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Planning in Learned Latent Action Spaces for Generalizable Legged
Locomotion

Tianyu Li!, Roberto Calandral, Deepak Pathak?, Yuandong Tian®, Franziska Meier!, Akshara Rail

Abstract—Hierarchical learning has been successful at learning
generalizable locomotion skills on walking robots in a sample-
efficient manner. However, the low-dimensional “latent” action
used to communicate between two layers of the hierarchy is
typically user-designed. In this work, we present a fully-learned
hierarchical framework, that is capable of jointly learning the
low-level controller and the high-level latent action space. Once
this latent space is learned, we plan over continuous latent actions
in a model-predictive control fashion, using a learned high-
level dynamics model. This framework generalizes to multiple
robots, and we present results on a Daisy hexapod simulation, A1
quadruped simulation, and Daisy robot hardware. We compare
a range of learned hierarchical approaches from literature, and
show that our framework outperforms baselines on multiple tasks
and two simulations. In addition to learning approaches, we
also compare to inverse-kinematics (IK) acting on desired robot
motion, and show that our fully-learned framework outperforms
IK in adverse settings on both Al and Daisy simulations.
On hardware, we show the Daisy hexapod achieve multiple
locomotion tasks, in an unstructured outdoor setting, with only
2000 hardware samples, reinforcing the robustness and sample-
efficiency of our approach.

I. INTRODUCTION

Traditional control techniques used in legged locomotion,
like inverse dynamics make assumptions about the dynamics
of the robot, and can lead to poor performance when these as-
sumptions are violated. In contrast, learning-based approaches
do not make strict assumptions about dynamics, but are
expensive to train. Learning locomotion skills can be made
scalable to real robots by leveraging a two-layer hierarchical
control structure [1]], [2], [3]. Typically in hierarchical control
literature, the action space used by the high-level controller to
interact with the low-level controller is user-defined [1]], [2]],
[3l], [4]. Such a user-defined action space can potentially be
too restrictive for some tasks. For example, [2]], [4] constrain
the latent space to choose from a pre-defined set of primitives,
limiting performance to the quality and number of primitives;
[3]] constrain the latent space to a footstep pattern, and learn
a conservative walking pattern, while a different gait might
move faster.

In this work, we introduce a generalizable, fully-learned,
hierarchical control framework that eliminates the need for
pre-defined action spaces for the high-level controller. We

Manuscript received: Oct, 15, 2020; Revised: Dec, 17, 2020; Accepted:
Feb, 17, 2021.

This paper was recommended for publication by Editor Abderrahmane
Kheddar upon evaluation of the Associate Editor and Reviewers’ comments.

'FAIR, Menlo Park, CA, 94025, USA, {tianyul, rcalandra,
yuandong, fmeier, akshararai}@fb.com

2 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213,
USA, dpathak@cs.cmu.edu

Supplementary Video Link: www.youtube.com/watch?v=yopO26MF-HU

Digital Object Identifier (DOI): see top of this page.

Fig. 1: Daisy Hexapod tracking a desired trajectory in an outdoor
unstructured environment using our approach, starting with only 2000
samples on hardware.

start by jointly learning a low-level policy and a high-level
latent action space using imitation learning to reproduce a
set of experts in simulation. This step transforms the initially
discrete space of expert primitives into a continuous space,
allowing us to go beyond a finite number of primitives,
while learning a suitable high-level latent action space. For
the high level controller, we propose a model-based planner,
and plan a sequence of learned latent actions to achieve a
desired goal. We learn a ‘coarse’ dynamics model over one
cycle of the low-level policy given a latent action input, and
use it for model-predictive control (MPC). This results in
reactive planning in learned latent action spaces, allowing
continuous modulation of robot motion to achieve changing
targets, respond to disturbances, and generalize to new tasks.

