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Abstract— With the aim of bridging the gap between high
quality reconstruction and robot motion planning, we propose
an efficient system that leverages the concept of adaptive-
resolution volumetric mapping, which naturally integrates with
the hierarchical decomposition of space in an octree data
structure. Instead of a Truncated Signed Distance Function
(TSDF), we adopt mapping of occupancy probabilities in log-
odds representation, which allows to represent both surfaces,
as well as the entire free, i.e. observed space, as opposed to
unobserved space. We introduce a method for choosing resolu-
tion -on the fly- in real-time by means of a multi-scale max-min
pooling of the input depth image. The notion of explicit free
space mapping paired with the spatial hierarchy in the data
structure, as well as map resolution, allows for collision queries,
as needed for robot motion planning, at unprecedented speed.
We quantitatively evaluate mapping accuracy, memory, runtime
performance, and planning performance showing improvements
over the state of the art, particularly in cases requiring high
resolution maps.

I. INTRODUCTION

The past years have brought impressive advancements
in the field of dense environment mapping, fueled by the
advent of RGB-D cameras and ever more powerful pro-
cessors, including GPUs. Applications of (near-)real-time
3D dense mapping systems are vast, ranging from digital
twins and Augmented/Virtual Reality to mobile robotics.
Recent technological advances are inciting the use of mobile
robots for exploration and monitoring tasks. Their growing
versatility and autonomy offer safe, cost-effective solutions
in a wide range of applications, including aerial surveillance,
infrastructure inspection, and search and rescue [1]. How-
ever, to fully exploit their potential, a key task is enabling
light-weight platforms to operate autonomously in unknown,
unstructured environments with limited on-board computa-
tional resources. Map representations are thus required that
can accommodate both high-fidelity reconstructions of the
environment as well as perform fast online planning.

There are several efficient mapping methods for motion
planning that rely on 3D volumetric representations. A com-
mon strategy is to use probabilistic occupancy maps using
octree structures for quick access [3], [4]. More recently,
signed-distance-based frameworks [2], [5], [6] have become
popular as they allow fast map query operations in online
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Fig. 1. The main goal of our system is to provide a navigable 3D occupancy
map with a defined notion of observed free space in small to large scale
scenarios, using adaptive resolution to constrain memory consumption. The
figure shows the output of our mapping pipeline for the Cow and Lady
RGB-D dataset [2] alongside a planned trajectory (red). The chosen voxel
resolutions for free space encoding are shown for a map slice.

settings. The main drawback of previous approaches is that
their computational performance degrades drastically with
the discretisation of the environment, since they operate on
map data in the same way regardless of the occupancy status
and geometry of the underlying space. As a result, these
methods are only suitable for scenarios requiring coarse
reconstructions or navigating in areas with relatively large
obstacles. In contrast, our work addresses the challenge of
trading off mapping accuracy against computational effi-
ciency for planning in online, on-board robotic applications
that require both.

In this paper, we introduce a volumetric adaptive-
resolution dense mapping framework that supports multi-
resolution queries and data integration using occupancy
mapping [3], [7], [8]. Contrary to methods based on signed
distance functions, we continuously maintain a high resolu-
tion 3D octree representation of observed occupied and free
space in real-time.

Our key insight is to recognise the lack of a concise
method for defining required resolution in the context of
occupancy mapping, with few approaches tackling this prob-
lem by extending single resolution approaches with ad-hoc
heuristics [4]. As a result, we designed a novel integration
algorithm that selects resolution by constraining the induced
sampling error in the observed occupancy, splitting an octree
in a coarse-to-fine fashion until a desired accuracy is reached.
Central to this idea is the introduction of a multi-scale max-
min pooling of the input depth image which enables real-time
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operation by providing a conservative indication of measured
depth variation in any given volume with only a few queries.

To further enhance performance, we modified the data
structure of [6] which uses mip-mapped voxel blocks, and
carefully designed a new scale selection and data propaga-
tion scheme between levels. This allowed us to increase
computational and memory efficiency without introducing
reconstruction artefacts.

