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Human-in-the-loop Auditory Cueing Strategy for
Gait Modification

Tina LY Wu1, Anna Murphy2, Chao Chen3, and Dana Kulić4

Abstract—External feedback in the form of visual, auditory
and tactile cues has been used to assist patients to overcome
mobility challenges. However, these cues can become less effective
over time. There is limited research on adapting cues to account
for inter and intra-personal variations in cue responsiveness. We
propose a cue-provision framework that consists of a gait per-
formance monitoring algorithm and an adaptive cueing strategy
to improve gait performance. The proposed approach learns a
model of the person’s response to cues using Gaussian Process
regression. The model is then used within an on-line optimization
algorithm to generate cues to improve gait performance. We
conduct a study with healthy participants to evaluate the ability
of the adaptive cueing strategy to influence human gait, and
compare its effectiveness to two other cueing approaches: the
standard fixed cue approach and a proportional cue approach.
The results show that adaptive cueing is more effective in
changing the person’s gait state once the response model is
learned compared to the other methods.

Index Terms—Human Factors and Human-in-the-Loop, Reha-
bilitation Robotics, Wearable Robotics

I. INTRODUCTION

ASSISTIVE robots have been applied in gait rehabilitation
for Parkinson’s Disease (PD), stroke, spinal cord injury,

and others [1], [2]. The robots can take the form of exoskele-
tons (e.g. Lokomat and ReWalk [2]), capable of monitoring
the patients’ joint motion in real time and providing assistive
torques to guide the movement of patients who require weight
bearing assistance [1]. On the other hand, patients capable of
weight bearing can use wearable devices that provide simple
feedback such as visual, auditory, and tactile cues to help their
gait in both rehabilitation and everyday settings [1], [3]. Visual
cues such as laser projections provide spatial information
on where to step, whereas auditory and tactile cues provide
temporal information on when to step using metronome beats
or vibrations [3].

Existing research on cues focuses on providing visual cues
at a fixed distance or auditory/tactile cues at a fixed pace
calibrated to each patient [4], [5], [6], [7]. These cue provision
paradigms have several limitations over long-term use and
for diseases with progressive symptoms such as PD. For
instance, the cueing mechanisms are often used in conjunction
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with medications for PD treatment, and the same patient can
respond differently to the cues depending on the medication
state [3]. In addition, long-term use of the cues can result
in habituation, where the cues become less salient and lose
their effectiveness. Patients might also become reliant on
the cues even without gait abnormalities [8]. Current cueing
mechanisms do not address symptom fluctuation, habituation
or cue-dependency and thus, there is a need to develop a cue
adaptation strategy to address issues with static cues.

We propose an adaptive cue-provision framework that can
simultaneously monitor the person’s gait performance and
provide personalized cues to change the person’s gait to a
target state. Personalized cues are provided by continuously
learning a model of the individual’s response to the provided
cues, and utilizing the model to optimise cue selection. The
performance of the adaptive cueing strategy is compared to
two alternative approaches, the fixed cue and the propor-
tional cue. The fixed approach implements the typical cueing
approach in the literature. The proportional approach is a
semi-adaptive strategy that generates cues based on individual
user performance, but using a fixed control strategy. The
results show that adaptive cueing outperforms the other two
cueing methods in changing the participant’s gait once the
personalized response model has been learned.

II. RELATED WORK

A review of the two primary features in an assistive feed-
back system, patient monitoring and providing personalized
feedback, is presented in this section.

A. Monitoring Gait Parameters

Gait performance can be quantified using parameters such
as stride length, cadence, velocity, and double support time
[9]. Methods for calculating gait parameters for cue-provision
can be categorized into approaches that are used in clinical or
everyday settings.

