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DROID: Minimizing the Reality Gap using
Single-Shot Human Demonstration

Ya-Yen Tsai1, Hui Xu2, Zihan Ding3, Chong Zhang3, Edward Johns1, and Bidan Huang3†

Abstract—Reinforcement learning (RL) has demonstrated
great success in the past several years. However, most of the
scenarios focus on simulated environments. One of the main
challenges of transferring the policy learned in a simulated envi-
ronment to real world, is the discrepancy between the dynamics
of the two environments. In prior works, Domain Randomization
(DR) has been used to address the reality gap for both robotic
locomotion and manipulation tasks. In this paper, we propose
Domain Randomization Optimization IDentification (DROID), a
novel framework to exploit single-shot human demonstration for
identifying the simulator’s distribution of dynamics parameters,
and apply it to training a policy on a door opening task.
Our results show that the proposed framework can identify
the difference in dynamics between the simulated and the real
worlds, and thus improve policy transfer by optimizing the
simulator’s randomization ranges. We further illustrate that
based on these same identified parameters, our method can
generalize the learned policy to different but related tasks.

Index Terms—Transfer Learning, Learning from Demonstra-
tion, Manipulation Planning

I. INTRODUCTION

Reinforcement Learning (RL) has been widely applied to
decision making, control, and planning. In the field of robot
learning, many works have adopted RL as the robot controlling
policy, to improve its learning efficiency and performance [1]–
[3]. Recent works have demonstrated that RL can be used to
control a dexterous robotic hand or a robotic arm to solve tasks
that require complicated manipulation skill, such as solving a
Rubik’s cube [4], [5] or opening a door [6].

RL uses self-exploration to find the optimal policy. Typ-
ically, this requires a very large amount of trial-and-error,
which is time-consuming and can easily result in hardware
damage if executed on the physical robot. A less costly and
safer approach is learning the policy via simulation. However,
the discrepancy between the real world and the simulation
models could hinder the policy from directly being deployed
in real world, especially when the task is contact-rich. In the
literature, this sim-to-real problem is referred to as the reality
gap, which remains an open issue to date.

System Identification (SI) and Domain Randomization (DR)
are the two common approaches to cross the dynamics reality
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Fig. 1: This figure presents the overview of the proposed
framework, DROID, used to minimize the reality gap.

gap. While SI tries to reduce the reality gap by identification
of the real-world parameters, DR tries to increase robustness
to the reality gap by training on randomized simulated envi-
ronments. However, these methods still often struggle to accu-
rately obtain real-world parameters or choose randomization
ranges without any real data [7]. This can result in learning a
biased policy, or a policy which fails to converge.

To address this, we propose a novel framework, Domain
Randomization Optimization IDentification (DROID), to au-
tomatically optimize the environment parameter distribution,
with a combination of DR and SI approaches. Rather than
determining the DR range using intuition or tedious tuning, we
exploit human demonstrations and attempt to align simulated
trajectories with these real-world trajectories. Through this, we
identify the simulator’s optimal parameter range as a statistical
model, which can then be sampled from during training with
RL. An overview of this method is shown in Fig. 1.

With DROID, the learned policy can be transferred to the
real world directly, thus learning efficiency is significantly
improved and unsafe interactions with the environment is
avoided. Our experimental results show that after parameter
optimization and identification, a much higher success rate
can be achieved with DROID on a real-world door opening
task, compared with standard DR or SI. We also show how
the learned dynamics can be directly used to train policies for
different but related tasks.

II. RELATED WORK
RL’s applications in robotics suffer from expensive training

data collection in real robots [8]. By offering cheaper and
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safer data collection environment, simulation has gained huge
popularity for RL training [4], [9]–[11]. However, the issue
of the reality gap still remains one of the main problems
hindering the policy learned in simulation from transferring
well to the real world. To bridge the reality gap, two common
strategies have been studied in prior works: SI, and DR [7].

