn and think like people,” Behavioral and
brain sciences, vol. 40, 2017.

Y. Fujita and S. Maeda, “Clipped action policy gradient,” in Proceed-
ings of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmdissan, Stockholm, Sweden, July 10-15, 2018, J. G.
Dy and A. Krause, Eds., vol. 80, 2018, pp. 1592-1601.

C. Innes and S. Ramamoorthy, “Elaborating on Learned Demonstra-
tions with Temporal Logic Specifications,” in Proceedings of Robotics:
Science and Systems, Corvalis, Oregon, USA, July 2020.

M. Fox and D. Long, “Extending the exploitation of symmetries in
planning.” in AIPS, 2002, pp. 83-91.

I. P. Gent, K. E. Petrie, and J.-F. Puget, “Chapter 10 - Symmetry in
constraint programming,” in Handbook of Constraint Programming,
ser. Foundations of Artificial Intelligence, F. Rossi, P. van Beek, and
T. Walsh, Eds. Elsevier, 2006, vol. 2, pp. 329 — 376.

N. Pochter, A. Zohar, and J. S. Rosenschein, “Exploiting problem
symmetries in state-based planners,” in Twenty-Fifth AAAI Conference
on Artificial Intelligence, 2011.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

(371

(38]

[39]
[40]
[41]

[42]

[43]

[44]

[45]

K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. Cary, L. Morales,
L. Hewitt, A. Solar-Lezama, and J. B. Tenenbaum, ‘“Dreamcoder:
Growing generalizable, interpretable knowledge with wake-sleep
bayesian program learning,” ArXiv, vol. abs/2006.08381, 2020.

S. Penkov and S. Ramamoorthy, “Using program induction to interpret
transition system dynamics,” arXiv preprint arXiv:1708.00376, 2017.
S. Banerjee, T. Lew, R. Bonalli, A. Alfaadhel, I. A. Alomar, H. M.
Shageer, and M. Pavone, “Learning-based warm-starting for fast
sequential convex programming and trajectory optimization,” 2020.
M. L. Velazco, A. R. Oliveira, and C. Lyra, “Neural networks give
a warm start to linear optimization problems,” in Proceedings of the
2002 International Joint Conference on Neural Networks. IJICNN’02
(Cat. No. 02CH37290), vol. 2. IEEE, 2002, pp. 1871-1876.

D. Driess, J.-S. Ha, and M. Toussaint, “Deep Visual Reasoning:
Learning to Predict Action Sequences for Task and Motion Planning
from an Initial Scene Image,” in Proceedings of Robotics: Science and
Systems, Corvalis, Oregon, USA, July 2020.

M. Cuturi, O. Teboul, and J.-P. Vert, “Differentiable ranking and
sorting using optimal transport,” in Advances in Neural Information
Processing Systems, 2019, pp. 6858—6868.

M. Blondel, O. Teboul, Q. Berthet, and J. Djolonga, “Fast differen-
tiable sorting and ranking,” arXiv preprint arXiv:2002.08871, 2020.
G. Mena, D. Belanger, S. Linderman, and J. Snoek, “Learning latent
permutations with gumbel-sinkhorn networks,” in International Con-
ference on Learning Representations, 2018.

M. B. Paulus, D. Choi, D. Tarlow, A. Krause, and C. J. Maddison,
“Gradient estimation with stochastic softmax tricks,” arXiv preprint
arXiv:2006.08063, 2020.

R. Santa Cruz, B. Fernando, A. Cherian, and S. Gould, “Deeppermnet:
Visual permutation learning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 3949-3957.
M. Cornia, L. Baraldi, and R. Cucchiara, “Show, control and tell:
A framework for generating controllable and grounded captions,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

R. A. Rosu, P. Schiitt, J. Quenzel, and S. Behnke, “LatticeNet:
Fast Point Cloud Segmentation Using Permutohedral Lattices,” in
Proceedings of Robotics: Science and Systems, Corvalis, Oregon,
USA, July 2020.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

A. Graves, “Generating sequences with recurrent neural networks,”
arXiv preprint arXiv:1308.0850, 2013.

S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal
convolutional networks for action segmentation and detection,” in
proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 156-165.

H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83-97, 1955.
J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” Journal of the society for industrial and applied mathematics,
vol. 5, no. 1, pp. 32-38, 1957.

R. P. Adams and R. S. Zemel, “Ranking via sinkhorn propagation,”
arXiv preprint arXiv:1106.1925, 2011.

S. James, M. Freese, and A. J. Davison, “Pyrep: Bringing v-rep to
deep robot learning,” arXiv preprint arXiv:1906.11176, 2019.

M. Gardner, “Mathematical games,” Scientific American, vol. 227,
no. 3, pp. 176-184, 1972.

C. Malcolm and T. Smithers, “Symbol grounding via a hybrid archi-
tecture in an autonomous assembly system,” Robotics and Autonomous
Systems, vol. 6, no. 1, pp. 123 — 144, 1990, designing Autonomous
Agents.

C. M. Malcolm, “The SOMASS system: A hybrid symbolic and
behaviour-based system to plan and execute assemblies by robot,”
Hybrid Problems, Hybrid Solutions, pp. 157-168, 1995.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770-778.

	I INTRODUCTION
	II RELATED WORK
	III PRELIMINARIES
	III-A Problem formulation
	III-B Baselines: Action sequencing using behaviour cloning and Hungarian assignment

	IV ACTION SEQUENCING USING SINKHORN NETWORKS
	IV-A Image conditioned action sequencing
	IV-B Coping with action subsets

	V EXPERIMENTAL RESULTS
	V-A Fixed length action sequencing
	V-B Generalisation to unseen configurations
	V-C Variable length action sequencing
	V-D Soma puzzle: initialising plans with sequence predictions
	V-E Scrabble: scaling to larger action sets

	VI CONCLUSION
	References