Using the simulation of a Daisy hexapod and A1 quadruped
(Figure [5), we compare our approach against different learned
hierarchical approaches from literature and find that our ap-
proach outperforms baselines in all evaluation tasks, while be-
ing more sample-efficient. This includes a comparison between
MPC on our learned latent action space and MPC on a library
of experts that were used for learning our low-level, signifying
the importance of jointly learning a high-level latent action
space and a low-level policy. Furthermore, we compare our
method with an informed baseline of inverse-kinematics (IK)
acting on desired center of mass (CoM) motion. The IK base-
line can be seen as the best-case low-level policy for a fixed
action space, making it a highly competitive baseline rarely
addressed in hierarchical learning literature. Our approach
does not require any prior knowledge about the robot, unlike
IK, but performs comparably to IK in normal conditions, and
outperforms it in adverse settings. This experiment strongly
reinforces the advantages of learning a high-level latent action
space. Finally, we demonstrate that our approach can be
used to solve complex locomotion tasks in a sample-efficient
manner in the real world with a Daisy hexapod robot, with only
2000 hardware samples. Together, our experiments establish
that our proposed framework generalizes to hardware, multiple
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Fig. 2: Our method can directly be used with waypoint navigation methods to reach a desired goal. Here, our test platform ‘Daisy’ navigates
a cluttered photo-realistic indoor simulation environment in iGibson [3]] by following a collision-free path to goal. Our approach can follow
the desired path, despite disturbances such as slipping and collisions with the environment.

robot simulations, and multiple tasks with no re-training per
task, significantly improving the state-of-the-art of learned
hierarchical controllers for locomotion.

The main contributions of this work are: 1) Present a
sample-efficient fully-learned hierarchical framework for lo-
comotion and deploy it on a legged-robot. 2) Demonstrate
a model-based planner to plan over learned high-level latent
actions. 3) Extensively compare and analyze different learned
as well as traditional hierarchical control schemes from lit-
erature. To the best of our knowledge, this is the first fully-
learned model-based hierarchical framework demonstrated on
a robot hardware. We present experiments on multiple robot
simulations, further reinforcing the significance of our results.
The generalizability and sample-efficiency of our approach
makes it suitable for solving long-horizon legged locomotion
problems, such as indoor navigation (Figure [2)).

II. BACKGROUND AND RELATED WORK

a) Model predictive control: We consider a Markov
Decision Process with actions a and states s, cost c¢(s¢, a;)
and transition dynamics s;11 = fayn(S¢, a;). The objective of
model-predictive control (MPC) is to minimize the long term
cost of a trajectory 7: J = ZtT:O E,[c(st, a)] with respect
to the actions ag.p, given the dynamics fgy., (s, a;), starting
from an initial state sg. MPC plans a sequence of actions
over a horizon H ag.y = argmin, . ZhHZO c(sn,ap), given
Sh4+1 = fayn(Sh,an) and sg = Scyrr, starting from current
state s.,-r. The first action ag is applied, and the process
repeats, starting with the new current state. MPC has been
applied to locomotion control in [6], [7], [8]. In this work,
we learn the transition dynamics fgy, from data, over a
temporally-extended action sequence aj.ny of length NV, ie.,
St+N = fayn(St, ap¢4n). Similar dynamics models are used
in [9] over Poincare sections of a bipedal gait.

b) Learning for locomotion: Classical locomotion con-
trollers like [10] require known dynamics, while machine
learning approaches can learn locomotion without dynam-
ics [11]]. Successful learning for locomotion has been demon-
strated on robots using dynamics randomization [12], and
other sim2real approaches like domain-specific features [13],
[14], [150. [16], [17] iteratively learn a low-level policy and
a latent input in simulation, and optimize the latent input
on hardware using Bayesian optimization, or other sampling-
based optimization approaches. While these approaches can
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learn to walk, they cannot directly learn skills that can gen-
eralize to new tasks, like multiple goals and different desired
velocities. In contrast, hierarchical decomposition of control
holds the promise of solving complex locomotion tasks in
a general manner. For instance, [10], [18], [19] decompose
the problem of controlling a humanoid robot to center of
mass planning, followed by model-based controllers. Also for
learned controllers, [1I], [2]], [3]], [4] demonstrate the efficacy of
hierarchical structure for solving locomotion tasks. [4] jointly
learn a discrete low-level policy and a switching high-level
policy in simulation. use a learned high-level controller
to decide a footstep location for a learned low-level policy
in simulation. On hardware, use a high-level controller
to sequence a set of pre-learned primitives on a hexapod
robot and [1]] use the high-level policy to define sub-goals for
the low-level policy for a quadruped. However, these works
assume a known high-level action space that communicates
between the two levels of the hierarchy — either as footsteps,
or a discrete set of primitives. This can be restrictive if the
pre-defined action space is not complex enough to represent
a task. In contrast, we present a framework that can learn a
continuous space of low-level primitives along with a learned
high-level action space, and combine this with MPC to achieve
multiple locomotion tasks.