SI has been a popular approach for sim-to-real transfer [12]–
[17]. It focuses on finding the exact model of the real world, so
the physical behaviors match between the real and simulated
system. This could be done by constructing the simulation
through direct measurement of the environment parameters in
the real world [18] or by collecting real world data for opti-
mizing the simulated model parameters [19]–[21]. However,
correctly identifying the system’s parameters is challenging.
Many parameters cannot be explicitly measured or can involve
presence of noises, especially for dynamics related ones,
like friction, stiffness, and damping. In addition, the system
parameters could be of high-dimensional and entangled. This
further increases the difficulties in achieving accurate and
precise SI results [7], [22], [23]. As a consequence, SI usually
requires expertise of the system to handcraft the model.

Rather than identifying the environment parameters, DR
creates multiple simulated environments by randomizing the
system parameters within given ranges during policy training.
This improves the policy’s generalizability and robustness
against the reality gap. Recently, it has achieved significant
progress for sim-to-real transfer in robotics [4]–[7], [21], [24]–
[28]. Unlike SI, DR achieves better sim-to-real performance
by covering a greater range of parameters distribution in
the simulation containing the real values during RL training.
Prior works optimize system parameters with simulated and
real trajectories collected using hand-designed policies [4]; or
automatically adjust the boundaries of uniform randomization
distributions according to model performances [5]. While
effective, these works suffer from a common drawback. Ex-
isting works [7] have demonstrated its demanding engineering
efforts in adjusting the randomization ranges, which is difficult
and not intuitive. Hand tuning the parameter ranges could
easily cause overestimated values and lead to training RL
in an invalid environment and learning a suboptimal policy.
How to quickly choose the randomization ranges for different
parameters and achieve effective policy generalization still
remains a challenge.

Besides the two main approaches, a variant of DR, Adaptive
DR, has also been studied. It was proposed to optimize the
parameter distributions and minimize the chance of training
RL in invalid environments. Prior works use techniques such
as approximate Bayesian computation [29], Bayesian Opti-
mization, or a relative entropy policy search [30] to estimate
or optimize distributions of system parameters [26], [27], [31].
The proposed framework draws some similarities to these
works in avoiding overestimation of parameter distribution, but
focuses on more contact-rich task which involves determining
complicated and entangled dynamics related parameters and
optimizing the distribution through a more efficient and safer
approach, i.e. human demonstration. In addition, we optimize
the randomization distributions with respect to trajectories
containing not only the observed positions and/or velocities,

but also the proprioceptive torques on joints of the robot
arm. Experiments were conducted on a contact-rich task, door
opening, with DROID due to its complex dynamics of the
robot joints, the door hinge and the contacts between the
gripper and the handle.

The rest of the paper is organized as follows: The method-
ologies is presented in Section III, followed by the experimen-
tal setup, results and the discussion section in IV. Finally, the
conclusions and the future works are presented in Section V.

III. METHODOLOGY

Learning in a simulated environment is convenient, but
transferring the learning results to the real environment re-
quires an accurate model of that environment. Simulation
typically uses mathematical models to compute the interaction
force and torque between objects. These models rely on pre-
defined dynamics-related parameters such as friction, stiffness
and damping. Unlike kinematics-related parameters, many of
them are not easily accessible and hence are often difficult
to measure and identify. Therefore, tasks that involve these
parameters experience difficulty in sim-to-real transfer. To this
end, we propose a framework DROID that evaluates these
parameters through human demonstration. Building on the
concept of interaction force, we implicitly perceive dynamics
information of the real-world system from the feedback of the
robot and use this information to determine the distribution of
the parameters in the simulation. This gives us a reasonable
set of parameters for the domain randomization in RL and
hence results in a successful policy transfer.