While our method focuses on RGB-D mapping, it is
flexible to different sensor modalities. This is shown by eval-
uating our system in a wide range of datasets, from synthetic
to large scale LIDAR, showing significant improvements in
reconstruction accuracy, runtime performance, and planning
performance against state-of-the-art approaches. In summary,
the main contributions of this paper are:

1) A dense volumetric multi-resolution system, compris-
ing a data structure, fusion method and sensor models
which together enable real-time online probabilistic oc-
cupancy mapping and accurate surface reconstruction,
by consistently representing free and occupied space to
fine resolutions where needed; we will release our ref-
erence implementation open-source upon acceptance
of this work.

2) A novel fast map-to-image allocation algorithm and
integration method, that seamlessly adapts the map to
different scene scales and sensor modalities

3) A comprehensive evaluation with respect to the state-
of-the-art revealing vast improvements in the trade-offs
of mapping accuracy, speed, memory consumption,
tracking accuracy, and planning performance.

II. RELATED WORK

A large body of literature addresses the problem of obtain-
ing a dense 3D representation of the world. In this section, we
overview recent work, focusing on volumetric reconstruction
methods suitable for real-time robotic applications running
on constrained hardware. This leaves aside most batch inte-
gration methods, where a map is only available for planning
at the end of the mapping run; note that most newer deep
learning based methods fall in this category.

A major milestone in online RGB-D 3D reconstruction
systems is KinectFusion [9], which enables dense volumetric
modelling in real-time at sub-centimetre resolutions. How-
ever, it is limited to small, bounded environments, as the
mapping is locked to a fixed volume with a pre-defined voxel
resolution, and requires GPGPU processing to achieve real-
time performance. To improve scalability, several extensions
to the original algorithm have been proposed. One possibility
is to use moving fixed-size sliding volumes [10], [11] to
achieve mapping in a dynamically growing space. Another
strategy is to exploit memory-efficient data structures, such
as octree-based voxel grids [4], [12], [13] or hash tables
[14], [15], for quicker spatial indexing. More recently, deep
learning methods tackling this problem in an incremental
fashion are also being introduced [16]. Despite impressive
progress, most 3D mapping research has targeted the ap-
plication of surface reconstruction, which aim to produce a

high-quality mesh/point-cloud of a scene. From a navigation
perspective, the concept of observed free space is equally or
more important than surface accuracy. Unfortunately, most
of these methods model free space only near the surface
boundaries and do not generally distinguish between free and
unvisited areas in initially unknown environments. Our work
provides an explicit distinction between the two as necessary
for robotic planning, exploration, and collision avoidance.

In the context of navigation, Euclidean Signed Distance
Field (ESDF)-based mapping methods are commonly used
for motion planning tasks as they provide distance informa-
tion for trajectory optimisation strategies. Recently, signifi-
cant work has been done on incrementally building ESDF
maps for planning in 3D using aerial robots, including the
voxblox [2] and FIESTA [5] frameworks, which construct
ESDF maps from Truncated Signed Distance Field (TSDF)
maps and occupancy maps, respectively. However, as these
methods are designed for fast on-board collision checking,
they rely on coarsely disretised environments with voxel grid
resolutions on the order of ∼ 20 cm magnitude. In contrast,
our approach is also motivated by applications like close-up
inspection [17], which require detailed scene reconstructions.

An alternative representation for planning is the occupancy
map [7], [8]. In 3D, OctoMap [3] is a popular framework that
uses hierarchical octrees to track occupancy probabilities as
sensor data is received. Similar to the original work of [7], it
uses an inverse sensor model that efficiently approximates the
posterior using an additive log-odds update equation, which
resembles the TSDF update procedure [9].

However, while OctoMap works well with sparse LIDAR
data, its performance degrades significantly as map resolution
increases, as well as with noisier sensors. Interestingly, a very
recent contribution shows improvements over OctoMap in
terms of memory and run time by adaptively downsampling
the pointcloud and integrating free space at lower resolutions
[18], highlighting the importance of this topic. While this
method uses a set of distance-based rules to decide the inte-
gration resolution (similar to [4]), leading in the fastest setups
to non-conservative assignments of free space, our work
tackles this problem by rigorously assessing the probabilistic
(inverse) measurement model, introducing an approach for
choosing a sampling resolution that ensures these errors do
not happen, while also improving run time performance.

Closest to our work, [4] proposed an efficient pipeline
with an octree-based implementation for reconstruction and
planning. Their approach supports either TSDF-based or
occupancy mapping using the spline inverse sensor model
of [19]. However, the use of multi-resolution is very basic
and multiple assumptions limit its applicability to planning.

