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Learning-based Predictive Path Following Control

for Nonlinear Systems Under Uncertain

Disturbances
Rui Yang1, Lei Zheng2, Jiesen Pan1, Hui Cheng1

Abstract—Accurate path following is challenging for au-
tonomous robots operating in uncertain environments. Adaptive
and predictive control strategies are crucial for a nonlinear
robotic system to achieve high-performance path following con-
trol. In this paper, we propose a novel learning-based predic-
tive control scheme that couples a high-level model predictive
path following controller (MPFC) with a low-level learning-
based feedback linearization controller (LB-FBLC) for nonlinear
systems under uncertain disturbances. The low-level LB-FBLC
utilizes Gaussian Processes to learn the uncertain environmental
disturbances online and tracks the reference state accurately
with a probabilistic stability guarantee. Meanwhile, the high-level
MPFC exploits the linearized system model augmented with a
virtual linear path dynamics model to optimize the evolution
of path reference targets, and provides the reference states and
controls for the low-level LB-FBLC. Simulation results illustrate
the effectiveness of the proposed control strategy on a quadrotor
path following task under unknown wind disturbances.

Index Terms—Machine Learning for Robot Control, Control
Architectures and Programming, Motion Control

I. INTRODUCTION

INCREASINGLY wide applications of autonomous mobile

robots, such as in package delivery, electrical lines supervi-

sion and industrial inspection, require the controller to handle

unpredictable and potentially adverse outdoor conditions and

maintain high trajectory control performance. In particular,

robots should be accurately steered along a predefined path

in the presence of uncertain environmental disturbances. These

non-negligible uncertainties are usually hard to model, such as

the aerodynamic effects of flying vehicles. This makes it diffi-

cult for high-performance trajectory control using model-based

controllers. Besides, it is also not realistic to tune the controller

parameters manually for each specific operating condition.

Desired trajectory controllers therefore should exhibit high

control accuracy, adapt online to the uncertain environment, be

robust to the uncertain disturbances, and take input constraints

into account.

The trajectory control problem, defined as steering a robot

to follow a predefined path, can be solved using trajectory
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Fig. 1. Architecture diagram of the proposed strategy for nonlinear system
path following under uncertain disturbances. The GPs are used to learn the
disturbances online with uncertainty bounds. With the estimation and the
uncertainty bound, the low-level LB-FBLC forces the nonlinear system to
behave like an integrator and tracks the reference state xd = [x1d, x2d]

T.
The linear integrator is used as a predictive model in the high-level MPFC,
which optimizes the reference target evolution along the path and provides
reference states xd and reference controls ad for the LB-FBLC.

tracking or path following [1]. Compared with the trajectory

tracking approach, where a timed parameterized reference

is tracked, the path following approach removes the time

dependence and regards it as a degree of freedom in the

controller design. It steers the robot along a geometric path

while prioritizing closeness to the desired reference with an

attempt to satisfy a dynamic specification, such as a speed

assignment along the path. This feature brings in some ad-

vantages to control performance and exhibits robustness to

disturbances [1]. For example, if the robot loses track of the

path under irresistible environmental disturbances, it will slow

down to come back to the path rather than attempt to align

with the time-dependent reference.

Typical path following approaches usually do this by sep-

arating the control scheme into an outer-loop guidance law

for the generation of the reference motions along the path

and then an inner-loop controller to track those motions [2].

Among these methods, geometric methods, such as Carrot-

chasing [3] and nonlinear guidance law [4], are widely used

in nonlinear mobile robots path following tasks [2]. The

reference target is chosen based on geometric methods and

can not be optimized according to the path following error.

Model predictive path following control (MPFC) shapes the

path following problem into an optimal control problem of a

model predictive control (MPC) framework [5]. It uses the

nonlinear system dynamics augmented with a virtual path

dynamics model to optimize the evolution of the reference

http://arxiv.org/abs/2212.13053v1


2 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

target and reference controls. It can significantly improve the

control performance by looking ahead to account for changes

in the path [6], but the resulting MPC for the nonlinear

system is subject to nonlinear models. The model error due

to the uncertain disturbances may accumulate in multi-step

prediction in MPC.

