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Abstract— Panoptic segmentation has recently unified seman-
tic and instance segmentation, previously addressed separately,
thus taking a step further towards creating more comprehensive
and efficient perception systems. In this paper, we present
Panoster, a novel proposal-free panoptic segmentation method
for LiDAR point clouds. Unlike previous approaches relying on
several steps to group pixels or points into objects, Panoster
proposes a simplified framework incorporating a learning-based
clustering solution to identify instances. At inference time, this
acts as a class-agnostic segmentation, allowing Panoster to be
fast, while outperforming prior methods in terms of accuracy.
Without any post-processing, Panoster reached state-of-the-
art results among published approaches on the challenging
SemanticKITTI benchmark, and further increased its lead by
exploiting heuristic techniques. Additionally, we showcase how
our method can be flexibly and effectively applied on diverse
existing semantic architectures to deliver panoptic predictions.

I. INTRODUCTION

Scene understanding is a fundamental task for autonomous
vehicles. Panoptic segmentation (PS) [1] combines semantic
and instance segmentation, enabling a single system to
develop a more complete interpretation of its surroundings.
PS distinguishes between stuff and thing classes [1], with the
former being uncountable and amorphous regions, such as
road and vegetation, and the latter standing for countable ob-
jects, such as people and cars. The two have been addressed
separately for decades, leading to significantly different ap-
proaches: stuff classifiers are typically based on fully con-
volutional networks [2], while thing detectors often rely on
region proposals and the regression of bounding-boxes [3].
Tackling semantic and instance segmentation jointly with PS
allows to save costly and limited resources [4].

Since the introduction of PS, several approaches have
been proposed to address this new task. While most focused
on images [4-6] or RGBD data [7, 8], only a handful of
methods used LiDAR point clouds [9, 10], none of which
has managed to outperform systems combining separate net-
works for semantic segmentation and object detection [11].
LiDAR sensors have proven to be particularly useful for self-
driving cars, capturing precise distance measurements of the
surrounding environment. Segmenting LiDAR point clouds is
a crucial step for interpreting the scene. Compared to image
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Fig. 1. Proposed Panoster framework. A semantic class and an instance
ID are predicted for every point, then filtered and combined for panoptic
segmentation.

pixels, LiDAR point clouds pose various challenges: they are
unstructured, unordered, sparse, and irregularly sampled.

In this paper, we introduce a novel proposal-free approach
for panoptic segmentation of LiDAR point clouds. We name
our method Panoster, standing for panoptic clustering. Panos-
ter brings panoptic capabilities to semantic segmentation
networks by adding an instance branch trained to resolve
objects with a learning-based clustering method adapted
from [12]. Unlike existing proposal-free approaches [6, 10],
Panoster, thanks to its clustering solution integrated in the
model, does not need further groupings to form objects, as
it outputs instance IDs straight away from the network. The
contributions of this paper can be summarized as follows:

« We introduce a new proposal-free approach for panoptic

segmentation, fully end-to-end, flexible and fast, with
a small overhead on top of an equivalent semantic
segmentation architecture.

« To the best of our knowledge, for the first time in panop-
tic segmentation, we exploit an entirely learning-based
end-to-end clustering approach to separate the instances,
resulting in a fully end-to-end panoptic method.

o Our novel instance segmentation acts as class-agnostic
segmentation, has no thresholds, and delivers instance
IDs directly, without requiring further grouping steps.

We apply Panoster on the challenging task of panoptic
segmentation for LiDAR 3D point clouds, outperforming in
a fraction of the time state-of-the-art methods. Furthermore,
we show the flexibility of Panoster by deploying it on both
projection-based and point-based architectures, making it the
first panoptic method to consume LiDAR 3D points directly.



II. RELATED WORK

In this section, we provide a brief overview of existing
approaches, and highlight overlaps and differences with
Panoster.