DROID is composed of three phases: the human demonstra-
tion (Section III-A), the parameter identification and optimiza-
tion (Section III-B), and the policy learning with optimized DR
(Section III-C). In the first phase, the human demonstrates a
contact task in the real world. The robot clones the human
behaviors multiple times and records the data. In the second
phase, robot in the simulator repeats the same behaviors and
records a same set of data. The data from the real system and
the simulator is then used for identifying the distribution of the
task relevant parameters. Through an iterative approach, we
can gradually update the parameter distribution to minimize
the differences between the two perceived feedback until the
obtained simulated environments can better reflect to the real
world. In the final phase, policy is trained with DR based
on the parameter distribution optimized. The resulting policy
can be transferred to the real with good performance for the
previous optimization steps. Note that this study focuses on
minimizing the reality gap and the human demonstrations only
serve for the purpose of identifying the task relevant parameter
distribution. Learning the task from human demonstration is
out of the scope of this paper and in the third phase we learn
the policy from scratch without human demonstrations. In the
following sections, we will go into more details on how each
part is implemented.

A. Single-Shot Human Demonstration

In this first phase, our aim is to collect the data reflecting
dynamics relevant to the task. To this end, human demonstrates
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the task once in the real world to provide a robot motion tra-
jectory, qd, through kinesthetic guidance. This demonstration
is safe to be executed by the robot and allows the robot to
repeat it multiple times automatically. By repeating the qd to
interact with the environment, the dynamics information can
be perceived by the torque sensor feedback τr of the robot.
Such feedback is later used as the reference to identify and
update the parameter distribution in the simulation. Different
from the approaches that makes the robot to randomly interact
with the environment, in DROID we rely on the human to
provide a trajectory that is safe for the robot to identify the
system dynamics. This only requires a single-shot demonstra-
tion. We focus on the task relevant parameter distributions and
limit the random exploration of the robot in the real world.
This minimizes the risk and save the time in the real robot
experiment.

B. Parameter Optimization and Identification

The goal in this phase is to correctly identify the parameter
distribution that minimizes the discrepancy of the simulated
and the real system. Rather than finding the specific value
for each parameter, we determine the distributions of them
for the presence of noises and uncertainties in the real world.
We can then train the RL to find a policy that works within
this distribution, which is the key problem solved in DROID.
Falsely defined distribution will lead to failure in sim-to-real
transfer, and the policy trained under an unreasonable DR
can suffer bad performance. We model this distribution as a
multivariate normal distribution Φ(µ,Σ), where µ and the
Σ is the mean and covariance, and system parameters φ is
randomly sampled from Φ.

During the human demonstration phase, data has been
collected from the real system. Taking the identical steps, we
can program the robot to repeat the same task in the simulation
and hence obtain the torque sensor feedback τs. As the real
world parameter value φ′ is not easily accessible, we align
the simulation and the real environment by aligning the robot
behaviors in them. Here, we define the “behavior” as the robot
action and perception pairs, i.e. the motion trajectory qd and
the torque sensing τs. Changing φ changes the dynamics of
the simulation and hence changes the robot behavior. Sampling
different φ from its distribution Φ, we observe the different
behaviors under different environments in the simulator and
identify the ones that are most similar to the real world
behavior. We hence update Φ based on the robot behaviors.

We formulate this as a distribution optimization problem
and update Φ iteratively based on the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) approach [32] with
the following objective function:

J (φ) =
1

N

N∑
n=1

(‖τs(φ)− τrn(φ′)‖+ cβ),φ ∼ Φ (1)

where N , β, c is the total number of trajectories from the
real robot, a penalty for failure of the task and the factor for
the penalty, respectively.

The process is iterated from the initial guess, Φinit =
N (µinit,Σinit), until convergence. Note that we append cβ at

the end of the fitness function to penalize the situation where
the robot fails to grip the door knob during door opening
process in the simulation. This occasionally happens when for
example the friction coefficients of the fingers become to low
or when the joint damping is set to be invalid. The overview
of the described algorithm is summarized in Algorithm 1. M
is the total number of samples from the current distribution
Φ. For each iteration, the robot performs the task in the
simulator under the environment parameter φ sampled from
the distributions Φ. The cost J (φ) is therefore evaluated
with the resulting τs in Eqn. 1. Note that in total N real
robot trajectories are used to evaluate the cost and J (φ) is
the average value. After M iterations, the CMA-ES updates
Φ from the x best candidates which associated with the
lowest costs J (φ). The update process of Φ (i.e., µ and
Σ) and hyper-parameters of CMA-ES following the standard
procedure. This repeats until Φ converges and we achieve the
optimized Φ∗