For feedback linearizable nonlinear systems [7], feedback or

feedforward linearization techniques can be used to convert the

nonlinear dynamics into a linear integrator model, which can

be used as the predictive model in MPC. Exploiting differential

flatness property, [8] combines the MPC with feedforward

linearization control to tackle the trajectory tracking problem

for a quadrotor. The MPFC technique combined with non-

linear dynamic inversion acceleration controller is designed for

multirotor path following in [9]. However, the performance of

these model-based methods is still limited by the discrepancy

between the nominal model and the actual system in the

presence of unknown environmental disturbances.

To solve this problem, the uncertain disturbances should

be estimated and compensated in controller design. In [10],

external wind gusts and ground effects of the quadrotor are

estimated using the Kalman filter and compensated in the

predictive model of MPC. Based on [9], model reference

adaptive control is introduced to the acceleration controller

in [11], but the adaptive scheme is limited to the rotational

dynamics for a quadrotor.

One alternative solution is to use data-driven machine learn-

ing methods to learn environmental disturbances and use the

learned model to design the controller. In [12], a deep neural

network with spectral normalization is designed to learn the

aerodynamic effects of a quadrotor in a feedback linearization

controller to improve the quadrotor position control. Since

only limited data can be obtained to approximate the uncertain

disturbances, Gaussian Processes (GPs) [13] can be utilized

to estimate the uncertain disturbances and capture both the

epistemic uncertainty of the estimation due to the lack of data

and the aleatoric uncertainty inherent in the environment [14].

In [15] [16], the estimation using GPs and the corresponding

confidence bounds are used to design a robust controller

for Euler-Lagrange systems. While these proposed control

strategies provide tracking control stability, control constraints

are not considered in the controller. In [17], GPs are used in

a feedback linearization controller to compensate the effect

of wind disturbances. The controller reduces the trajectory

tracking error for the quadrotor but without providing a control

stability guarantee.

To eliminate the effect of environmental disturbances and

maintain the predictive capability of MPC, a nonlinear MPC is

designed using GPs to update the model error of the nominal

model for multi-step predictions [18]. In [19], an L1 adaptive

controller is designed to force the system to behave in a

predefined linear model. A higher-level linear MPC uses this

reference model to calculate the optimal reference input for

the L1 controller for trajectory tracking problem.

The limitations of the mentioned path following approaches

and the advantages of learning-based control techniques show

an urgent need for designing an adaptive and predictive path

following control strategy that achieves accurate path follow-

ing for nonlinear robotic systems under uncertain disturbances.

In this paper, we propose a novel learning-based predictive

path following control strategy, as illustrated in Fig. 1, for

nonlinear systems to accurately follow the predefined paths

under environmental disturbances. The control strategy cou-

ples an MPFC with an LB-FBLC which uses GPs to learn

the environmental disturbances model online. The LB-FBLC

forces the nonlinear system under disturbances to behave like

an integrator and tracks the reference states. The high-level

MPFC with the linear integrator model optimizes the evolution

of the reference targets, and provides reference states and

controls for the low-level LB-FBLC.

The main contributions of the paper include:

• A novel online LB-FBLC combing first-principle and

data-driven design methods is derived to enable accurate

tracking control under uncertain environmental distur-

bances. The theoretical analysis of probabilistic stability

is provided.

• A novel adaptive predictive path following control

scheme coupling a high-level MPFC with the low-level

LB-FBLC is designed to tackle path-following problems

for the nonlinear system under unknown environmental

disturbances.

• The effectiveness of the proposed control scheme is

validated on the quadrotor path following task under

uncertain wind disturbances via simulation.

The remainder of this paper is organized as follows. Prob-

lem statement and necessary preliminary are presented in Sec-

tion II. The proposed methodology is introduced in Section III.

In Section IV, the effectiveness of the proposed method is

validated via simulations on a quadrotor. The conclusion is

reached in Section V.