Subsequent work [6] extended this system to handle data
integration with varying levels of detail and rendering at
multiple resolution scales using TSDF maps, but limited to
surface reconstruction. Our method draws inspiration from
this approach in terms of data structure and propagation;
however, our focus is on volumetric occupancy-based rep-
resentations for planning and space understanding, where
the goal is to probabilistically classify all observed space



into occupied, free, or unknown at high resolutions, while
also providing a high quality (surface) reconstruction of the
environment.

Fig. 2. Overview of our system: The different stages of the mapping
pipeline are shown in grey, while the blue boxes show the steps in the
allocation and updating procedure. The flow of information is illustrated
by the arrows. The allocation and updating stages modify the map, while
the rendering and planning stages utilise the map information.

Fig. 3. Overview of the data structure for a hypothetical 2D case. Data
is represented in a two tier octree having voxel blocks in the lower levels.
Depending on the distance based integration scale sc voxel blocks containing
data up to different resolutions are allocated, resulting in important memory
and time savings for cases where higher resolution is not needed. Note that
in the given example the integration scale sc for blocks only containing free
and unknown space has a lower bound of sc > 1 (Section III-E).

III. MULTI-RESOLUTION OCCUPANCY MAPPING

Our library takes as input depth information and poses,
incrementally computing a map which can be queried at any
time for path planning, meshing, and rendering (see Fig. 2).
We also provide an Iterative Closest Point (ICP) module that
can be switched on to obtain a full Simultaneous Localisation
and Mapping (SLAM) system in the spirit of [9], as shown
in Section IV-D.

In order to represent an occupancy efficiently using adap-
tive resolution we use an octree where, similar to [4], the last
levels consist of densely allocated voxel blocks aggregating
up to 8× 8× 8 voxels at the finest scale. This two tier
memory structure leverages flexibility in choosing resolution
at the higher (octree) levels with efficient access at lower
(voxel block) level. Taking inspiration from [6], each voxel
block stores a pyramid representation of itself enabling fast
occupancy updates at different resolutions. However, unlike
[6], we save memory by not keeping all mipmap levels
and only allocating data in each block down to a single
dynamically changing integration scale sc, in other words
our design has different voxel block types which are changed
dynamically depending on the needed integration scale. More
importantly, we augment this method by also allowing data
to be stored at node level when the voxel block resolution is

finer than needed. A representation of this structure can be
seen in Fig. 3 for a hypothetical 2D case.

For a given point, the relevant occupancy information is
maintained only at the lowest allocated voxel that contains it.
Similar to [3], upper non-leaf nodes store a max pooling of
the children occupancy, enabling fast conservative queries of
any given size. In addition to the max occupancy, we keep a
Boolean state indicating whether unknown data is present in
the children. This allows us to disambiguate a node as being
partially or fully unobserved. In our system this pooling, or
data up-propagation, is computed in each integration step,
making it available for online planning at any given time.

A. Notation

We denote n-dimensional vectors with lower-case, bold
letters, e.g. x ∈ Rn. Also, we denote the coordinate frame
in which vectors are expressed with left subscripts, e.g. Cx.
We employ a World frame {W} and the Camera frame
{C}. Euclidean transformations from coordinate frame {C}
to {W} are denoted as TWC ∈ SE(3). We denote matrices
with upper-case bold letters, e.g. D ∈ Rn×m.

B. Occupancy Map Fusion

Given a depth image Dk ∈ RH×W and camera pose TWCk
at time step k, the probability that a point W p in 3D space is
occupied is assumed to depend on the distance to the camera
and the corresponding depth measurement along the ray from
the camera centre W c to W p. Given the depth measurement z
from the projection of point W p into the camera, we represent
the occupancy probabilities of one depth image in 3D:

Pocc
(

W p |Dk,TWCk

)
= Pocc

(
W p |z = Dk

[
π(T−1

WCkW p)
])
, (1)

which corresponds to the inverse sensor model [8], a
function of the depth along the ray. For brevity, it is referred
to as Pocc(W p|z) in the following descriptions. An alternative
way of representing the occupancy probability is using log-
odds, which allows for Bayesian updates to be additive as:

lk(W p) = log
Pocc(W p|z)