c) Latent space learning for control: There has been a
lot of interest in the robotics community in learning latent
representations of high-dimensional state like images, and
using them for control, such as [?] [20], [21]], [22]] and [23].
However, there are fewer works that deal with latent actions,
or latent inputs to a policy (without transition dynamics). Most
closely related to our work is the work by [24]], [23]] and [16].
These works iteratively learn a policy and a latent input to
the policy on a large range of environments in simulation,
and fine-tune the latent input on hardware. In contrast to
these approaches, we jointly learn a high-level latent action
space, and a low-level policy in a hierarchical setting. We
also learn a dynamics model over this learned latent space
and use MPC to plan over continuous latent actions, allowing
us to change the latent action input to our low-level policy on
the fly. As a result, each hardware trajectory in our approach
can have different latent actions per step, as needed by the
task, while the latent input is kept fixed in [24], [23], [16]
for each hardware rollout. This allows us to respond to online
disturbances and reach changing targets.
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Fig. 3: Flowchart explaining the learning pipeline of our proposed
approach. (1) We learn a low-level policy mo(¢,z) from expert
demonstration in simulation, where ¢ is the phase of the movement,
and z is the latent action. (2) We learn the high-level dynamics
Sh+1 = fayn(Sn,zp) that predicts the state after a latent action zy,
is executed. (3) With mg and fqyn, we use MPC on the high-level
for planning in learned latent space.

Algorithm 1: Model-based planning on learned latent
actions

Given G expert demonstrations 7., high-level cost ¢y,
horizon H
Randomly initialize G latent actions z1.¢, Ty
for each gradient step do

Update zy, w5 = argmin, ., L(zg,0),

where £ =30 ||mg(t,z) — wEoP (1))
for each dynamics learning step do

Sample z ~ unif(Zyin, Zmin)

while ¢ < N do

| Qdes(t) = m5(t, 2)

D <+ DU{(sp,2,8n)}

Update dynamics model sy = fqyn (S0, 2)

Sg < SN
for each planning step do

z1.y = argmincy(so, z1. 1)

Apply latent action z;, measure Sy

Sg < SN

III. PLANNING IN A LEARNED LATENT ACTION SPACE

Our hierarchical learning framework, illustrated in Figure [3]
consists of three steps: 1) Jointly optimize a low-level policy
7y, and a latent action z. 2) Learn a dynamics model given the
learned low-level policy 7y(-, z) over randomly sampled z. 3)
Plan over z using MPC and learned dynamics. This method
can generalize to multiple robots and locomotion tasks while
remaining sample-efficient, without re-training per task.

A. Hierarchical planning for locomotion

We divide the control of legged robots into a low-level
policy and a high-level model-based planner. The low-level
policy my runs at a frequency of 100Hz and its behaviour is
modulated by a latent input z from the high-level planner,
which runs at about 1Hz. Different z result in different behav-
iors on the robot. One popular example of this architecture
is designing the low-level policy with inverse kinematics, and
choosing high-level actions as CoM velocity. In contrast, we
present a framework to jointly learn the low-level policy, and
latent action space, eliminating the need for user-defined action
spaces. We also compare our method to the popular inverse
kinematics setting in Section [[V]
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Fig. 4: CoM Trajectory in XY plane caused by sampling in a 2-
dimensional latent space. Close-by samples in the latent space lead
to continuously varying CoM motion, showing a structured and stable
learned latent space.

1) Low-level policy: Our low-level policy is parametrized
by a neural network that takes a phase variable ¢ € (0, 1] as
input, along with a latent action z from the high-level planner.
Qdes,t = T9(t,z), t = % where n is the current time step,
which goes up to the primitive length N, at which point it is
reset to 0 again. All primitives are assumed to be the same
pre-determined length N. qgcs,; are the desired joint-angles
sent to the robot. The phase ¢ linearly increases to N, and
ensures a cyclic nature of the low-level policy. For a fixed z,
the policy generates the same joint angle pattern every N time
steps in a periodic manner.