Algorithm 1 Optimizing parameter distribution

1: Initialize hyper-parameters of CMA-ES
2: Initialize Φ with N (µinit,Σinit)
3: while not converged do
4: for m = 1 : M do
5: Sample φm from Φ
6: Robot perform task in simulation with φm

7: Collect τs(φm)
8: Calculate J (φm) in Eqn.1 with N real trajectories
{τr1(φ′), ..., τr

N (φ′)}
9: end for

10: Select x best φ from {φ1, ...,φM} by minJ (φ)
11: Update Φ = N (µ,Σ) with the selected φ set
12: Update hyper-parameters of CMA-ES
13: end while
14: return optimized Φ∗

C. Policy Learning
In this paper, we adopt a reinforcement learning frame-

work to learn an optimal control policy πθ, parameterized
by θ, through policy gradient. This is formulated as a
Markov decision process (MDP) which is defined by the tuple
(S,A,P, r, ρ0, γ), where S is the state space, A is the action
space, P : p (st+1|st, at) is a distribution of state transition,
R : S × A → R is the reward function, ρ0 the initial
state distribution and γ ∈ (0, 1) is the discount factor. The
optimal policy π∗θ aims to maximize the cumulative reward
over episodes:

π∗θ = arg max
πθ

Eπθ

[∑
t

r (st)

]
. (2)

Proximal Policy Optimization (PPO) [33] is deployed for
the robot learning purpose. It updates the policy by using the
surrogate objective:
L(θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)], (3)

where, Ât is the estimate of the advantage function at timestep
t, and rt(θ) denotes the ratio between the current policy and
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(a) (b) (c) (d)

Fig. 2: (a) and (b) shows the hardware setup in the real world and simulation. The AruCo markers attached to the table and
the cabinet are used for the tracking purpose. (c) shows four different locations of the door knob, each separated by 5cm along
the lever arm of the door. (d) shows three variants of the door. From left to right are the original door, door with one spring
and door with two springs attached to the hinge. The springs were used to emulate doors with different dynamics.

the previous policy. The clipped term keeps the ratio inside
the interval [1 − ε, 1 + ε], the minimum of the clipped and
unclipped term is used for the expectation. This provides a
lower bound, or a pessimistic bound, on the unclipped term.

As the model of the real world environment is described
by Φ∗, sufficient simulation environments are hence required
to be sampled from the distribution in order to reflect to
the reality. Therefore, the RL agent is trained on multiple
simulated environments sampled from Φ∗. By doing so, we
hope to maximize the similarity in state transition between
the simulated and the real environments and enhance the trans-
ferrability of the learned policy to the real world application.

The structure of the reward function follows closely to the
one defined in [6] and is presented as follows:

r =


ω1 · rdoor + ω2 · rori

+ω3 · rdist + ω4 · rlog dist + ω5 · rslip, if λ < 30◦,

ω1 · rdoor + ω2 · rori + ω5 · rslip, otherwise
(4)

where λ is the hinge angle of the door, ranging from 0◦

(closed door) to 90◦ (completely opened door). The reward
function has a total five terms. The rdoor rewards the action
that results in the increase to the door hinge. The rori rewards
the relative orientation between the door knob and the gripper.
The higher reward is given if the relative orientation is closer
to orthogonal. The rdist and rlog dist are associated with the
relative displacement between the door knob and the gripper.
The higher reward is given to the short displacement. One
major difference between our door opening strategy and the
DoorGym’s, lies in that they use hooks to open the door
while our robot is trained to firmly grip knob handle during
the entire task. This significantly increases the complexity of
dynamics involved. To this end, we added a penalty term rslip
in the reward function to prevent the fingers from slipping.
ω1, ω2, ω3, ω4, and ω5 are five coefficients for normalizing
each reward terms.