1−Pocc(W p|z)
, (2)

Lk(W p) = Lk−1(W p)+ lk(W p) . (3)

In contrast to previous work, we do not accumulate the
log-odds in a single sum, but instead use a weighted mean
L̄k(W p), with weight wk, similar to how it is done in
[9] providing additional information about the number of
integrations. Thus the mean log-odds is updated as:

L̄k(W p) =
L̄k−1(W p) wk−1 + lk(W p)

wk−1 +1
, (4)

wk = min{wk−1 +1,wmax}, (5)

while the accumulated log-odds can be preserved:

Lk(W p) = L̄k(W p) wk . (6)

By clamping the weight wk below a threshold wmax, the influ-
ence of outliers and dynamic objects is mitigated. Moreover,
using a maximum weight wmax rather than an occupancy



threshold prevents the occupancy field at the surface from
converging to a step function and does not require the use
of a time based windowed updating step as in [4].

C. Inverse Sensor Model

For fast computations, our inverse sensor model is a piece-
wise linear function based on [19] and illustrated in Fig. 4
(a) operating directly in log-odds space. Similarly to [19], we
use a model where the measured surface position matches a
log-odds value of zero.

We model depth uncertainty σ as a function of measured
depth z, assuming it to be linearly or quadratically growing
depending on the sensor type (see Fig. 4 (b)): quadratic
for RGB-D and linear for LIDAR or synthetic (perfect)
depth cameras. We relax the assumption of quadratic relation
made in [19] between the surface thickness τ(z) ∝ z2 with a
linear model τ(z) ∝ z bounded by a minimum and maximum
surface thickness τmin and τmax, to avoid overgrowing of
distant objects.

Fig. 4. (a) Inverse sensor model for two measurements (1m, 5m) expressed
as a function of the difference dr from a query point to the measured surface
along the ray. Log-odd values in front of the surface are clipped at lmin
reached at µ = 3σ and grow linearly up to half the surface thickness τ(z).
(b) Distance-dependent growth of two sensor uncertainty models (linear and
quadratic) within the minimum and maximum sensor range znp and zfp and
sensor uncertainty σmin and σmax.

D. Adaptive-Resolution Volume Allocation

The data structure is interpreted as a non-uniform partition
of a continuous occupancy 3D scalar field [4]. Consequently
we do not assign any probabilistic meaning to the size of the
voxel storing a particular value and instead aim at choosing
a partition of the tree which can represent the underlying
continuous function up to a certain accuracy.

Fig. 5. Comparison of free space volume allocation in OFusion [4] (left)
and our new adaptive-resolution strategy (right) in an environment with
a wall and vertical pole. Blue corresponds to free space and white lines
indicate allocated voxels on a map slice. While OFusion ignores occupancy
variations inside a voxel’s volume, leading to erroneous assumptions of free
space behind the pole, our method naturally integrates the volume at the
appropriate scale, allocating obstacles and boundaries to unknown space at
fine resolution, while representing free space at the coarsest possible level.

Choosing this partition -on the fly- in a volumetric space is
not a trivial task. Methods like OctoMap [3] use a ray-casting
scheme to allocate densely the observed space, simplifying
resolution in a later stage called tree pruning. Newer methods

like OFusion [4] and UFOMap [18] mitigate the need for
dense allocation by using a set of heuristics to choose
the needed resolution during the allocation step. The main
problem with these approaches is illustrated in Fig. 5. The
fact that resolution is chosen as part of the ray-casting and
mainly as function of distance tends to ignore changes in
occupancy that happen because of depth changes between
pixels, which often require high resolution allocation to
be accurately captured, leading to parts of space being
erroneously labeled as free. This is particularly important in
occlusions caused by thin objects and frustum boundaries.

To solve this problem we take a radically different ap-
proach, discarding the raycasting and using a so called
‘map-to-camera’ allocation and updating process, thereby
following an ‘as coarse as possible, as fine as required’
mapping scheme. Given a new depth image Dk, we start
from the root of the octree analysing each node recursively
in order to decide whether the variation of occupancy log-
odds inside the node meets a bounding criterion:

max |lk(W pi)− lk(W p j)|< ε (7)

for every W pi, W p j in the node volume. This criterion, which
has been used for 3D data compression on an octree [20],
bounds the occupancy error from a sampling perspective, a
desirable feature for safe navigation maps. If it is met, we
update the node at the given scale; otherwise, it is split into
its eight children, and the process is recursively repeated until
(7) is satisfied or voxel block level is reached.