A. Semantic Segmentation

Depending on the input representation, semantic segmen-
tation methods can be grouped into projection-based and
point-based. Projection-based approaches eliminate the chal-
lenging irregularities of 3D points by projecting them into
an intermediate grid. This grid representation can be made
of voxels [13, 14] or pixels [15, 16], allowing the use of 3D
or 2D convolutions respectively. While the former projection
tends to be highly inefficient for this task, the latter can count
on state-of-the-art methods from image segmentation, albeit
discarding valuable geometric information by transitioning
from 3D to 2D.

PointNet [17] pioneered point-based methods and deep
learning on point clouds. They used multilayer perceptrons
(MLP) to learn features from each point, then aggregated
with a global max-pooling. Additional MLP-based architec-
tures were proposed in [18-20]. More recent approaches,
such as KPConv [21] and SpiderCNN [22] have focused on
creating new convolution operations for points. KPConv [21]
extended the idea of 2D image kernels to 3D points, by
defining an operation which derives new 3D points from
the multiplication of input 3D point features with flexi-
ble kernel weights. Recently, hybrid approaches have been
developed [23, 24], combining point and projection-based
solutions.

Our method Panoster extends semantic segmentation ap-
proaches to panoptic segmentation. In this paper we apply
Panoster on KPConv [21] and SalsaNext [16], representative
of point-based and projection-based categories respectively.

B. Instance Segmentation

Instance segmentation methods can be divided into
detection-based and clustering-based. The former was estab-
lished in the image domain by Mask R-CNN [25] which
has two stages: region proposals are extracted, refined into
bounding boxes, and segmented with a pixel-level mask to
identify the objects. Mask R-CNN has catalyzed a variety of
methods, some of which address panoptic segmentation [4,
9, 26], as described in Section Clustering-based ap-
proaches learn an embedding space in which instances can
be easily clustered [27, 28]. Therefore, the segmentation
is typically done by deploying a data analysis clustering
technique, such as DBSCAN [29], on the latent features,
which were learned to aid the separation. These methods
were extended to point clouds in [30-32].

Panoster operates differently, by clustering object in-
stances thanks to loss functions optimizing the network
outputs directly. Although our instance segmentation is
learning-based, it does not explicitly rely on the optimiza-
tion of a latent space via embeddings, differentiating itself

from clustering-based methods described above. Further-
more, Panoster performs panoptic segmentation, resulting in
a more comprehensive approach.

C. Panoptic Segmentation

PS methods can be divided into two categories: proposal-
based and proposal-free. The vast majority are from the
image domain, of which the larger stake are proposal-based
or top-down methods (e.g. UPSNet [26], AdaptlS [33],
Seamless [5], EfficientPS [4]): two-stage approaches, which
are usually based on the well-known Mask R-CNN [25].
They rely on the detection of things first, followed by
a refinement step and a semantic segmentation of stuff.
Their main drawbacks are the needs of resolving mask
overlaps and conflicts between thing and stuff predictions.
Instead, proposal-free or bottom-up methods are single-stage
and follow the opposite direction. They segment the scene
semantically, and cluster the instances within the predicted
thing segments. DeeperLab [34] was the first of this kind, re-
gressing objects center and corners from images. SSAP [35]
used a cascaded graph partition module to group pixels
into instances according to a pixel-pair affinity pyramid.
Panoptic-DeepLab [6] simplified this concept by predicting
the instance center locations, and using a Hough-Voting
scheme to group the pixels to the closest center.