IV. EXPERIMENTS AND RESULTS

We evaluate our work through a door opening task for its
complexity in the dynamics involves. The main focus of our
experiments is to access how well the RL policy learned with

DROID can be transferred to the robot in the real world. This
evaluation consists of three experiments.

The first experiment validated that DROID can identify the
parameter distributions for environments and with different
dynamics. In the second part, we applied one of the optimized
distributions to DR and train a policy for door opening.
The evaluation on the performance of this policy was done
by comparing it’s robustness and effectiveness in sim-to-real
transfer with other approaches (standard DR and without DR).
Finally, we tested the generalizability of the RL policy learned
from the optimized parameter distributions.

A. Experimental Setup

The experiment consisted of a real and a simulated sys-
tem. In the real system, a cabinet door, a camera and a 7-
DoF Franka Emika robot arm were used as illustrated in
Fig. 2(a)(b). The Franka robot was equipped with 7-DoF joint
torque sensors allowing it to record the torque feedback while
interacting with the environment. A two fingers gripper was
mounted at the end effector for grasping and manipulation
purpose. The cabinet was the target of interest in which we
attempted to identify its dynamics parameter distributions. The
fixed camera provided the relative pose information between
the robot and the door as well as the door angle information
via tracking the visual markers attached to the door and the
optical table during the experiment.

For the simulation part, we deployed the MuJoCo plat-
form [34] to perform the RL training. The simulated environ-
ment was defined by a set of parameters including kinematics
tree, and many dynamics such as mass, damping, friction etc.
Many kinematics such as relative poses and the geometric
dimensions and the robot related dynamics such as mass
and inertia were either provided officially or can be directly
measured and hence were not within our focus. Inertia of the
door was also not considered as it can be estimated once we
obtained the CAD model. Our main interest was to identify
the parameter distributions of the dynamics of the robot and
the door that were not provided and difficult to measured in
the real world. These parameters included mass, joint friction
loss, and joint damping and the sliding and torsional frictions.
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B. Parameter distribution identification

In the first experiment, we investigate the feasibility of
DROID in the distributions identification. This verifies whether
DROID can find the distribution of parameters that correctly
reflects the interaction behavior encountered in the real-world
door opening task.

For the given cabinet door (Fig. 2), the real robot followed
the human demonstration to obtain ten sets of τr that reflected
the dynamics of the interactions with the door. We first made
an initial guess of the Φinit for the parameters of interest.
The estimation was made by referencing Franka’s officially
provided values and DoorGym’s parameters [6] with the ex-
ceptions being the door and knob masses which were directly
measured. At the first iteration, 30 simulated environments
were sampled from the initial distributions. Parameters sam-
pled with negative values were omitted and resampled. With
each environment, the robot cloned the human demonstration
by following qd to obtain τs. The associated cost for each
trail was calculated using Eqn. 1. The higher the discrepancy
among the torques, the higher the cost would be gained. For
the simulation that failed to successfully open the door due to
factors like grasp slipping, an extra penalty of 10 was added to
the cost. CMA-ES algorithm took the top five best candidates
of φ to update the means and the covariances and hence the
Φ. In a new iteration, the updated Φ were used to generate
another 30 new simulations and this process was iterated until
convergence.

With the above steps, we have estimated the parameter
distribution for our cabinet door (Tab. I). These parameters
reflect the dynamics of the robot arm, of the door hinge and
the contacts. Fig. 5 illustrates the optimization process and
results. Fig. 5(a) shows the joint torque trajectories of the robot
obtained in the simulation before and after the optimization,
and the joint torque trajectory obtained in the real world. This
only displays one of the joint for illustration. As it can be
seen, differences between the red (after optimization) and the
black (real robot) lines are much smaller than the differences
between the blue (before optimization) and the black. This
suggests that the proposed approach can indeed minimize
the reality gap. The same conclusion can be drawn from
Fig. 5(c) plotting the cost against the iteration. Among the 30
simulations the average cost gradually converged to a lower
value. This indicates that the simulations sampled from the
optimized distribution lead to smaller reality gap than those
sampled from the initialed distributions. The means and the
variances of three parameters at each iteration are shown in
Fig. 5(c) and these show the distribution of these parameters
converged to fixed ranges. The quantitative results comparing
the unoptimized and optimized distributions are summarized
in Tab. I. We have applied this result to the sim-to-real transfer
experiment, which is detailed in the next section.