II. PROBLEM STATEMENT AND PRELIMINARY

A. Problem Statement

Consider a nonlinear system with dynamics:

ẋ1 = x2, ẋ2 = f(x) +G(x)u, (1)

where the state x = [x1, x2]
T ∈ X ⊂ R

2n, x1, x2 ∈ R
n, the

state space X is compact, and the controls u ∈ U ⊂ R
n. A

wide range of robots such as quadrotor and car-like vehicles

can be transformed into this form. It is noted that the analysis

is restricted to this form, but the results can be extended to the

systems of higher relative degree [7]. In general, f and G may

not be fully known for real systems. We make the following

assumption:

Assumption 1: The function f : X → R
n is unknown but

has a bounded reproducing kernel Hilbert space (RKHS) norm

under a known kernel k. The function G : X → R
n×n is

known and differentiable, satisfying Rank(G(x)) = n, ∀x ∈
X .

The assumption of f limits the irregularity under the in-

duced norm of RKHS, which can be used as a measure for

smoothness [13]. It is common for practical systems, such as

quadrotors and robotic manipulators, that the assumption of G
holds such that G(x) is invertible for x ∈ X .
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The goal of this work is to design a novel, learning-based

path following control strategy for nonlinear system (1), that

satisfies the following desired objectives:

(R1) High-Accuracy Following: For a given geometric path,

the nonlinear system (1) moves forward along the path

and achieves a high-accuracy path following perfor-

mance.

(R2) Adaptability: The proposed strategy can leverage online

learning to estimate and adapt to the uncertain environ-

mental disturbances.

(R3) Robustness to Disturbances: The proposed strategy can

optimize the reference target along the path and drive

the nonlinear system back to the reference path after

irresistible disturbances.

B. Gaussian Process Regression

A Gaussian process (GP) [13] is a stochastic process that

can be used as a nonparametric regression model to approx-

imate a nonlinear dynamical function, δi : X → R, with

a fidelity estimation. The GP assumes that function values,

associated with different inputs, are random variables and any

finite number of them have a joint Gaussian distribution. The

approximation of δi can be denoted by

δ̄i(x) ∼ N (µi(x), ki(x, x
′)), (2)

which is fully specified by a mean function µi(x) : X → R

and a kernel ki(x, x
′) : X ×X → R estimating the similarity

between states x and x′. It is common practice to set the prior

mean function to zero and use squared-exponential kernel

ki(x, x
′) = σ2

f exp (−
1

2
(x − x′)TL−2(x− x′)), (3)

which is characterized by hyperparameters of the length scale

diagonal matrix L and the prior variance σ2
f . Since (2) repre-

sents only functions with a scalar output, n independent GPs

can be utilized to model the nonlinear function δ : X → R
n,

δ̄ (x) =







δ̄1 (x) ∼ N (µ1 (x) , k1 (x, x
′))

. . .
δ̄n (x) ∼ N (µn (x) , kn (x, x′))

. (4)

We assume that the training set D is available to employ

the GPs for regression.

Assumption 2: The state x and the function value δ(x) can

be measured with noises over a finite time horizon to make

up a training set with N data pairs

D =
{(

x(i), y(i)
)}N

i=1
, y(i) = δ

(

x(i)
)

+ wi, (5)

where wi are i.i.d. noises wi ∼ N
(

0, σ2
noiseIn

)

, σnoise ∈ R.

Given this training dataset D, GPs can be used to predict

function value y∗ at any query input x∗. The j−th component

of the inferred output y∗ is jointly Gaussian distributed with

the training set
[

y∗j
yj

]

∼ N (

[

0
0

]

,

[

k∗j kTj
kj Kj + σ2

noiseIN

]

), (6)

where k∗j = kj(x
∗, x∗) ∈ R, yj =

[

y
(1)
j , . . . , y

(N)
j

]T

∈

R
N , kj =

[

kj
(

x(1), x∗
)

, . . . , kj
(

x(N), x∗
)]T

∈ R
N , and

Kj ∈ R
N×N is covariance matrix with the entry [Kj ](l,m) =

kj
(

x(l), x(m)
)

, l, m = 1, . . . , N .