While PS received a lot of attention in the image domain,
PS on LiDAR point clouds is yet broadly unexplored, due
to the only recent introduction of a suitable public dataset,
i.e. SemanticKITTI with panoptic labels [11]. In [11] strong
baselines combined state-of-the-art semantic segmentation
methods KPConv [21] or RangeNet++ [15], with the object
detector PointPillars [20]. PanopticTrackNet [9] followed the
approach of EfficientPS [4] and extended it to consume
LiDAR point clouds: it is top-down, based on Mask R-
CNN [25] to resolve the instances. Additionally, a new
tracking head delivers temporally consistent instance IDs.
The only existing bottom-up method for LiDAR point clouds
is [10], which we denote as LPSAD. It is based on semantic
embeddings and, as in Panoptic-DeepLab [6], the regression
of offsets to the object centers, then instances are extracted by
an iterative clustering procedure, grouping points according
to their center offset prediction. To date, no method managed
to outperform the combined baselines proposed in [11].

Panoster is significantly different from existing panop-
tic approaches. It is the first to use an entirely learning-
based clustering technique to resolve the instances. As LP-
SAD [10], our method is bottom-up and applied on LiDAR
point clouds, but compared to it, our instance branch out-
puts instance IDs directly, without requiring any subsequent
grouping steps, rendering it fully end-to-end trainable.

III. PANOSTER

A. Overview

As described in Section [II-C| current proposal-free panop-
tic approaches [6, 10] pair a network with an external
grouping technique to form objects. The latter exploits the
network predictions, and is required in order to output any
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Fig. 2. Panoster simplified architecture. The input is raw 3D points or a
2D spherical projection. During training, gradients do not back-propagate
through the dashed line. At inference time, both decoders and heads process
data in the same way.

meaningful instance IDs. With the proposed Panoster, we
simplify by removing this extra step, and incorporating the
clustering in the network itself. We achieve this with an
entirely learning-based approach, adapted from the signal
processing domain [12], to output instance IDs directly, for
each point given in input (Section [[lI-C). To obtain panoptic
predictions, it is then sufficient to filter out these IDs for
all stuff points (Section [[II-D)), as shown in Fig. [T} Thanks
to custom loss functions, our integrated clustering method
instills grouping capabilities right in the model weights. At
inference time, these layers process data in the same way
as their semantic segmentation counterparts, while pursuing
the rather different task of instance segmentation. In Fig. 2]
we showcase Panoster general architecture, highlighting how
each part is trained.

B. Architecture

Panoster consists of the following modules: a shared
encoder, decoupled symmetric decoders and heads for the
two tasks, mask-based fusion and optional post-processing.

Motivated by [6, 9, 10], we opt for a shared encoder
with two separate decoders, each developing its task starting
from common features. Following Fig. 2] the backbone, the
semantic decoder and head follow the design of a standard
semantic segmentation network, consuming a full 360 degree
LiDAR point cloud. In this paper we apply Panoster on
KPConv [21] and SalsaNext [16]. We refer to the two
variants as PanosterK and PanosterS, respectively. Therefore,
depending on the configuration, our framework can be fed
with raw 3D points or with a 2D spherical projection.

As shown in Fig. 2} our method has a second decoder
and head, dedicated to instance segmentation. From the ar-
chitecture perspective, the two branches are identical, except
for the size of the last layer: the semantic branch output size
depends on the number of semantic classes, while the output
of the instance branch is sized NN, which is the number of
predictable instances (Section [II-C). Additionally, the input
of the instance head is the concatenation of both decoders
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Fig. 3. Construction of the matrix used for the computation of the instance
clustering loss functions. The matrix S is based on the instance branch
segmentation probabilities, which are the cluster assignment probabilities.
The figure shows a simplified scene with 3 instances and a model with
N = 5. Fragments F(S) and all non-column maxima cells Q(S) are
minimized by fragmentation and impurity losses respectively.

outputs. Apart from the input and output sizes of the heads,
the two branches differ as each is optimized with its own
loss function, which is designed to tackle its task.

We train the semantic branch to predict both stuff and
thing classes. We use the same objective functions as
in [16], namely weighted cross-entropy, and Lovasz-softmax
loss [36], optimizing the Jaccard index. We weight their
sum 0.7 for PanosterK and 1.0 for PanosterS. Moreover,
following [6], to improve the accuracy on small or distant
thing objects, we triple the cross-entropy weight on instances
smaller than 100 points for PanosterK. We found this to be
not beneficial for PanosterS.