2) High-level planner: We use a model-based high-level
planner that plans a latent action sequence z'*# for a planning
horizon H using MPC. The dynamics used in this plan-
ning are learned over temporally-extended low-level action
sequences, rather than per time-step transitions. Starting from
the current center of mass (CoM) position and orientation
Seurr = (Xcom,Ocom ), our high level planner does a search
over the possible sequences of latent actions to find the optimal
sequence over a horizon H:

H
Zi.y = argmianhl(sh,zh) (D)
Z1:H h=1
S.t. Spp1 = fdyn (Sh) Zh)7 S0 = Scurr )

cpy is the high-level cost function; & is a robot step, consisting
of NV time steps. The first action z] is applied on the robot,
and the optimization is repeated, starting from the new state.
We optimize Equation ] using random shooting with 8000
samples, over a horizon of H = 1 and pick the best action.
The cost is designed by the user depending on the task at hand,
described in Section Using a learned dynamics model,
MPC can generalize to multiple tasks without any re-training,
hence significantly improving the sample-efficiency.

B. Jointly learning low-level policy and latent actions

We propose a framework for jointly learning a low-level
policy and high-level latent actions, starting with G expert
demonstrations. We use supervised learning to jointly optimize
a low-level policy my and a latent action z input into g
that leads to a desired expert behavior w**P. Specifically, we
optimize ¢ and one latent action per expert z,4, such that the
optimal policy 7y~ (-, z,) matches the expert g:

mg-(t,2,) = m,"P(t) for g=1...G 3)
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This ensures that, if trained properly, mg« is capable of
generating at least G experts, given different z; per expert.
This can be seen as a bottle-neck formulation where we want
to jointly learn a policy parametrization 6* and high-level
latent action space z such that a large variety of gaits can
be produced by the policy 7y~ for different inputs z. The loss
for each gait g becomes L, = |my(t,z4) — wc*P(t)||*. 6 and
Z1.¢ can now be optimized together to reduce the total loss
G

0 2%, = arg min» [|m(t,2) — 7S (H)]|7. (@)
»Z1:G g=1

The partial derivatives of the total loss £ with respect to latent
variable z, and the policy weights 6 are:

oL 0 < .
20— 20 Z 170 (t, 2g) — mgP (1)1, 4)
g=1
oL o .
92 67H7T6(t7zg) —m"P ()|l % (6)
g g

This naturally leads to a formulation where the update to each
latent input z, is only affected by the supervised learning loss
of the expert g that it is trying to imitate. On the other hand,
updates to low-level policy parameters 6 are optimized by
reducing the loss over all G experts. This is in contrast to
[24], [16] that iteratively optimize the latent action and policy
which can lead to unstable training. Moreover, unlike [[16]] we
learn a unified low-level policy across all experts, and not
separate policies for different experts.

The expert data for supervised learning is collected using
a model-based hierarchical controller proposed in [26]. An
expert-designed feedback law converts desired CoM velocities
to footsteps, which are followed using a low-level inverse
kinematics (IK) policy. We randomly sample 50 desired CoM
velocities, and use the generated joint angle trajectories as
the experts used in training the low-level policy my and latent
action space z. Once my is learned, we are no longer limited to
the G experts that were used during training. By sampling in
the space of latent actions z, we can generate new controllers
that interpolate, and extrapolate from the training experts.
As illustrated in Figure [4] different z lead to different CoM
trajectories. Close-by samples in the latent action space usually
lead to continuous behaviors in the CoM space, showing that
our learned latent space is structured.

C. Learning center of mass dynamics

Once the policy my and latent space z is learned, we can
plan over z to accomplish a variety of locomotion tasks, like
reaching goals and trajectory tracking. To do this, we learn
a temporally-extended dynamics model of the center of mass
(CoM), learned by sampling a series of random latent actions z
and measuring the resultant CoM state after one cycle of the
low-level policy my(-,z). This leads to a ‘coarse’ dynamics
model where the next state s;yn = fayn(St,2;) is the state
after executing the low-level policy for IV time steps, starting
from s; and using latent action z;.

In a similar spirit, previous works like [10], [19] have used
approximate CoM dynamics models such as a linear inverted
pendulum (LIPM). Unlike LIPM, our CoM dynamics model

is learned directly from robot data, and hence adheres to the
dynamics of the robot. For example, the dynamics learn that
certain latent actions result in slipping on the robot, and hence
lead to slower CoM movement. As a result, slipping and other
unobserved factors are directly absorbed in our dynamics,
eliminating the need for no-slip constraints like friction cones,
as in [10], [19]. Moreover, we learn dynamics in a learned
latent action space, and are not restricted to planning in a
user-defined space like CoM velocity.