Furthermore, a validation was carried to determine the
possibility variations in estimating the parameter distribution
using different single human demonstration. Different human
demonstration was provided through an alternative robot pose
as illustrated in Fig. 3 for validation. Note that due to robot
workspace limitation, only the presented two poses could be

(a) (b)

Fig. 3: Two different initial robot poses used in the human
demonstrations. (a) is the initial robot pose used to estimate
parameter distribution in Tab. I. (b) is another initial robot
pose used to validate the possibility of a bias in parameter
estimation.

Fig. 4: This compares the parameter distributions estimated
using two different initial poses and human demonstrations.
Red and blue curves represent the parameter distribution
estimated using robot pose (a) and (b) shown in Fig. 3.

applied to interact with and open the door. The parameter
distribution identification process was repeated using this pose.
The experimental result comparing the estimated parameter
distribution using the two human demonstrations is shown
in Fig. 4. We verified that despite for the minor variations,
the majority of parameter distributions estimated using the
alternative pose still converged to similar distributions as stated
in Tab. I and single human demonstration was adequate for
parameter estimation.

In order to further verify the approach, we have conducted
two sets of controlled experiments by changing the dynamics
of the real door.

The original door was modified to include additional springs
to change its dynamics. Fig. 2(d) illustrates the three variants
of the door, without any spring, with one spring and with two
springs attached to the hinge. These springs were identical and
share similar dynamics.

The optimization results for different door dynamics are
also summarized in Tab. I. It can be seen from the parameter
values that the robot dynamics is not much affected but the
environment dynamics varies a lots. This is due to the fact that
we only changed the door dynamics and the algorithm is able
to identify this change correctly. Doors equipped with different
amount of springs would expect to have different distributions
for the door joint frictionloss, stiffness and damping. For
the frictionloss, door with 2 springs seem to have higher
friction loss than the other two scenarios. The joint stiffness
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increases as the number of spring equipped increase, which
is reasonable. Doors with springs tend to have higher joint
damping values than the door without the spring as expected.
The joint dampings associated to the robot falls into the similar
values. This shows the proposed framework have consistant
results. The masses and the frictions vary across different
scenarios, and this may be attribute to the robot which needs
higher friction in the gripper in order to sustain the sufficient
force to grip the door knob in the simulation when more spring
is loaded to the door.

Based on the above evaluation results, the proposed DROID
framework has demonstrated to be feasible in determining the
parameter distribution of the real world dynamics. In theory,
the reality gap is smaller after optimization. The framework
has also shown to be realizable to identify task with different
dynamics. Most outcomes have appeared to be reasonable with
a few exceptions which may be attribute to factors such as
imperfect demonstration resulting in loss of grip when door
becomes stiffer or noises present in joint torque sensors in the
real world. We have used the optimized result in sim-to-real
practice and detail it in the Section IV-C.

C. Sim-to-real transfer with optimized DR

While in many prior works, domain randomization methods
have shown to be effective in addressing the reality gap,
selecting the randomization ranges still remain challenging,
and training the RL agent on overestimated ranges may
be inevitable and could lead to poor learning performance.
In the last experiment, we have successfully identified the
parameter distributions, but we have yet demonstrated it to be
effective to learn adequate policy and transfer to the real world.
Therefore, in this experiment, we aimed at comparing the
learning performance of policies learned from three methods,
namely normal DR, DROID without DR and DROID with DR.
These policies were trained to open the door without springs
in the simulation and then directly transferred to the real world
to open the same door. Normal DR approach was trained on
the estimated parameter distributions which correspond to the
left most columns in Tab. I. DROID without DR, similar to
SI, was trained using only fixed parameters. In this case, the
parameters used were the optimized µ listed in column four
of the Tab. I. Finally, DROID with DR was trained based on
the optimized distributions, i.e. column four and five of Tab. I.