C. Learning-based Instance Clustering

Our instance branch predicts an instance ID for each point,
including those belonging to stuff regions, for which such
ID has no meaning and will be later filtered out (Section [[TT]
D). This instance ID is the output of the network after an
argmax operation over the instance branch logits. We address
instance segmentation as a class-agnostic segmentation task,
with the underlying classification based on instance IDs,
instead of the usual semantic classes. However, these IDs are
interchangeable, similarly to clusters labels, since the essence
of instance segmentation is grouping inputs to resemble
object instances, e.g. instance clustering. In this Section we
describe how to predict such IDs.

Towards this end, we adapt a method originally pro-
posed for separating pulses of radar signals by source,
for aircraft applications [12]. In our LiDAR panoptic task,
cluster elements are 3D points, and each ground truth cluster
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Fig. 4. Sample instance segmentation predictions. In each row, colors
represent predicted clusters for 3 cars. Apart for 1, 2-4 show sub-optimal
results: in 2 objects are mixed and split in parts; in 3 the number of
cars was underestimated, with impurity on the blue cluster, which merges
two instances; in 4 the number of cars was overestimated, with severe
fragmentation, as each object is split in four parts.

is an object instance, e.g. a car. The idea is achieving
instance segmentation by guiding the training optimization
to minimize two complementary loss functions, which are
extracted from a confusion matrix. However, since confusion
matrices are inherently non-differentiable, being based on
argmax operations over the class logits, we construct suitable
matrices by considering the probability distribution over the
logits softmax instead. In particular, as depicted in Fig.
we build this soft confusion matrix S by collecting the
instance branch softmax probabilities over the N predictable
instances, for all 3D points belonging to ground truth objects,
and summing these probabilities together as follows.

For each LiDAR sweep, the softmax-based confusion
matrix S is sized G x N, with G being the number of ground
truth objects. As shown in Fig. [3] the matrix S gathers the
instance predictions made by the network over the input 3D
points. The notation in this Section refers to sets of cells,
rows and columns of the matrix .S, rather than single 3D
input points. The row S; corresponds to the i-th object, while
the column S7 represents the j-th predicted cluster. The cell
S? value is the sum over the probability of each point of the
i-th object to belong to the j-th predicted instance, divided
by the sum of the row S; (i.e. the amount of 3D points
constituting object 7). Unlike in [12], where the matrix values
are unbounded and depend on the clusters dimensions, we
introduce this division transforming the matrix in percentage-
based, to render Panoster robust against the imbalance of
instance sizes. The construction of S is shown in Fig.

This matrix S is fully differentiable and can drive the net-
work optimization. We deploy two loss functions computed
from the matrix S, namely impurity and fragmentation. As
shown in Fig. d by aiming at both pure and non-fragmented
instances, we can achieve the best outcome.

The impurity loss L;,,;, in Eq. (1| tries to shift from 2 and
3 to 1 and 4 in Fig. ] by optimizing instances purity:

— 2Q9
Limp - Z S (1)
Q(8):={8]}: s1¢M(S) Vi.j
where M (S) := {max (S7)V j} is the set of column
maxima of S, and Q(S) is the set of all S cells that
are not part of M (S). Column maxima M (S) define each
predicted instance by linking it with a ground truth object.

By minimizing Q(.S), this loss increases the correspondence
between ideal and predicted instances.

The additional fragmentation loss L s, reduces fragmen-
tation. It limits overestimating the amount of objects, by
penalizing the S cells responsible for fragments F'(.S), which
occur when two or more column maxima M (.S) fall within
the same row:

F(S)o F(S
Lj, = ZFE)0F(E)

F(S):={5]}: S]eM;(S) A §] #max(M;(S)) Vi.j 2)
M;(S):=S; N M(S)

In the equation, the numerator is the differentiable equivalent
of counting the fragments F'(.S), thanks to the Hadamard
element-wise division @. Therefore, this loss enforces that
each ground truth object corresponds to only one predicted
instance, bringing use case 4 of Fig. ] to 1.