In clinical settings, commercially available marker (e.g.
VICON Motion System) or pressure-mat (e.g. GAITRite Sys-
tem) measuring devices can be used [9], [10]. Marker-based
systems use cameras to track markers attached on the limbs,
from which angles are derived to compute gait parameters.
Pressure-mat based systems estimate the parameters using the
position and timing of the foot landing on a pressure-sensitive
mat. While these systems are considered the gold standard,
they require specialized equipment and hence are typically
employed in validation studies, rather than being used as a
feedback signal to a cueing system.

ar
X

iv
:2

01
1.

13
51

6v
2 

 [
cs

.R
O

] 
 1

 M
ar

 2
02

1



2

Sensors that are portable, unintrusive, and easy to set up,
such as inertial measurement units (IMU) or encoders, have
been embedded onto wearable devices to measure gait metrics
outside of the clinical setting and provide information for cue
adjustment. For instance, in [10], the authors developed a laser
projection system that can be mounted onto a walking frame.
The system adjusts the location of the visual cues based on the
movement of the person measured through encoders embedded
on the walking aid to ensure that the projection is always
a fixed distance ahead of the person. Stride length has also
been measured through sensor fusion algorithms using the
gyroscope and accelerometer signals from IMUs to adjust for
the location of the visual cues [11].

B. Providing Personalized Assistance

Personalization of the cues usually involves changing cue
modality, location, and form factors. For instance, visual cue
personalization can include adjusting the projection according
to the user’s step length, or changing the location of the
projection device on the user (e.g. foot-strapped wearables
like Path Finder LaserShoes (Walk with Path, Essex, England),
walking aid based system like U-Step Walker (U-Step Mobility
Products, Inc; Illinois, USA), or Augmented-reality glasses
[11]).

Auditory and tactile cue adjustments share common tuning
parameters, such as the duration of the cues (i.e. continuous or
on-demand), frequency of the cues (i.e. set speed or patient-
specific speed), and timing of the cues (e.g. reactive or proac-
tive, synchronization to the gait cycle events). A characteristic
unique to auditory cues is the provision of music melody,
human voice, or metronome beats [12]. The parameters unique
to tactile cues are the amplitude and the pattern of the cue.
Various forms of vibration have been tested (e.g. constant [13],
or variable [14]) and can be provided via electrical stimulation
[15] or vibration motor [13]. The effect of the tactile cue
location has also been examined [3], [15], [16]. A recent
study developed a wearable system that provides tactile cues
to induce a new walking speed in healthy participants [17].
The system, which consists of pressure resistive sensors, ERM
motors, and an IMU sensor, monitors walking speed and gait
events and adjusts feedback provided by the motors using a PI
controller. While the closed-loop system was better at inducing
the desired speed changes compared to an open-loop algorithm
that provided feedback at a constant pace, it is unclear how
the controller gains were selected. As well, the same gains
were used across all participants.

Online feedback adaption, including human-in-the-loop
(HIL) optimization, has been investigated for robotic ex-
oskeletons. In the HIL framework, real-time adjustment of the
assistance is implemented based on the current performance
of the user. Specifically, the HIL framework has been applied
in optimizing the assistive force provided by exoskeletons to
reduce metabolic cost during walking [18], [19], [20]. A fun-
damental requirement for HIL is building a model that relates
the input assistive force to the output performance metrics.
Previous studies have used a set of pre-defined assistive forces
to uniformly explore the parameter space for the model [19].

Others have also investigated more sample-efficient methods
without the initial parameter exploration by using gradient
descent [18], [20] or Bayesian optimization [18]. Overall,
the current cue adaptation strategy in gait rehabilitation is
limited to the one-time adjustment to calibrate the cue for the
user’s height, preferred cadence, or preferred location. While
adaptive cue-provision is under investigation, there is a lack
of personalization to account for the user’s immediate motor
capability and response.

III. PROPOSED APPROACH

The proposed adaptive cue-provision framework, shown in
Figure 1, can continuously monitor the person’s gait perfor-
mance and periodically adjust the assistance based on the
person’s response to the feedback.