Formally, we represent current state of the CoM by S¢ypr =
(xcurra Yeurrs Veurr, i‘cumw ycurr)a where (-:Ccurra ycurr) is the
current horizontal position, (Zcyrr, Yeurr) i the current hor-
izontal velocity and .y is the current yaw. The learned
dynamics represent a transition from the current state to the
next state speqgt = (-rne$ta Ynexts Ynext, jjne:rta ynewt)’ USing the
low-level controller g with latent action z. To simplify the
learning and improve generalization, we learn a delta dynamics
model in the current local CoM frame

ALI}, A% A’Ya -/I':ne:rta ynewt = fdyn (jf'curra ycurm Z) (7)

where Azx = Tnext — Lcurr Ay = Ynext — Ycurr and
AY = Ynext —Yeurr- The delta predictions and measurements
of Scurr can be used to predict the next state Speqt-

A learned dynamics model for high-level planning has sev-
eral advantages, over learning a model-free high-level policy:
1) It is much more sample-efficient 2) It generalizes to new
tasks, and needs no additional re-training for new tasks. In
our experiments in Section we show that this model-
based planner outperforms model-free approaches, like [1]], in
sample-efficiency and overall performance.

We do not explicitly model the CoM dynamics in the
vertical plane, or the roll and pitch of the robot, to improve
sample-efficiency of dynamics learning. Implicitly, controllers
with lower CoM height, or high roll and pitch lead to slower
gaits, which is learned by our dynamics.

IV. EXPERIMENTS

We evaluate our proposed framework on two robot simula-
tions (Daisy and A1) and one real robot (Daisy). We provide
extensive comparisons to prior learning-based methods, as well
as, a traditional control approach. Our results demonstrate that
our approach outperforms current state-of-the-art in learned
hierarchical locomotion, generalizes to multiple robots and
solves real-world locomotion tasks.

A. Experimental Setup

We use Pybullet [27]] as our physics simulator, and build
models for two robots: Daisy hexapod robot from Hebi
robotics [28] and Al quadruped from Unitree Robotics [29],
shown in Figure [5a] and [5b] respectively. Daisy is a 6-legged
robot, with 3 motors in each leg, weighing 21kg and 1.1m
by 1.1 m wide in its nominal stance. Al is a 4-legged robot,
with 3 motors in each leg, weighing 12kg and 0.5m by
0.3 m in dimensions. They have very different robot morpholo-
gies (hexapedal vs. quadrupedal) and significantly different
mechanics and dynamics. On hardware, we use the Daisy
robot with a Realsense camera [30] to measure the position,
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Fig. 5: Our experimental platforms: Daisy in Pybullet, Al in
Pybullet, and a real-world Daisy.

orientation and velocity of the robot in an unstructured outdoor
space. The position and velocity feedback gains for the base,
shoulder and elbow were [2.0, 3.0, 4.0] and [0.2, 0.1, 0.15] for
all legs in all hardware experiments.

To evaluate our method, we create a series of tasks that are
relevant to real-world locomotion.
Velocity tracking: This task measures the robot’s ability to
track a desired CoM velocity v4; and orientation 74, leading
to cost ¢ = wl||vtgt - chr'rH + w2||’7tgt - 'ycurrH’ where
[wy,ws] = [2,1]. The target velocity is varied throughout the
experiment and the controller has to adapt to new targets. Tar-
get velocities were [0.0, 0.2]m/s, [0.2,0.0Jm/s, [0.0, —0.2]m/s,
[—0.2,0.0]m/s where each variable indicates desired velocity
in & and y directions respectively.
Goal reaching: Some real-world locomotion tasks involve
reaching a goal in space, either as a long-distance goal, or an
intermediate waypoint. This tasks requires the robot to reach

a range of CoM targets sy = (Zigt,Ytqe) and orientation
Vtgt USing cost ca = w1||stgt - Scurr” + wZH’Ytgt - chr'r‘L
where [wq,ws] = [2,1]. Eight desired goals were uniformly

distributed on a circle of radius 2m, with target orientation
always pointing towards y axis.

Trajectory tracking: For navigating cluttered spaces with ob-
stacles, or controlled environments, like a road, it is important
to closely follow a CoM trajectory designed by a planner. We
track an S-shaped desired trajectory consisting of target CoM
positions s;4; ¢ and orientations 7y, 4 ; that change with time ¢,
leading to cost c3 = wy ‘ |5tgt,t - 5(:1/,7"1“” + w2”7tgt,t - '7(:11,7’7"”7
where [w1,ws] = [2,1].