Our instance branch is trained with a combination of L;,,,,
and Ly,, weighted 0.2 and 0.05 respectively.

D. Panoptic Segmentation

PS requires a semantic class for each point, as well
as instance IDs for thing objects. Both branches output a
prediction for each point of stuff and thing classes. However,
instance IDs are meaningless for sfuff points, and will be
filtered out as follows. As shown in Fig. [I} we extract an
object mask from the semantic prediction, distinguishing
things from stuff points. We use this mask to discard instance
predictions for stuff, and retain instance IDs for things.
Finally, PS predictions are obtained by stacking semantic
classes and instance IDs.

Optional post-processing. As described in Section [[1I-C}
unlike previous works [6, 10], our instance predictions do
not necessarily require further grouping or post-processing.
Nevertheless, we explored three different heuristic strategies,
as plausibility checks, exploiting 3D information and the
synergy between the two tasks. To improve detection and
purity, DBSCAN [29] targets the third use case of Fig. E} We
call this strategy post_splitter: it splits instances which are too
large in space w.r.t. their corresponding predicted semantic
classes. Furthermore, to reduce fragmentation, post_merger
can be deployed to fix the fourth use case of Fig. {] It uses
DBSCAN to cluster the 3D centers of those instances of
the same semantic class, which are too close to each other.
Finally, with post_cyclists, we turn bicyclists who have no
bicycle nearby, but a motorbike, into motorcyclists.

IV. EXPERIMENTS
A. Experimental Setup

Dataset. We evaluate on the challenging Semantic-
KITTI [37], which was recently extended [11] by providing
instance IDs for all LiDAR scans of KITTI odometry [38].
It contains 23201 full 360 degree scans for training and
20351 for testing, sampled from 22 sequences from various
German cities. We use training sequence 08 as validation
split, following the convention. Annotations comprise point-
wise labels within 50 meters radius across 22 classes, 19 of
which evaluated on the test server: 11 stuff and 8 thing.



TABLE I
PANOPTIC SEGMENTATION COMPARISON ON TEST SET RESULTS OF SEMANTICKITTI. ALL VALUES IN [%] WITH St FOR stuff AND Th FOR thing.

Method | PQ PQf SQ RQ | PQ™ SQ™ RQ™ | PQS SQ% RQS | mloU
RangeNet++ [15] + PointPillars [20] | 37.1 459 759 47.0 | 202 75.2 25.2 493 765 62.8 52.4
LPSAD [10] 38.0 47.0 765 482 25.6 76.8 31.8 47.1 76.2 60.1 50.9
KPConv [21] + PointPillars [20] 445 525 800 544 32.7 81.5 38.7 53.1 79.0 65.9 58.8
PanosterK [Ours] 456 528 78.1 570 | 324 77.1 41.6 551 788 68.2 60.4
PanosterK + post_* [Ours] 527 599 80.7 64.1 49.4 83.3 58.5 55.1 78.8 68.2 59.9
TABLE 11
DETAILED CLASS-WISE PQ RESULTS OF SEMANTICKITTI TEST SET. ALL VALUES IN [%].
) = =
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RangeNet++ + PointP. 37.1 669 6.7 3.1 162 88 14.6 31.8 13.5 90.6 632 413 6.7 792 712 346 374 382 328 474
KPConv + PointP. 445 725 172 92 30.8 196 299 594 228 84.6 60.1 34.1 88 80.7 77.6 539 422 49.0 46.2 46.8
PanosterK 45,6 49.6 137 9.2 33.8 195 43.0 50.2 402 90.2 62.5 345 6.1 82.0 77.7 557 412 43.0 489 59.8
PanosterK + post_* 52.7 84.0 185 364 44.7 30.1 61.1 69.2 51.1 902 62.5 345 6.1 82.0 77.7 55.7 412 48.0 48.9 59.8