A. Online Gait Parameter Estimation

The canonical dynamical system (CDS) proposed in [21]
is used in the study. The system models periodic signals
using Fourier series and has been previously applied in online
learning and modelling of an individual’s gait [22]. The gait
is captured by a single inertial measurement unit (IMU) fixed
above the individual’s knee of the dominant leg. The sensor
is oriented such that the y-axis aligns with the normal of the
sagittal plane. Once the gait model is learned, the associated
model coefficients allows metrics to be derived for continuous
monitoring. The CDS is defined as:

ŷt =

M∑
m=0

α̂m,t sin(mφ̂t) + β̂m,t cos(mφ̂t) (1)

where ŷt is the estimated signal, t is the current timestep, M is
the total number of harmonics, α̂m,t and β̂m,t are the Fourier
series coefficients associated with the mth harmonic, and φ̂t is
the phase of the signal. The coefficients are updated iteratively
through the equations below:

et = yt − ŷt
φ̂t+1 = mod(φ̂t + T (ω̂t − µetsin(φ̂t)), 2π)
ω̂t+1 =| ω̂t − Tµetsin(φ̂t) |
α̂m,t+1 = α̂m,t + Tηetcos(mφ̂t)

β̂m,t+1 = β̂m,t + Tηetsin(mφ̂t)

where y is the input signal to be learned (i.e. the gyroscope
signal in the y-axis), ω̂ is the estimated frequency, T is the
sampling period in seconds, and µ and η are the learning rates
associated with the estimated frequency and Fourier series
coefficients, respectively. ω̂ is used to estimate the person’s
cadence in the experiment described in Section IV.

B. Learning of the Cue Response Model

In order to provide personalized assistance that accounts
for the individual’s response to the feedback, a solution is
formulated based on the HIL framework. A Gaussian process
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Fig. 1. The proposed system is a feedback loop that consists of the human, gait measurement and estimation, cue response learning and cue provision. The
human gait model computes metrics to monitor gait performance using the data from the IMU. The Gaussian process (GP) regression model then uses the gait
performance metrics, along with the history of the provided cues, to model the gait performance as a function of the provided cues. Finally, the optimization
algorithm utilizes the GP model to provide personalized cues that would prompt the participant’s current state (the blue circle in the optimization block) to
move towards the target state (the red circle).

(GP) is used to model the person’s response to a given auditory
cue while walking at a given cadence. Specifically,

ω̂k = ω̂t (2)
Y = f(X) +Hβ, (3)
where f(X)∼GP (m(X), k(X,X ′))

Y = ω̂k, X = (ω̂k−1, ck−1)

where ω̂k is the estimated cadence at time t from the CDS
model; the index, k, increments every four strides; when k is
incremented at time t, ω̂t is directly written to ω̂k as shown
in Eq 2; ck denotes the auditory cue frequency provided at
increment k and is zero when no cue is provided. Both ω̂ and
c are in Hertz (Hz). The GP prior, f(X), is computed over the
available data up to index k, where Y is a list of the cadences,
and X is a list of the preceding cadences and cue frequencies.
New data gets appended to X and Y with each k. m(X) is the
mean function and k(X,X’) is the square exponential kernel of
the GP. An explicit, constant basis function, H , is specified,
where H is a k-by-one vector of ones and β is a scalar basis
coefficient estimated from the data.

The approach is similar to the Bayesian approach described
in [18]. However, an initial exploration with a pre-defined
set of parameters was not performed. Instead, initialization
was done through random exploration until sufficient data is
collected to compute the gradient, since the action space is
small and the GP only requires a small number of samples.