This is the first detailed study of hierarchical learning for
locomotion on a rich set of tasks, including demonstration
on hardware. While [3]], [4] have been shown to achieve
interesting results in simulation, they have not been demon-
strated on hardware, or extensively analyzed in simulation.
On the other hand, [1]], [2] only show results on a subset
of our designed tasks on hardware. Our analysis highlights
the relative advantages and disadvantages of the hierarchical
choices made in literature and helps make significant, scientific
conclusions about the different approaches. By experimenting
on two different robot designs, we further reinforce the statis-
tical significance and generality of our results.

B. Comparison with hierarchical baselines

To compare our framework against these prior approaches,
we create an ablation experiment in simulation. We charac-
terize all hierarchical approaches by the choice of their low-
level and high-level policies, and sweep through the different
choices made in literature. Finally we test all the approaches
on Al and Daisy robot simulations and tasks described in

LAT (ours) LIB SAC SAC-SAC IK
Model-based Model-based Goal: iti Goal Model-based
Planning Planning SAC SAC Planning
v v v A4 A4

Supervised " Supervised e .
g Expert Library A Goal- Inverse
I'_‘eam'“g Low-level Learning SAC Low-level Low-level
ow-level Low-level

Daisy/A1 Daisy/A1 Daisy/A1 Daisy/A1 Daisy/A1

Fig. 6: Flowchart of the different approaches from literature that we
compare our approach (LAT) against. LAT, LIB and IK use a learned
high-level CoM dynamics model with a learned policy, an expert-
library, and an IK-based low-level policy, respectively. SAC and SAC-
SAC are model-free high-level approaches, with low-level policies
learned using supervised and reinforcement learning respectively. All
neural network policies and dynamics models have 2 hidden layers
with 512 nodes and ReLU activation.

Section Note that all model-free approaches had to be
re-trained for new tasks, and hence, effectively take 3 times as
much data as model-based approaches. The approaches com-
pared are shown in Figure [6] and can be broadly categorized
into the following groups:

A library of experts (LIB): [2]], [31] use a library of low-level
experts, and learn a high-level policy that chooses between
the experts. We consider the same library of 50 experts that
was used for supervised learning of our low-level policy, and
used model-based planning for the high-level. This comparison
highlights the importance of a learned high-level action space
versus a discrete set of expert primitives.

Model-free high-level policy (SAC): An alternative to model-
based planning is to learn a model-free high-level policy, as in
[L]], [31]. Assuming the same learned low-level policy as our
approach, we use goal-conditioned SAC [11] to learn a high-
level policy. This setting is also similar to [[16] and [24]], though
these approaches cannot directly generalize to multiple targets.
This motivates the importance of model-based planning in
learned latent action spaces for generalization versus learning
a model-free policy.

Model-free learned low-level and high-level policy (SAC-
SAC): [1] use model-free RL for training a low-level policy
designed to reach sub-goals, and train a model-free high-level
policy to define sub-goals for the pre-trained low-level policy.
We use goal-conditioned SAC to learn both levels of this
hierarchy, first training the low-level, then training the high-
level, keeping the low-level fixed. This experiment compares
our framework with model-free frameworks like [1]], [3] on a
wide-range of locomotion tasks. It highlights the importance
of jointly learning a high-level action space with a low-level
policy, followed by model-based planning.

The summary of these comparisons is shown in Figure
and for Daisy and Al robot simulations. We used 10,000
samples for training the high-level dynamics and policies with
an Adam optimizer, le-3 as learning rate and 512 as batch size.
All model-free approaches are trained on half of the targets,
and tested on all targets. For example, goal-conditioned SAC
is trained to reach 4 goals, and tested on all 8. Both SAC
and SAC-SAC are re-trained for new tasks, hence using 3
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Fig. 7: (a), (b) Comparison of learned hierarchical approaches from Section E] on Daisy and Al simulation. Our framework with a model-
based high-level planner and supervised learning for low-level policy outperforms the baselines in all test tasks. (c), (d) Comparison with
the IK baseline from Section Our approach performs similar to IK in the normal setting, and outperforms it in adverse settings.

times as much data as our approach (LAT). SAC and SAC-
SAC fail to generalize to new targets and perform worse than
our approach on all tasks. On Al, SAC incurs a cost of
0.57 £+ 0.06 at goal reaching, and SAC-SAC incurs a cost
of 0.92 £ 0.04, much higher than LAT with 0.34 + 0.02. This
is not surprising as model-free approaches are known to be
less sample-efficient and poorer at generalizing than model-
based approaches [32]. SAC-SAC also has a user-defined high-
level action space that performs poorly than the learned action
space used in both LAT and SAC. This experiment reinforces
our claim that model-based planning in learned action spaces
improves performance and generalization.