Conditioning on the test input x∗ and the training data D,

the distribution on δ̄ (x∗) is δ̄ (x∗) ∼ N (µ(x∗), σ2(x∗)) with

the j − th component of the mean and variance:

µj (x
∗ ) = kTj

(

Kj + σ2
noiseIN

)−1
yj ,

σ2
j (x

∗ ) = k∗j − kTj
(

Kj + σ2
noiseIN

)−1
kj .

(7)

With the function δ̄ approximated by GPs, the following

result allows us to quantify the upper bound of the difference

between the true function δ(x) and the inferred mean µ(x)
with a reliable confidence interval.

Lemma 1 ([20]): For any compact set X ⊂ R
2n and a

probability ς ∈ (0, 1) holds

Pr{‖µ(x)− δ(x)‖ ≤ ‖β‖‖σ(x)‖, ∀x ∈ X} ≥ (1− ς)2n, (8)

where Pr denotes probability, β = [β1, ..., βn]
T, βj =

(2‖δj‖2kj
+ 300γjln

3(N+1
δ

))
1
2 , j = 1, ..., n, γj is the

maximum information gain under the kernel kj : γj =
max

{x(1), ..., x(N)}∈X

1
2 log(det(IN − σ−2

noiseKj(x, x′))), x, x′ ∈

{x(1), . . . , x(N)}, .

Lemma 1 allows us to make high probability statements on

the maximum modeling error between the true function δ and

the inferred mean µ, and it will be utilized in the analysis and

synthesis of the proposed control scheme.

III. METHODOLOGY

To achieve the three goals in II-A, we propose a hierarchical

control scheme composed of a high-level MPFC coupled with

an underlying LB-FBLC, as shown in Fig. 1. We first introduce

the LB-FBLC in Section III-A and the high-level MPFC in

Section III-B.

A. Learning-based Feedback Linearization Controller (LB-

FBLC)

Suppose we are given a bounded reference state xd(t) =
[x1d(t), x2d(t)]

T ∈ X and a control ad(t) ∈ A ⊂ R
n from

the high-level MPFC. Since the MPFC uses an integrator as

the predictive model, these references satisfy

ẋ1d(t) = x2d(t), ẋ2d(t) = ad(t). (9)

For simplicity, we omit the time index in the following.

A common method to track the reference state for nonlinear

systems (1) is feedback linearization control. Since f (x) is

not known exactly, let f̂(x) be a nominal model of f(x).
We formulate the feedback linearization control law u, with

pseudo-control component a,

u = G (x)
−1

(a− f̂(x)) (10)

to convert the nonlinear system (1) into an approximately

linear integrator model

ẋ1 = x2, ẋ2 = a+ δ (x) , (11)

where δ (x) = f (x) − f̂(x) ∈ R
n is the modeling error

resulting from environmental disturbances. If the nominal

model matches the actual model, then δ (x) = 0 and (11)

becomes a double integrator. However, it is difficult to get an

accurate model in advance for practical robotic systems under

uncertain environmental disturbances.
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To achieve precise tracking control given reference state xd
and control ad, we design the pseudo-control a as

a = ad +KP (x1d − x1) +KD (x2d − x2) + r, (12)

where KP ∈ R
n×n, KD ∈ R

n×n are the proportional and

derivative matrices of PD control law [7], respectively, and

r ∈ R
n is an added vector to be designed to compensate the

disturbances and achieve tracking stability.

Define the tracking error e = x−xd. Then, it can be shown

from (11) and (12) that the tracking error dynamics can be

written as
ė = Ae+B (r + δ (x)) , (13)

where A =

[

0 In
−KP −KD

]

∈ R
2n×2n, and B =

[

0
In

]

∈

R
2n×n. The control gain matrix KP , KD should be chosen to

make A a Hurwitz matrix [7]. Let P ∈ R
2n×2n be the unique

positive definite matrix, satisfying ATP + PA = −Q, where

Q ∈ R
2n×2n is a positive definite matrix.