C. Cue Provision and Optimization

During the GP update, we also check whether the partic-
ipant’s current cadence is within a threshold of the target
cadence (wtarget). If | ω̂t−wtarget |> threshold, the expected
value of the predictive posterior distribution is computed using
the GP model given the current cadence and the available
range of cue frequencies (±35% of the baseline cadence,

ωbaseline) to minimize the difference between the mean and
the target cadence, as follows:

ω̂k+1 = k((ω̂k, ck), X)(k(X,X) + σ2In)
−1(Y −Hβ)

J(ω̂k, ck) = (ωtarget − ω̂k+1)
2

ck = argmin
ck

J(ω̂k, ck), subject to

ωbaseline × 0.65 ≤ ck ≤ ωbaseline × 1.35 (4)

where ω̂k+1 is the next cadence estimated from the GP model,
In is a square identity matrix. The minimization algorithm is
initialized with a randomly generated number. This random
initialization is used for response space exploration; when a
random starting point far away from the kernel is selected,
the optimizer will exit immediately as the size of the gradient
is less than the optimality tolerance. The random selection
behaviour will stop once the gradient can be computed. Based
on this property, the model can be interpreted as having two
phases: the exploration (exp) phase (i.e. random sampling)
versus the converged (cvg) phase (i.e. when there is a valid
gradient). The two phases are discussed in Section VI.

The personalized cue provision algorithm described above
is summarized in Figure 2. The algorithm is implemented
in MATLAB, using the GP models (Statistics and Machine
Learning Toolbox) and nonlinear least-squares optimization
using trust region methods (Optimization Toolbox) [23].

IV. EXPERIMENTS

We examined the effect of different auditory cue-provision
strategies on cadence in the experiment, as auditory cues have
been shown to have a strong influence on cadence [3].

A. Participants
A convenience sample of 25 participants (5 female/20

male; age 26.08±3.58 years; height 174.52±8.65 cm; mass
70.88±12.84 kg; mean±standard deviation) enrolled in the
study. All participants provided consent at the start of the
experiment. The study (Project ID 22556) was approved by
the Monash University Human Research Ethics Committee.
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Fig. 2. With every new CDS estimate, the algorithm utilizes the phase
wraparound to track the number of strides. The algorithm checks whether the
person’s cadence is within the threshold every 4 strides. The system computes
and outputs the optimal cue if the threshold is exceeded and updates the
response model.

B. Equipment and Parameter Initialization

The motion data was recorded using a single IMU sensor
with the WaveTrack Inertial System (Cometa Systems, Milan,
IT). The equipment is shown in Figure 3B. The data was
sampled at 285 Hz and streamed wirelessly into a custom
program in C#. The C# program ran on a laptop (Windows
10, i7 core with no GPU), which controlled the timing of the
auditory cues played from the computer and interfaced with
MATLAB. The coefficients of the gait parameter estimation
algorithm, CDS, were initialized as follows: M = 7, µ = 0.1,
η = 1, φ0 = 0, ω0 = 2π · 45 , αm,0 = 0 for all αm, and βm,0

= 0 for all βm. The initial values for φ0, αm, and βm were
set to 0 as there is no strong prior, whereas ω0 was based
on the typical walking speed for the healthy population [22].
The parameters were the same as [22], except for M, µ, and
η. Specifically, M was reduced as gyroscope data contains
less high frequency content. µ, η were manually tuned until
the frequency converged within four strides while minimizing
oscillations around the settled value.

C. Experimental Conditions

There was 1 control and 6 levels in the study. In the control
condition, the participants walked at their natural cadence with
no cueing. The baseline cadence of each participant (ωbaseline)
was measured during control and was used to calculate the two
target cadences (±20%ωbaseline).

Following the control condition, each of the three cueing
approaches was implemented for each target cadence: fixed,
proportional, and adaptive. In the fixed cue approach, beats
were provided directly at the target cadence, emulating the
baseline cueing mechanisms in the literature [6], [7]. In the
proportional cue approach, the pace of the cue was propor-
tional to the error between the participant’s current cadence
and the target cadence. The proportional approach serves as
an intermediate comparison between the fixed and adaptive
approach, similar to the approach in [17]. The proportional
approach accounts for the person’s current cadence but the er-
ror gain requires manual tuning and the gain remains the same

throughout the experiment. The proportional gain (i.e. pgain)
was chosen to be 0.5, which was set empirically during pilot
tests. Since the gain was small, the pace of the provided cues
was close to the person’s current cadence. Finally, the adaptive
approach was the algorithm that incorporated the participant’s
individualized cue response model and optimization, described
in Section III. The experiment conditions are summarized in
Figure 3A.