Model training. Experiments are focused mainly on
PanosterK, based on KPConv [21], while showing the flex-
ibility of Panoster by applying it also on SalsaNext [16]
with PanosterS. Unless otherwise noted, we used the same
training parameters as in [21] for PanosterK and [16] for
PanosterS, with the addition of our instance clustering loss
functions. To better fit the PS task, we used input point
clouds covering the entire scene, instead of small regions
as in [21]. At each training iteration, we fed PanosterK with
at most 80K points. PanosterK used rigid KPConv kernels.
For PanosterS we used batch size 4 and learning rate 0.001.
We implemented our method in PyTorch and trained the
models on a single NVIDIA Tesla V100 32GB GPU. We
trained PanosterK from scratch for at least 200K iterations.
PanosterS was pretrained on semantic segmentation, and
fine-tuned on panoptic segmentation for 100K iterations. The
PanosterK model submitted to the test server was trained on
the entire training set, including the validation set.

Inference. Unlike KPConv [21], at inference time we fed
the whole 50 meters radius scene in a single forward pass,
without any test-time augmentation.

Evaluation metrics. We report mean IoU (mloU) and
panoptic quality (PQ) [1] to evaluate semantic and panoptic
segmentation, both averaged over all classes. PQ can be
seen as the multiplication of segmentation quality (SQ) and
recognition quality (RQ) [1], with the former being the mloU
of matched segments and the latter representing the F} score,
commonly adopted for object detection. Additionally, we
report the alternative PQ' [5], which ignores RQ for stuff
classes. Since our main focus and contribution within PS
is on instance segmentation, among the various metrics we
concentrate on RQ™, i.e. the F; score for thing classes,
which is more appropriate than PQ to compare instance
segmentation performances.

B. Panoptic Segmentation

We compared Panoster with other published PS ap-
proaches for LiDAR point clouds, and submitted Panos-
terK to the SemanticKITTI challenge. Two strong base-
lines were proposed in [11] combining KPConv [21] or
RangeNet++ [15] with PointPillars [20], semantic segmen-
tation and object detection methods. Furthermore, we com-
pared with PanopticTrackNet [9] and LPSAD [10], top-down
and bottom-up approaches respectively.

Table [I] shows results on the test set. Overall, PanosterK
delivered superior performance compared to previously pub-
lished approaches. Despite obtaining worse semantics with
a lower SQ, and significantly lower SQ™ which penalized
PQ™, PanosterK’s strengths are its finer instance segmenta-
tion abilities, shown on thing classes, resulting in a notable
2.9 increase in RQ™ on top of state-of-the-art KPConv and
PointPillars, albeit sharing the same backbone. Considering
individual classes, Table shows that PointPillars [20],
which is a strong object detector, performed better than
our instance clustering approach on the classes car, truck
and bicyclist, while ours prevailed on person, motorcycle
and motorcyclist. Nevertheless, compared to the combined
approaches, our PanosterK was able to deliver a better panop-
tic segmentation, while using a single network in a multi-
task fashion. Interestingly, as shown in Table although
PanosterK performed comparably to previous approaches on
most amorphous stuff classes in terms of PQ, it outperformed
them on all those stuff classes which could be split into
instances, such as traffic sign, pole, and trunk. This could
be due to our instance losses, which enforced learning
the concept of object, despite not being applied on stuff
regions. Furthermore, LPSAD [10], the only other bottom-up
method to date, despite a more complex architecture and a
necessary grouping step, achieved significantly lower PQ and



TABLE III
PANOPTIC SEGMENTATION ON THE VALIDATION SET OF
SEMANTICKITTI. ALL VALUES IN [%].