Evaluating (7) naively would require a high resolution
sampling of the model in the node’s volume, considering all
pixel ray measurements that traverse it. However, we observe
that, due to the particular structure of the inverse sensor
model, we can make a conservative decision based on the
measured depth z and the point’s query depth r = T−1

WCkW p|z
on whether to split the node by only considering the span
of measurements [zmin,zmax], and query depths [rmin,rmax] in
the node’s volume, as illustrated in Fig. 6.

While the span rmin,max can be easily computed from
the node’s position and size, zmin,max is more involved. To
compute the latter, the node is projected into the depth image
defining a bounding box (BB). More importantly, instead
of evaluating all pixels within the BB, we sample a pre-
computed set of min-max pooling images.

Each pooling image P f
k ∈ RH×W with f ∈ {1, . . . , fmax}

aggregates the information of the original depth image for
different square areas A f = (2 f + 1)2 centred around each
pixel with coordinates u and v. More specifically, pixel
P f

k [u,v] holds the span of measurement zmin,max within A f ,
as well as a validity and an image crossing state to handle
invalid data and image boundaries. These pooling images are
computed recursively from the previous level by summaris-
ing P f−1

k [u± 2 f−2,v± 2 f−2] as shown in Fig. 6. Once this
structure is computed, a conservative evaluation of (7) can
be made by simply computing a BB of the projected node
in the image and querying the max-min pooling at the level
with the maximum square size that is still fully contained
in the BB, reducing the amount of queries needed to decide
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Fig. 6. The process to decide whether a node should be updated, split or
skipped. From the projection bounding box (BB-O), simple queries P f

k [u,v]
to the pooling image at the correct scale f provide an span of measurements
[zmin,zmax] which is used alongside the inverse sensor model and the span
of query depths [rmin,rmax] in the node’s volume to make a decision (shown
for 3 possible cases N1−N3). The node is also split if pooling indicates it
projects into partly unknown data or crosses the frustum.

whether to split the node to no more than 4 in the majority
of cases. In summary, by considering measurement spans we
reduce the problem of evaluating (7) from a 3D sampling to
a 2D one, which is further reduced to a few samples using
a pre-computed set of pooling images.

E. Multi-resolution Probabilistic Occupancy Fusion

While data at node level may be at various resolutions,
once voxel block level is reached, each block is evaluated at a
common resolution scale sc, further improving performance,
reducing aliasing effects and simplifying interpolation re-
quired by operations like raycasting and meshing. Similar to
[6], measurements are integrated at a mip-mapped scale in
the voxel block based on the current distance from the block
centre to the camera. Moreover, we integrate blocks that are
known to only contain frontiers from free to unknown space
not finer than scale s f . This way, the maximum level of
detail (s f >= 0) of the frontier boundaries can be chosen
independently of the surface (see Fig. 3 for s f = 1).

The desired integration scale sd may change with the dis-
tance. In contrast to [6], we apply a scale change hysteresis
requiring the camera to move a certain amount. Given the
focal length c and the map resolution vres, the camera has to
move ∆Cmz = 0.25× c× vres closer to or further away from
the voxel block before changing the scale again, to avoid
constant scale changes of blocks located at a scale boundary.

We adapt the propagation strategies applied in [6], to
our occupancy map representation to keep the hierarchy
consistent between scale changes. We replace the parent
with the mean of all observed children when up-propagating
information to a coarser mip-mapped scale (sd > sc). How-
ever, when down-propagating to a finer integration scale
(sd < sc), we allocate the data first and assign the parent’s
value to all its children. In either case, we do not change
scale immediately. Instead we wait for the block to be fully
projected into the image plane multiple times and observed

at the desired scale sd . During this time we update the data at
both scales sc and sd . Once the changing condition is fulfilled
we switch to the new integration scale, deleting the previous
buffer. This reduces artefacts by smoothing values during
initialisation and preventing blocks that are occluded or just
about to exit the camera frustum from changing scale. In
comparison to prior work our new down-propagation strategy
enables eliminating all helper variables stored in each voxel,
thereby drastically reducing memory consumption.