All three approaches provided cues only when the partic-
ipant’s cadence was out of the acceptable boundary, set to
± 1% of the target cadence, as described in Figure 2. Eight
metronome beats were provided if the acceptable condition
was not met, one for each step. The number of beats was
selected empirically as observed in the pilot study, where
participants were able to change their gait within eight beats
and the CDS model was able to converge to the new pace.
Each experimental condition took 7 minutes to complete. The
duration was as an extension of the Six-Minute-Walk clinical
test. During each 7-minute session, cues were provided based
on the corresponding condition in the first 6 minutes, and no
cue was provided in the last minute.

D. Experimental Protocol

The participant watched an introduction video and placed
the IMU sensor above the knee of the dominant leg during
preparation. A short training session (<1 minute) was provided
to allow the participant to become familiar with the act of
syncing one’s gait to the metronome beats, where a metronome
beat at 1.3 Hz was played continuously for the participant to
follow. After training, the participant completed the control
condition where they walked in a big circle for 7 minutes
without cues. They were told to walk naturally and forget
about the practice metronome beats. The participant completed
a demographic survey and proceeded to the experimental
conditions. The order of the conditions was randomly gen-
erated for each participant and the participants were blinded
to the conditions. Each condition was followed by a NASA
Task Load Index (TLX) survey. Finally, the experiment was
concluded after a debriefing session.

E. Analysis

The convergence of the GP was first assessed to validate its
ability to model the person’s response to cues. The relationship
between the experimental conditions and the resultant gait
changes was then analyzed using linear mixed-effect models
(LME) in R [24]. Square root transformation was applied to
all data except the task load index score for the following
analysis. The transformation helped with the normality and
homoscedasticity assumptions during visual inspection of the
residual plots. In general, the model satisfies these assumptions
but contains outliers towards the tails. Data shown in the box
plots in Section V are the un-transformed data for an easier
interpretation. The fixed effects of the LME model are the
different cue-providing approaches and the random effects are
the intercepts for the individual participants. P-values were
calculated using the likelihood ratio tests between the model
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Fig. 3. Experimental Procedure: Panel A illustrates an example experiment sequence and the cueing approaches described in Section IV-D. Panel B, with the
IMU, illustrates the experiment equipment. Panel C shows the walking space and route. The background image was taken during the experiment.

without the fixed effect and the model with the fixed and
random effects.

The performance of the cueing approaches (proportional
and adaptive) was benchmarked against the baseline fixed cue
approach. The analysis was grouped into the speeding up (UP)
and slowing down (DOWN) conditions. The adaptive approach
was further divided based on the two phases of the GP model:
the initial exploration (exp) phase during the first 70 seconds
of the experiment and converged (cvg) phase for the remaining
time in the experiment. Figure 5 illustrates the exploration and
converged phases. The first three cues in the Adaptive-Down
panel are exploratory, as the goal is to slow down but cues
that are faster than the target were provided. Afterwards, the
cues were consistently around the target cadence, indicating
the start of the converged phase. Based on visual inspection
of all the data, 70 seconds was chosen as the upper bound for
the exploration phase.