Method | PQ SQ RQ | PQ™ RQ™ | mloU

RangeNet++ + PtP. | 365 73.0 449 19.6 249 52.8
LPSAD 36.5 - - - 28.2 50.7
PanopticTrackNet 40.0 73.0 483 29.9 33.6 53.8

KPConv + Pt.P. 41.1 743 503 28.9 33.1 56.6
PanosterS 435 68.6 552 32.6 423 57.8
PanosterS + post_* 51.1 769 62.1 50.5 58.6 57.8
PanosterK 484 73.0 60.1 39.5 50.0 60.4

PanosterK + post_* | 55.6 79.9 66.8 | 56.6 65.8 61.1

TABLE IV
ABLATION STUDY ON THE VALIDATION SET OF SEMANTICKITTI, WITH
¢ FOR car, b FOR bicycle AND p FOR person. ALL VALUES IN [%].

Method | PQ RQ™ | RQ® RQ® RQP | mloU

KPConv + instance | 45.9 452 533 424 512 58.3
+ extra decoder 45.2 43.5 654 375 60.8 59.0
+ % conf. matrix 47.6 49.3 755 47.1  67.1 60.0
+ Lovasz-softmax 48.3 49.6 742 389 70.1 61.1

+ small inst. 3x 485 494 | 750 40.0 75.1 60.2
+ skip=PanosterK 484  50.0 795 506 741 60.4
+ post_splitter 504 544 874 60.1 854 60.4
+ post_merger 547 629 95.3 609 87.6 60.4
+ post_cyclists 55.6 65.8 953 609 87.6 61.1

RQ™. Overall, we attribute PanosterK performance to the
high quality instance segmentation resulting from its built-in
learning-based separation approach. By optimizing the clus-
ter assignments directly for purity and non-fragmentation,
PanosterK could achieve good instance segmentation, with-
out affecting semantic accuracy. Furthermore, applying our
optional post-processing techniques post_* (Section [[II-DJ
increased PQ by 7.1 reaching 52.7, with RQ™ at 58.5, im-
proving all thing classes. More details on this are presented
in Section [V-Cl

We report validation set results in Table [T} including
PanopticTrackNet [9], which has no test entry to date. We
add validation results of the combined approaches [11], as
outlined in [9]. Although our projection-based PanosterS,
outperformed previous methods, our point-based PanosterK
delivered even better results. We attribute this to the direct
consumption of 3D points, which leads to a better use of ge-
ometric information, fundamental when separating instances
in 3D space.

C. Ablation Study

In Table [[V] we summarize an ablation study to assess the
impact of different components of PanosterK on PS.

Instance improvements. Although using a single decoder
achieved higher PQ and RQ™ dedicated decoders led to a
significantly better RQ on car and person, while improving
semantic performance on mloU, motivating our choice for
the latter configuration. As described in Section [[lI-C| com-
pared to the instance clustering approach adapted from [12],
we increased the robustness against unbalanced cluster sizes.

semantic semantic
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Fig. 5.  Qualitative results of PanosterK on two challenging samples
from the validation set of SemanticKITTI. Enlarged numbered boxes show
representative regions.

This change, shown in Table m as "% conf. matrix”,
largely improved the predictions, preventing closer and larger
objects, in terms of point counts, from dominating smaller
and further ones in the clustering process. Furthermore, we
added a skip connection from semantic to instance head,
which led to a higher RQ™, with better detection for the
classes car and bicycle.

Semantic improvements. Since Panoster is a bottom-
up method, to avoid errors propagating through the things
mask, precise semantic segmentation is key for high quality
panoptic outputs. Towards this end, we applied the Lovasz-
softmax loss and we limited false negatives by increasing
the weight of small instances (denoted by ”small inst. 3x” in
Table [[V). The former had a positive impact on mIoU, PQ
and RQ™. The latter, despite decreasing mIoU, increased
precision on smaller thing classes, such as person.