Once all information from a depth image Dk is integrated
into the map, the mean values of all updated blocks are up-
propagated to the mip-mapped scale within each block to en-
able tri-linear interpolation between neighbours of different
scales. Additionally, the maximum occupancy of all updated
blocks and nodes is propagated through all levels up to the
root of the tree to support fast hierarchical free space queries.
Finally, pruning is applied to merge node children whose
weighted log-odd occupancy is close enough according to a
lower threshold Lmin. This extra step simplifies the tree when
the occupancies converge to similar values.

F. Multi-resolution Ray-casting and Meshing Modules
Fast raycasting is required to render the surface in real-

time and/or to enable tracking as part of a full dense SLAM
system. With the up-propagated maximum occupancy and
observed state stored in our data structure, we implemented
a multi-resolution ray-casting strategy to quickly move a ray
through large volumes of free space [20].

A meshing module is also provided which computes an
adaptive resolution dual mesh following [21]. This approach
had been adapted to support our two tier data structure.

IV. EVALUATION

This section presents our experimental results. All our tests
were performed on an Intel Core i7-8750H CPU operating
at 2.20 GHz, 16 GB of memory, and running Ubuntu 18.04.
We used GCC 7.4.0 with OpenMP acceleration for software
compilation. For computing the TSDF with voxblox [2] the
fast method was used in all comparisons, OctoMap [3],
UFOMap [18] and voxblox were run in ROS. The parameter
values used in the experiments are shown in Table I unless
otherwise specified. Three widely known datasets were used
to quantitatively evaluate our system: TUM RGB-D [22],
Cow and Lady [2] and ICL-NUIM [23].

fmax = 5 (QVGA) s f = 0 (vres = 8 cm)
fmax = 6 (VGA) s f = 1 (vres ∈ {1 cm,2 cm})
lmin,total =−100 lmin,iter =−5.015 Lmin = 0.95× lmin,total

σmin = vres σmax = 3× vres znp = 0.4 m zfp = 6 m
τmin = 3× vres τmax = 12× vres wmax = lmin,total/lmin,iter
Cow and Lady

σ(z) = 0.0025z2 τ(z) = 0.05zFR3 - Long Office
ICL - LR2 σ(z) = 0.05z τ(z) = 0.05z

TABLE I
PARAMETER VALUES USED IN THE EXPERIMENTS.

A. Reconstruction Accuracy
To evaluate how our method performs in terms of surface

reconstruction, we evaluate in the ICL-NUIM Living Room



(a) (b) (c) (d) (e)

Fig. 7. Our multi-scale mesh reconstruction for different sensor types with green encoding sampling scale 0 (finest) and orange scale 1. (a) In the Cow
and Lady dataset and (b) TUM dataset, scale is adapted to reflect higher Kinect sensor noise, particularly for places far from sensor trajectory, which loops
around the central desk. (c) In the ICL-NUIM synthetic dataset a similar model is used to show how, in lack of noise, no artefacts appear due to scale
changes. (d) A close up in ICL showing an scale change in a wall. (e) Same as (d) but with uniform color, showing the lack of artefacts in the transition.

2 dataset [23]. Table II shows the reconstruction Root Mean
Squared Error (RMSE) to the ground truth mesh as computed
by the SurfReg tool provided by the dataset, with given poses
and without extra ICP alignment. Our method outperforms
previous approaches on both tested resolutions.

Additionally, we investigate the potential degradation in-
duced by down-sampling the input image. It can be seen
the effect on the reconstruction metric in all cases is minor,
motivating the use of this later step for improving both
running time and memory usage. To show how our method
can adaptively select sampling resolution, multiple recon-
structions are presented in Fig. 7 with color encoding scale.

Image scale 1 cm 2 cm

Ours ×1 0.0146 0.0193
×0.5 0.0250 0.0341

SE OFusion ×1 0.0166 0.0259
×0.5 0.0478 0.0465

SE TSDF ×1 0.0142 0.0200
×0.5 0.0429 0.0367

TABLE II
RECONSTRUCTED MESH RMSE [M] ON THE ICL-NUIM LR2 DATASET

FOR DIFFERENT RESOLUTION AND IMAGE SUBSAMPLING.