V. RESULTS

Adaptive Framework: Response Model Convergence The
GP modelling error and convergence, averaged over all partic-
ipants and UP/DOWN conditions, are shown in Figure 4. Both
the variance and prediction error are high during exploration.
The variance quickly drops off within 5 iterations as the algo-
rithm learns the response model. However, the error variance,
which indicates the model’s confidence, does not decrease
further until later in the experiment due to the fact that similar
cues are often provided after the initial exploration. The result
shows that GP can capture the participant’s behaviour around
the target cadence.
Sample Experimental Data A sample dataset from a partic-
ipant is shown in Figure 5. The following metrics were used
to quantify the performance of the cueing approaches:
Target mean absolute error (MAE) The target MAE (Figure
6) is calculated as the mean absolute error between the partic-
ipant’s estimated cadence and the target cadence. A low target
MAE means the participant is able to change their original
cadence to match the new target cadence. The LME model
for UP shows that the effect of cueing method is significant
(likelihood-ratio test statistic (λLR) = 25.8837, p << 0.05,
standard deviation of the random effect (StdDev R.N.) =
0.0164). On average, the proportional approach has a higher
target MAE compared to the fixed approach (Value = 0.0159,

Fig. 4. Evolution of the GP prediction error and the model error variance
averaged over all participants for the adaptive cueing trials. The x-axis is
the index value which increments every 4 cycles (i.e. when the acceptable
condition is checked). The exploration v.s. the convergence phase is displayed
using the average index from all participants.

95% Confidence Interval (CI) = [-0.0147, 0.0338], Standard
Error (SE) = 0.016). The adaptive approach during exploration
also has a higher target MAE than the fixed approach (Value =
0.0671, CI = [0.0266, 0.0756], SE = 0.0162). The converged
adaptive approach has a lower target MAE than the fixed
approach (Value = -0.0216, CI = [-0.038, 0.0137], SE = 0.017).

For the DOWN conditions, the effect of the cueing method
is also significant (λLR = 56.3132, p << 0.05, StdDev R.N.
= 0.0276). The target MAE is higher in the proportional
approach than the fixed approach (Value = 0.0383, CI =
[0.0135, 0.0631], SE = 0.0127) and it is also higher for
the adaptive approach during exploration compared to the
fixed approach (Value = 0.0975, CI = [0.0724, 0.1227], SE =
0.0129). The converged adaptive approach has a lower target
MAE compared to the fixed approach (Value = -0.0076, CI =
[-0.0338, 0.0185], SE = 0.0134).
Intermediate MAE and Decay Rate Intermediate MAE and
decay rate indicate how well the participant is able to maintain
the target cadence in the absence of the cue. Intermediate MAE
measures the mean absolute error between the participant’s
current cadence and the target cadence in the periods of silence
during the first 6 minutes of the experiment. Decay rate is
the rate at which the participant returns to a new steady state
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Fig. 5. Sample data from a participant who had a strong tendency to return to
the baseline. Both the fixed and proportional approach attempt to change the
cadence by providing more cues, whereas the adaptive approach provides
cues at a faster/slower frequency than the target frequency. The adaptive
approach was able to shift the participant’s cadence to the desired boundary
more effectively compared to other approaches.
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Fig. 6. The target MAE grouped by the UP (left) and DOWN (right) trials.
The metric is further divided for the adaptive approach into two stages based
on the GP model convergence: exploration (exp) and converged model (cvg).
The converged adaptive approach has the lowest target MAE.

cadence after the final cue is provided. We calculate decay rate
by fitting an exponential function to the cadence estimate. An
example of the fitted decay rate data can be seen in in Figure 5.
A low intermediate MAE and a low decay rate would indicate
a better maintenance of the new cadence.

The effect of the cueing method is not significant for the
UP conditions for the intermediate MAE outcome (λLR =
5.9734, p = 0.1129 > 0.05, StdDev R.N. = 0.0115). For
the DOWN conditions, the effect of the cueing approach
is significant (λLR = 35.9315, p << 0.05, StdDev R.N. =
0.0235). The proportional approach has a higher intermediate
MAE compared to the fixed approach (Value = 0.0512, CI =
[0.0302, 0.0721], SE = 0.0107); the adaptive approach during
exploration is also higher than the fixed approach (Value =
0.0434, CI = [0.0217, 0.0653], SE = 0.0111). The converged