The baseline LIB uses a discrete set of primitives with
a model-based high-level controller, and generalizes well to
goal reaching. For velocity tracking, however, the low-level
primitives in LIB do not include experts that can reach the
target velocity, and hence LIB incurs a high cost of 0.58+0.01
on Al. On the other hand, LAT can plan in the learned
latent action space and interpolate between the discrete set of
primitives, incurring a much lower cost of 0.16 £0.10 on Al.
This experiment proves our hypothesis that a jointly learned
continuous high-level action space and low-level policy can
outperform a discrete set of low-level primitives. Our approach
combines the robustness of model-based planning with learned
high-level and low-level controllers, and can successfully solve
a large range of tasks sample-efficiently, without re-training
per task.

C. Comparisons with a Inverse Kinematics in simulation

Next, we present a comparison with a structured model-
based hierarchical control scheme, where the high-level con-
troller plans over desired CoM velocities, which are converted
into desired footsteps using an expert-designed feedback law,
and followed using IK, as proposed in [26]. Similar control
schemes have been successful at solving a large range of
locomotion tasks [[10]. This is an easy change for our setup,
where the low-level policy 7p is replaced by IK, and the
desired CoM velocities works as an ‘oracle’ high level latent
space. A high-level model-based planner uses a learned CoM
transition dynamics model, similar to Section with
desired CoM velocities as the ‘latent’ action. IK represents the
best-case low-level policy for a fixed action space, and hence
makes a highly challenging comparison for our approach.
Unlike IK, our approach does not use kinematic knowledge of
the robot, and can outperform IK when kinematic assumptions
are violated. With this in mind, we run comparison exper-

iments with IK in a normal setting, as well as, an adverse
setting where two hind-legs are disabled by fixing their joint
angles in simulation. The high-level CoM dynamics model
is re-learned for both LAT and IK with broken legs, but
the low-level policies are the same as those of the normal
setting. The results are summarized in Figure and for
Daisy and Al simulations, and show that our fully-learned
approach is close to IK in the normal setting. However, when
the two hind-legs are disabled, IK’s performance deteriorates
significantly to 0.91 + 0.06 at velocity tracking on Al, while
our learned latent space compensates for this adverse setting,
incurring a cost of 0.62 4 0.06. This experiment highlights
that a learned action space adds additional robustness to
hierarchical control, including when the robot is damaged and
other adverse scenarios.
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Fig. 8: Performance in the real world on the Daisy hexapod over
3 hardware trials, with only 2000 robot samples. Velocity tracking
(left), goal reaching (right-top), and trajectory tracking (right-bottom)
on hardware. Our approach generalizes to hardware and achieves
multiple multiple locomotion tasks sample-efficiently.

D. Hardware experiments on Daisy Hexapod

Transfer to hardware is straight-forward for our approach,
once the latent action space and low-level policy have been
learned in simulation. We keep the low-level policy and latent
action space from simulation fixed on hardware, and learn
the CoM dynamics by randomly sampling latent actions on
the Daisy robot hardware (Figure [5c). Once the dynamics
models is learned, it is kept fixed, as we conduct hardware
experiments, which span multiple days. Since our hardware
experiments are conducted outdoors, in an uncontrolled envi-
ronment, they naturally include noise due to tracking errors by
the Realsense camera, slipping on gravel, joint tracking and
ground height disturbances. We use 2000 hardware samples
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Fig. 9: Gait transitions observed during planning in the learned latent action space. Pink indicates stance legs while blue indicates swing.
Our learned latent space can induce gait transitions in the low-level if needed by the task.

for learning the dynamics model, and 20 simulation expert
controllers for learning the low-level policy. The performance
of our approach on hardware is shown in Figure [§] The
behavior of the robot during these experiments can be seen
in the supplementary video. For goal reaching, our approach
could reach all goals in 16.0 & 1.4 steps, averaged over 4
goals and 3 trials. The velocity tracking error on hardware
was 0.56£0.015 and trajectory tracking error was 0.5740.05
(Figure [T0a).