Fig. 8. Voxelised reconstruction in FR3 - Long Office for UFOMap (n =
0,d=̂16cm, their visualiser) (left) and our system (right). Note the holes in
the UFOMap surface due to non-conservative free space allocation.

B. Runtime Performance
Running times for our system and competing methods can

be seen in Fig. 9. Our method performs best at 1cm reso-
lution for both image configurations, beating other methods
in datasets using real sensors. We attribute this mainly to
our adaptive-scale approach which leverages the additional
computations needed to accurately and conservatively repre-
sent free-unknown space with economising resolution where
not needed. As maximum resolution decreases to 8cm, or
in small datasets, e.g. ICL-NUIM, the benefits of adaptive-
scale are less pronounced while small costs like computing a

pooling image become relatively larger. This is expected and
consistent with the high-resolution/large-scale environments
targeted by the algorithm.

Methods like OFusion and UFOMap (fast) also achieve
excellent performance but at the expense of mapping quality,
as shown in Section IV-E and Fig. 8. Additionally, methods
such as voxblox present reasonable results, but have the
drawback of requiring an extra step of computing an ESDF
in order to allow direct planning on them, which becomes
prohibitively expensive in high resolution cases. This limits
its usability in cases requiring a high resolution navigable
map in real-time. Finally OctoMap presents significantly
higher integration times than newer methods, since it targets
low resolution LIDAR made maps.

C. Multi-resolution, Memory and Efficiency

To assess memory efficiency of our multi-resolution ap-
proach, we compare our memory usage to supereight OFu-
sion [4] and supereight MutiresTSDF [6]. In particular OFu-
sion uses an octree, similarly to our system for storing both
free and occupied space, while MultiresTSDF also utilises
an octree but for sparsely allocating a narrow-band TSDF.

As a conservative measurement of memory usage, we use
the main process’ Resident Set Size (RSS) as reported by
the Linux kernel to compute the RAM usage.

Cow & Lady FR3 Long Office ICL LR2
1cm 8cm 1cm 8cm 1cm 8cm

Ours 1100 65 493 62 397 105
SE OFusion 1734 57 1009 56 192 54
SE MultiresTSDF 2922 65 1728 68 406 56

TABLE III
MEMORY CONSUMPTION IN MB AT DIFFERENT VOXEL RESOLUTIONS.

Results can be seen in Table III. For the intended use
case of high resolution reconstruction and planning, our
system overcomes competing methods in real life scenarios,
mainly thanks to the adaptive sampling resolution at voxel
block level. As resolution decreases, or in small datasets,
e.g. ICL-NUIM, where the relative voxel block size grows
in a way that brings the allocation near to dense, the cost of
storing this extra multi-resolution information along with our
conservative allocation of frustum boundaries, takes a toll on
the usage when compared to simpler methods like OFusion.
This extra cost is justified by superior planning performance.



Fig. 9. Timings for our system alongside other planning libraries, including the widely used OctoMap [3], for 1cm (left), 2cm (centre) and 8cm (right)
maximum resolution. Notice the logarithmic scale. In the case of voxblox both timings for TSDF and ESDF calculation are shown, as both are needed for
path planning. For some libraries including ours, results are presented for full resolution input images (×1) and down-sampled images (×0.5). The cost
for computing data up-propagation (pooling) in our method is also separated to highlight the cost of having this multi-resolution feature in our map.

D. Tracking Performance
In this section, we evaluate our mapping system integrated

to a Dense SLAM Pipeline similar to [9], which is included
as an additional component of the presented library.

Table IV shows trajectory accuracy results using the
Absolute Trajectory Error (ATE) metric against TSDF and
OFusion [4] methods on the FR1 - Desk and FR3 - Long
Office sequences of the TUM RGB-D datasets. The same ICP
tracking approach presented in [9] is used for all pipelines.
For point-cloud extraction our system relies on the efficient
multi-resolution raycasting method described in Section III-
F. Results indicate that maps produced by our approach
are suitable for accurate ICP tracking, with the ATE being
similar to that of previous methods.

ATE (m)
FR1 - Desk FR3 - Long Office

Pipeline 1 cm 2 cm 1 cm 2 cm
Ours 0.104 0.098 0.194 0.185
SE TSDF 0.099 0.103 0.314 FAIL
SE OFusion 0.100 0.086 0.165 0.172

TABLE IV
ATE OF VARIOUS PIPELINES ON TUM RGB-D DATASETS.