0.0

0.1

0.2

0.3

A B C−Exp C−Cvg
Condition

F
re

qu
en

cy
 (

H
z)

Up

0.0

0.1

0.2

0.3

A B C−Exp C−Cvg
Condition

F
re

qu
en

cy
 (

H
z)

Down

Intermediate MAE

A: Fixed   B: Proportional   C: Adaptive   Exp: Exploration   Cvg: Converged

Fig. 7. The intermediate MAE grouped by the UP (left) and DOWN (right)
trials. The intermediate MAE is the highest for the proportional approach in
both UP and DOWN trials. However, the effect of cueing conditions is only
significant for the DOWN condition.
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Fig. 8. The decay rate grouped by the UP (left) and DOWN (right) trials. The
effect of the cueing condition is not significant for both trials.

adaptive approach has an intermediate MAE lower than the
fixed cue condition (Value = -0.007, CI = [-0.0285, 0.0144],
SE = 0.011). The results are shown in Figure 7.

Cueing approaches do not significantly affect the decay
rate in the UP conditions (λLR = 5.3566, p = 0.0687 >
0.05, StdDev R.N. = 0.1505). Similarly, the cueing approaches
also do not significantly affect the decay rate for the DOWN
conditions (λLR = 3.8148, p = 0.1485 > 0.05, StdDev R.N.
= 0.0756). The results are shown in Figure 8.
Percent On In terms of minimizing the cue duration to reduce
habituation, we quantified the cueing strategy performance
using the percent on metric. Percent on represents the amount
of time a strategy is providing beats expressed as a percentage
of the first 6 minutes of the experiment.

For the UP conditions, the effect of the cueing method
is significant. (λLR = 43.2037, p << 0.05, StdDev R.N. =
0.141). The percent on time is higher for the proportional
approach (Value = 0.1625, CI = [0.0679, 0.257], SE = 0.0484);
the adaptive approach during exploration also has a higher
percent on time than the fixed approach (Value = 0.2507, CI =
[0.1562, 0.3453], SE = 0.0484). Once the adaptive approach
has converged, the percent on time is lower than the fixed
approach (Value = -0.0731, CI = [-0.1676, 0.0214], SE =
0.0484).

For the DOWN conditions, the effect of the cueing approach
is also significant (λLR = 44.7463, p << 0.05, StdDev R.N.
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Fig. 9. The percent on time grouped by the UP (left) and DOWN (right) trials.
The percent on time is the highest during the exploration phase of the adaptive
approach. The percent on on time of the converged adaptive approach is close
to the fixed approach.
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Fig. 10. The sum of TLX scores across conditions. Overall, the UP conditions
are more demanding than the DOWN conditions.

= 0.1644). The proportional approach playing cues more than
the fixed approach (Value = 0.1517, CI = [0.0596, 0.2436],
SE = 0.0471). The adaptive approach during exploration has
the highest percent on time compared to the fixed approach
(Value = 0.3164, CI = [0.2244, 0.4085], SE = 0.0471). The
adaptive approach when converged is also higher than the
fixed approach (Value = 0.014, CI = [-0.0779, 0.1061], SE
= 0.0471). The results are displayed in Figure 9.
Participant Perception: NASA-Task Load Index (TLX)
The sum of the raw TLX scores (Figure 10) represents the
participant’s cognitive workload in each condition. For the UP
conditions, the TLX score is not significantly influenced by the
cueing approaches (λLR = 1.2837, p = 0.5263 > 0.05, StdDev
R.N. = 4.7480). Similarly, the TLX score is not significantly
affected by the cueing approaches for the DOWN conditions
(λLR = 5.0589, p = 0.0797 > 0.05, StdDev R.N. = 3.4140).