For the sake of fairness, all of them were trained using
model-free on-policy approach, i.e. PPO, and shared identical
RL hyperparameters, architectures of networks, observations,
and reward functions, with the parameter ranges being the
only differences. In the reinforcement learning setting, the
observation included the joint positions and velocities of the
arm, the relative positions between the robot gripper and the
knob. These combined to form the 23 DoF state space. The
action space consisted of 9 DoF, specifying the 7 robot joint
positions and 2 gripper widths. The critic and actor models
were represented by a neural network with two hidden layers
of size 64, following tanh activation functions. We performed
our simulations on MuJoCo physics engine with timestep of
0.001s. During the training, each episode took a maximum of

(a)

(b)

(c)

Fig. 5: (a) shows the comparison between a robot joint torque
trajectory in real world and the joint torque trajectories before
and after the optimization and identification for parameter
distribution in simulation. (b) shows the changes in means
(the solid lines) and the variances (the shaded areas) of the
three parameters over iterations during optimization. The red
line represent the mean and the shaded region represent the
variance. (c) shows the associated cost computed using Eqn. 1
over iterations.

512 steps. We employed the ADAM optimizer with a stepsize
of 0.001 and mini-batch of 64 episodes to update the policy
and value networks.

We have trained three policies with each approach, and
have tested each of them in the real world for 10 times. The
results for sim-to-real comparisons are displayed in Tab. II.
The door opening angles have been recorded each time and
the historgram is shown in Fig. 6. We define a successful
door opening case as the one with the hinge angle of the
door larger than 30◦ in real-world trials. From these results,
we can see the later two approaches (DROID with DR and
without DR) outperform the standard DR. In the DROID with
DR setting, the optimized means and variances for DR (80%
success rate) can achieve significant advantages in real-world
tests over the normal DR (20% success rate) with initialized
means and variances. We also notice that the policies trained
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TABLE I: This compares the initial and final parameters distribution after optimization and identification. The distribution is
defined by µ and σ. Additionally, this also compares the optimized distributions for doors equipped with one or two springs.

DoorGym Door without spring Door with 1 spring Door with 2 springs

µinit diag(Σinit) µopt diag(Σopt) µopt diag(Σopt) µopt diag(Σopt)

Door Properties

Door Mass(kg) 1.144 0.5 1.50 0.73 0.92 0.52 2.54 1.23

Knob Mass(kg) 0.199 0.1 1.98 1.86 2.31 0.42 3.99 1.29

Friction Loss 0.05 0.025 0.10 0.02 0.0 0.0 0.56 0.05

Joint Stiffness 0.01 0.005 0.002 0.008 1.06 0.0 1.24 0.06

Joint Damping 2.0 1.0 0.10 0.19 0.71 0.01 0.6 0.18

Robot Properties

Joint
Damping
(7DoF)

[100, 100,
100, 100,
100, 10,

0.4]

[2.0, 2.0,
2.0, 2.0,
2.0, 1.0,

0.2]

[101.35, 100.06,
100.08, 99.61,
99.14, 10.05,

0.83]

[1.06, 1.83,
0.67, 0.41,
0.68, 0.64,

0.57]

[98.11, 98.69,
100.38, 99.64,
101.01, 9.72,

1.17]

[0.41, 0.63,
0.65, 0.15,
0.96, 0.04,

1.19]

[98.63, 99.28,
95.83, 100.12,
95.71,11.55,

1.54 ]

[1.23, 0.71,
1.42, 0.81,
0.77, 0.46,

0.67]

Gripper Properties (Left Right)