Fig. 10. (left) Planning in the Cow and Lady dataset : Trajectory 1 over
the cow obtained with our mapping system, OFusion is unable to solve this
planning problem due to clutter. (right) Planning in The Newer College
dataset [24]: Trajectores 3 (orange) and 4 (red). Remarkably the method
is able to find the shortest path though the centre corridor.

E. Planning
Finally, we evaluate our mapping system as input for

path planning. We show that kinodynamically feasible and
collision free quadrotor trajectories with map resolutions up

to 1cm can be planned in real-time. To guarantee feasibility,
we compute a Safe Flight Corridor (SFC) from the start to
the end position and optimise 10th order Bernstein polyno-
mial motion primitives within each segment. As a corridor
primitive we use cylinders connected by spheres with a
minimum radius rmin. We use the open motion planning
library’s (OMPL [25]) informed rapidly-exploring random
tree* (informed RRT* [26]) planner to create the SFC
connecting the start and end positions. OMPL confirms the
safety of each corridor segment by verifying that none of the
cylinder and sphere volumes is occupied. This is challenging
using a regular volumetric grid where the number of checks
grows cubically with the map resolution.

With our multi-resolution maximum occupancy queries,
we utilise a ‘coarse-to-fine’ collision checking approach
recursively increasing the resolution in parts of the corridor
where needed to reduce the number of checks required.

Fig. 11. (left) Clutter in OFusion makes the planner fail in several cases;
(right) For a different problem (Trajectory 2) both systems find a solution
but OFusion struggles with noise while planning times with our pipeline
are significantly lower.

We investigate the use of our method for several path
planning problems illustrated in Figs. 10 and 11 and compare
against the OFusion library, which also achieves excellent
mapping times and provides some multi-resolution output.
While our method can find suitable trajectories in every
iteration, notably in cluttered datasets like the Cow and Lady
or large scale like The Newer College [24], OFusion fails
in several cases. This is because OFusion lacks a proper
mechanism for leveraging information from different scales,
instead relying on a simple rule of giving preemptiveness to
data in high resolution voxel blocks over values stored at
node levels. Given that the latter normally stores informa-
tion about free space observations and the former allocates
surface measurements, OFusion is fast but heavily biased



against noise measurements and outliers. In our system we
solve this issue by not only propagating data down from
nodes to voxel blocks, but also by carefully considering the
variation of occupancy inside the node’s whole volume (not
only the centre value), as described in Section III-D, to avoid
having the opposite effect of biasing towards free space.

To further confirm these aspects and highlight the benefits
of our library, we modified OFusion to perform dense
allocation, i.e. everything integrated at a single lowest voxel
block level. The results in Table V show the minimum
solving time required by the planner to find a SFC. While
the dense allocation approach can remove OFusion noise
and find suitable trajectories, the planning time required is
much higher. This is easily explained by the lack of multi-
resolution sampling capabilities, a key feature of our system.

Traj 1 Traj 2 Traj 3 Traj 4
Ours 0.01 0.1 0.06 0.4
SE OFusion 4 FAIL (too noisy) 3 FAIL (too noisy)
SE Dense 5 15 3 6

TABLE V
MINIMUM TIMES (SEC) TO COMPUTE ’SAFE FLIGHT CORRIDOR’.

V. CONCLUSION

We have introduced a multi-resolution 3D mapping frame-
work that is using an underlying two-tier octree data struc-
ture to encode log-odds occupancy probabilities. Thanks
to explicit free space encoding in a hierarchical way, the
approach supports fast collision checking, crucial in robotic
path planning and collision avoidance, while providing high
resolution reconstructions simultaneously.

Our framework was evaluated extensively in synthetic and
real-world RGB-D datasets: we showed that surface accuracy
is competitive with state-of-the-art TSDF-based frameworks,
while enabling real-time or near-real-time operation even at
centimetre-level resolutions. We finally show our maps used
in different real-time 3D trajectory scenarios, including large
scale LIDAR ones, to dramatically improve planning time
without converting the map into ESDF as required by many
existing approaches; thus providing seamless, unprecedented
integration between mapping and planning.
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