VI. DISCUSSION

Comparing the different cueing approaches, the adaptive
approach is the most effective in achieving the new target
cadence. Specifically, the adaptive approach in the converged
phase has the lowest target MAE for both target speeds.
The converged adaptive approach reduces the target MAE
by providing cues at a very different pace compared to
the participant’s current state, prompting the participants to
be more proactive, as seen in Figure 11. Participants also
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Fig. 11. The absolute difference gives insights into how the cues are changing
the person’s cadence. In the UP conditions, the adaptive approach once
converged is providing cues at a much higher pace from the participant’s
current cadence. The proportional approach on the other hand provides
participants with cues that are close to their current cadence.

perceived the proactive cueing, reflected in the higher TLX
score. Another factor for the high TLX score is caused by
the participants having to follow a random set of beats during
the exploration phase. Once GP has converged, the adaptive
approach is able to achieve a lower target MAE while having a
comparable percent on time to the baseline fixed approach. The
adaptive approach might be able to outperform the baseline
approach in the future by penalizing cue-playing in the cost
function to reduce habituation.

Of the three approaches, the proportional approach is the
least effective in changing the natural cadence as seen in
the high target MAE and intermediate MAE. This might be
because the proportional cue is not prompting the person to
change much from the original cadence. In Figure 11, it can be
seen that the difference between the cue and the current gait
cadence is always the smallest for the proportional approach.
The phenomenon is due to the choice of the controller gain,
which is designed to provide gradual changes in the pace
of the cue. The gradual change allows for a lower cognitive
workload (as seen in the TLX scores), but is less effective in
altering the cadence. While the proportional cue might have
been more effective with a higher gain or personalized gain
tuning, the cueing method highlights the difficulty in manual
gain selection.

The three approaches are not significantly different in terms
of intermediate MAE and decay rate. This might be due to
the decay rate and the intermediate MAE being influenced
by the participant’s memory (i.e. forgetting the pace of the
cue over time) and their ability or willingness to adjust their
cadence. In the post-study interviews, participants reflected
that it was difficult to recall the pace of the cue in the long
periods of silence. We also observed patterns in the experiment
similar to the participant in Figure 5, where some participants
immediately deviate from the target cadence when the cues
are off, causing the drastic fluctuations and the on-off cueing
pattern.

Our study has several limitations. Only healthy participants
were tested in a single trial. We also assumed that the
participant could attain the target, which might not be possible
with the patient population. Finally, only auditory cueing was
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used, which may not be effective with all users and in all
environments.

The proposed approach could be adopted to provide assis-
tance using exoskeletons. The current HIL approaches (e.g.
[18], [19], [20]) utilize respiration measurements in the opti-
mization step, which can be difficult to obtain in an everyday
setting. With the proposed adaptive framework, kinematics
that could replace the respiration measurements, improving
usability.

VII. CONCLUSIONS AND FUTURE WORK

We proposed an adaptive cueing framework that can simul-
taneously monitor gait performance of a person and adjust the
auditory cues based on the person’s response. In the frame-
work, a Gaussian Process was used to model the person’s gait
as a function of the provided cues and past gait performance.
Using GP, personalized assistance can be provided through
optimization to improve gait performance. We investigated
the effectiveness of the adaptive cueing strategy with healthy
participants in a gait study, where the aim was to change the
participant’s cadence with the cues. The adaptive cue method
was compared to the fixed and the proportional methods. The
results show that the proportional cues perform the worst
among the three cueing approaches, highlighting the need
for individualization and adaptation. The adaptive strategy
outperforms the both comparison strategies when the GP
model has converged.

Future work involves developing a wearable device that can
provide multi-modal cues for patients with gait impairments.
To relax the assumption that participants will be able to
achieve to a fixed target gait state, we will adapt the target
gait state in real time, and include additional objectives within
the cost function to support the provision of multi-modal cues.
An advantage of the proposed approach is that the system
continuously learns the user’s gait profile and response model,
and can therefore be used when the patient’s response profile
is changing (e.g. due to medication or fatigue). We plan to
recruit patients to examine the effectiveness of the adaptive
cueing strategy.
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