Sliding Friction [0.5, 0.5] [0.25, 0.25] [0.47, 1.78] [0.70, 0.86] [1.37, 0.76 ] [0.35, 0.39 ] [3.04, 2.68] [0.46, 0.54]

Torsional Friction [0.5, 0.5] [0.25, 0.25] [1.38, 1.84] [0.66, 0.92] [0.79, 2.29] [0.42, 0.80] [1.04, 2.0] [0.72, 0.83]

without DR using optimized means µopt as system parameters
in simulation can achieve the highest success rate of 86.7%
in reality, even higher than the DROID with DR method. On
one hand, this implies that the optimized µopt indeed achieves
a good sim-to-real transfer. On the other hand, the fact that
DROID without DR produces a higher success rate but lower
door opening angles than DROID with DR is interesting. We
attribute this to the relatively weak dependency on system
dynamics when the door was opened with small angles (e.g.,
30◦), but as the hinge angle increased, the systems dynamics
became more important for the door opening process due to the
larger contact forces between the gripper and the door knob.
Hence, the policies cannot further open the door well without
a proper DR in simulated training process, which was also
testified in Fig. 6. From the distributions of maximal door-
opening angle, we show that DROID with DR can achieve
the door opening with more concentration on larger maximal
hinge angles, e.g. around 60◦, compared against normal DR
and DROID without DR. Tab. II also demonstrates that DROID
with DR can achieve the highest average door-opening angle
among all three methods, even though it does not perform
as great as the normal DR method in simulation. As for the
number of steps taken to open the door, our method have
advantageous performances consistently in both simulation
and reality, which indicates a faster door-opening process.

D. Generalization of the Learned Policy

As mentioned in the previous section, we only used one
human demonstration to determine the parameter distribution.
This demonstration was, however, not used during RL because
it can only serve for a door with the same dimensions. In
this experiment, we tested the policy with three additional
door knob locations in the simulation and in the real system
as shown in the Fig 2(c) to emulate doors with different
dimensions. These locations were set to be 5cm apart along
the lever arm of the door. With DROID, the trained policy

Fig. 6: Comparison of the door opening performance in reality
for three methods (from top to bottom): normal DR, DROID
with DR and DROID without DR. The horizontal axis is the
maximal opening angle of the door in degrees. The vertical
axis is the percentile value for each bin. It compares the
distributions of maximal angles over 30 runs for each method.

TABLE II: Comparisons of Sim-To-Real results

DR
(µinit, Σinit) µopt

DR
(µopt, Σopt)

Success Rate
(angle>30◦)

sim 100% 100% 100%

real 20% 86.7% 80%

Open Angle
(mean±std)

sim 91.3± 0.4 70.8± 16.0 91.2± 0.2

real 22.4± 8.2 42.2± 11.1 45.4± 13.6

Open Steps
(mean±std)

sim 96.3± 107.2 60.3± 2.6 38.7± 14.1

real 68.7± 8.4 73.6± 7.0 68.3± 11.0
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was able to pull the door knob, at different locations, and
open the door successfully. As such, we have verified that
once the parameter distribution is identified using a human
demonstration, different RL policies can be trained within the
optimized distribution to accomplish tasks other than the one
demonstrated.

V. CONCLUSION

In this paper, we proposed a novel and generic framework,
Domain Randomization Optimization IDentification (DROID)
to minimize the reality gap between simulated and real envi-
ronments. The approach is designed to be applicable to a range
of contact-rich manipulation tasks, such as door opening. By
executing a human demonstration trajectory in both simulation
and reality, the differences in their dynamics can be minimized
by iteratively updating and identify the distributions of the
real dynamics parameters. Using a door opening task as an
example, we have verified its capability to identify reasonable
parameter distributions and thus reduce the reality gap. A
successful RL policy can then be obtained by training in
this distribution and directly transferring to the real world.
The sim-to-real performance has shown to be superior than
training with typical DR and SI approaches. Finally, we also
demonstrated that a generalized RL policy can be trained to
accomplish different tasks, given that the system dynamics
remains unchanged.
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