Our approach was successfully able to track the desired
trajectory, and reach desired goals on the Daisy hardware. Its
performance was worse than in simulation because: 1) The
number of samples used for learning dynamics on hardware
were 1/5 of the samples used in simulation. 2) Learning
dynamics on hardware was harder due to noise from poor
joint tracking, slipping and noise in CoM estimation. 3) The
robot was unable to achieve some high velocity targets, as
the low-level controllers that could achieve high velocities in
simulation did not transfer well to hardware. The first two
issues can be alleviated by using more hardware samples for
learning the CoM dynamics model, or starting from a simu-
lation dynamics model and fine-tuning. The third issue was
caused because the simulation does not sufficiently capture
the motor bandwidth of the robot, which can be solved by
using dynamics-randomization, or higher-fidelity simulators.
We leave this to future work.

E. Ablation study of hyperparameters

Lastly, we conduct an ablation experiment where we change
the dimension of our latent space, number of expert controllers
and number of samples used in training the dynamics model
in Daisy simulation. We vary the latent action dimensions
to be 2, 3, 4, and find that there is no significant effect on
the performance. Next, we use different numbers of expert
controllers — 10, 30, 50 experts — for training the low level
policy. As the number of experts increases the performance
on each tasks improves, though the difference from 30 to 50
is minor. This shows that a low-level policy learned with 30
experts can generalize well, and perform similar to a low-level
policy with 50 experts. Lastly, we vary the number of samples
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Fig. 10: (a) Hardware results on Daisy hexapod in the real-world.
Daisy solves all test tasks despite noise like sensing errors, slipping,
etc. (b)-(d) Ablation study on sensitivity to different hyperparameters.
Our approach is not sensitive to hyperparameters once a good
dynamics model and low-level policy has been learned.

used for learning the high-level dynamics, using 1000, 2000
and 5000 datapoints. We observe a significant improvement
in performance when the dynamics is learned from 2000 data
points versus 1000, showing that a better dynamics model
leads to better performance. However, there is no significant
difference in performance between 2000 and 5000 data points,
signifying that our approach is not sensitive to inaccurate
dynamics model, and can correct for small dynamics errors.
The result are summarized in Figure [I0] and each test setting
is averaged over 10 independent trials. These results further
reinforce the robustness and sample-efficiency of our proposed
approach.

V. DISCUSSION AND FUTURE WORK

Gait transitions in learned latent space: When the low-
level policy is learned with experts spanning multiple gaits, the
high-level latent action space can be used to transit between
gaits, if needed by the task. We observe this on both robot
simulations, as well as hardware, shown in Figure 9] Exploring
gait transitions for achieving complex tasks is a promising
extension to our current results that we aim to explore in the
future.
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Diversity of expert gaits for low-level training: For our
hardware experiments, we used 20 experts from simulation to
learn the low-level policy. The richness of the expert library
directly affects the performance of the low-level controller,
and since some of the low-level controllers did not transfer to
hardware, the performance of our approach suffered. One of
the challenges of our approach is to build a sufficiently diverse
low-level policy, that can transfer to hardware. A combination
of curiosity-driven learning, and dynamics randomization [12]]
can be used.

VI. CONCLUSIONS

In this paper, we present a hierarchical control framework
for planning a sequence of learned latent actions from a
high-level controller to a low-level policy. This framework
allows us to accomplish several real-world locomotion tasks,
such as goal-reaching, trajectory and velocity tracking with
only 2000 samples on hardware. We present comparisons
of our approach to other state-of-the-art hierarchical control
approaches from literature — including both learned and expert-
designed approaches, on Daisy and Al robot simulations.
Our approach outperforms learning-based baselines on all
tasks and performs similar to the expert-designed approach
in normal settings while outperforming it when two hind
legs are disabled in simulation. This work demonstrates the
efficacy of a fully-learned hierarchical framework at achieving
various locomotion tasks, and solving real-world problems like
navigation on two very different robot platforms. It removes
the need for user-designed action spaces, and opens up avenues
for further research such as discovering new gaits, enabling
sim-to-real transfer without performance loss, and navigating
unknown terrains autonomously.
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