Number of predictable clusters N. For all experiments
we set N equal to 60, higher than the amount of objects found
across the dataset in a single scan. This number can be seen
equivalent to the amount of bounding boxes processed in
an object detector [25]. Two architectures using N = {60,
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Fig. 6. Qualitative comparison on four challenging portions of the validation set of SemanticKITTI, with instance segmentation predicted by our PanosterK
without post-processing, and KPConv + PointPillars. In the second and third rows, each color shade represents an ID, while red circles indicate errors.

90} resulted in a PQ difference of 0.1, showing Panoster
insensitivity against N.

Post-processing. As it can be seen in Tables [, [II [ITT]
and [TV] our optional post_* strategies (Section [[II-D) bring
significant improvements to Panoster predictions. They com-
plement our model, fixing its clustering errors through plau-
sibility checks by exploiting 3D data and the task duality
of PS. The largest improvement is brought by post_merger,
which joins close instances likely to be part of the same
object, divided by the model or by post_splitter.

D. Runtime Comparison

Our PanosterK model runs on 80K points at 58 FPS at
inference time for a single forward-pass on a NVIDIA GTX
1080 8GB GPU, which is 3 FPS (i.e. 5%) slower than its
semantic counterpart. Therefore, Panoster brings panoptic
capabilities with a relatively small overhead with respect
to semantic segmentation networks. This high speed is pos-
sible thanks to the simplifications we adopted at inference
time (Section [[V-A). In comparison, LPSAD, the previously
fastest existing method for PS on LiDAR point clouds, runs
at 11.8 FPS [10]. Panoster’s built-in learning-based clustering
avoids cumbersome grouping strategies to form instances,
allowing it to be fast. Moreover, Panoster is more efficient
than the combined methods, which require three networks,
i.e., one for semantic segmentation, and two for detecting
smaller and larger objects [11].

E. Qualitative Results

In Fig. [5| we showcase PanosterK predictions on two com-
plex validation scenes, with road intersections and several
objects. Each shows the whole 50m radius scan. Despite
point sparsity, predictions do not degenerate by increasing

the distance from the sensor. Additionally, Panoster is able to
distinguish neighboring objects, assigning them different IDs
(i.e. colors), as in detail 3 of Fig.[5] Although in challenging
scenes, such as the bottom one in the figure, it reuses the
same ID for multiple instances, these can be fixed via post-
processing as matching IDs are found only in distant objects.
We attribute this behavior to the relatively low amount of
instances and complex scenes in most training samples.

Furthermore, in Fig. [6] we compare PanosterK, without
any post-processing, against the approach proposed in [11]
combining KPConv and PointPillars. Qualitative results con-
firm the findings of our experiments, with our PanosterK
delivering superior instance segmentation, with minor errors.
Despite relying on a strong object detector, the combined
approach completely ignored the challenging pedestrian in
sample A next to the car and the partially occluded one
in D, wrongly divided a person in D, partially ignored the
left person and the rare motorcycle in C, assigned the same
ID to multiple people in C, and wrongly detected parked
cars in B. As both methods are based on the same semantic
architecture, i.e. KPConv, we attribute this difference to
the benefit of the integrated panoptic solution offered by
our Panoster, as well as to the issues rising from dealing
with multiple and possibly contrasting predictions when
combining the outputs of various networks.

V. CONCLUSION

In this paper we proposed Panoster: a fast, flexible,
and proposal-free panoptic segmentation method, which we
evaluated on the challenging LiDAR-based SemanticKITTI
dataset, across two different input representations. Panoster
outperformed published state-of-the-art approaches, while



being simpler and faster. Our method directly delivers in-
stance IDs with a learning-based clustering solution, embed-
ded in the model and optimized for pure and non-fragmented
clusters. With its small overhead, Panoster constitutes a
valid end efficient approach to extend existing and upcoming
semantic methods to perform panoptic segmentation.
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