We now discuss how to design the adaptive control vector

r. Intuitively, the environmental disturbances can be totally

compensated when they are known exactly, i.e. r = −δ(x).
However, only an approximation δ̄ of δ(x) can be obtained

from limited data. Thus, the approximation methods should

provide the estimation of δ(x) and capture the uncertainty

of the estimation. To this end, GPs are utilized to predict the

environmental disturbances and quantify the uncertainty based

on its predictions, where the output of the GPs is δ̄ (x) ∼
N (µ (x) , σ(x)) as illustrated in Section II. To train the GPs,

N data points can be collected online to makeup the training

dataset D = {(x(i), (ẋ2 − a)
(i)
)}Ni=1.

With the estimated disturbance δ̄ (x), the adaptive control

vector r can be designed as

r = −µ (x)− kcB
TPe, (14)

where kc ∈ R is an adjustable control parameter.

Lemma 2: Consider the system (1) with a bounded desired

state xd. Suppose that Assumptions 1 and Assumptions 2

hold. Then, the proposed learning-based control strategy in

(10), (12) and (14) with the condition

kc‖B
TPe(x)‖ − ‖β‖‖σ(x)‖ ≥ 0, ∀x ∈ X, (15)

ensures that the tracking error e semi-globally asymptotically

converges to zero with probability at least (1 − ς)n for

e ∈ E , where E is a compact set E = {e ∈ R
2n|eTPe ≤

e (0)
T
Pe(0)}.

Proof: Consider a candidate Lyapunov function V (e) =
eTPe. Denote w = wT = BTPe. It can be shown from (13)

that V̇ (e) = −eTQe+ 2w(r + δ). With control law (14), we

have

V̇ (e) = −eTQe+ 2w(δ − µ− kcw)

≤ −eTQe+ 2w(δ − µ)− 2kc‖w‖
2

≤ −eTQe+ 2‖w‖‖δ − µ‖ − 2kc‖w‖
2,

(16)

where the inequality comes from the Cauchy-Schwarz inequal-

ity. Employing Lemma 1, we have Pr{V̇ (e) ≤ −eTQe +
2‖w‖(‖β‖‖σ(x)‖ − kc‖w‖), ∀e ∈ E} ≥ (1 − ς)n. It yields

Pr{V̇ (e) < 0, ∀e ∈ E\{0}} ≥ (1 − ς)n under the condition

(15). This strict inequality holds because −eTQe < 0 with Q

a positive definite matrix. In addition, V̇ (0) = 0 holds.

Nonlinear system (1) is forced to behave like an integrator

(9) leveraging the control law (14). It is noted that if the

variance σ (x) = 0, i.e. the prediction of disturbances δ̄(x)
via GPs matches the true value δ(x) ideally, the tracking error

e will asymptotically converge to zero and the system (1) can

be transformed exactly into an integrator.

Additionally, considering the control constraints, we can

leverage the control Lyapunov function to construct a quadratic

programming (QP) to obtain the parameter kc:

k∗c = argmin
kc

‖kcw‖
2
2 + kǫǫ

2, (17)

s.t. Hclfkc + bclf ≤ ǫ, (Stability Constraints)

Hukc + bu ≤ 0, (Control Constraints)

where Hclf = −2‖w‖2, bclf = −eTQe + 2‖w‖‖β‖‖σ(x)‖,

Hu = [G(x)−1w, −G(x)−1w]T, bu = [G(x)−1(µ − ad −
apd+ f̂(x))+umin, G(x)

−1(−µ+ad+apd− f̂(x))−umax]
T,

apd = KP (x1d − x1) + KD (x2d − x2), ǫ ∈ R is a slack

variable to ensure the QP is feasible.

Remark. Note that the optimization (17) is not sensitive to the

kǫ parameter as long as it is large enough (e.g. 1020), such

that stability constraints violation is heavily penalized.

B. Model Predictive Path Following Control (MPFC)

With the integrator (9) as the predictive model, an MPFC is

designed to optimize the reference target along the path, and

provide reference state xd and reference control ad for the LB-

FBLC. As a high-level controller, it accounts for disturbances

by optimizing the speed of reference target evolution along

the path in a framework of nonlinear model predictive control

(NMPC).

Given a geometric path P :

P = {xref ∈ X ⊂ R
2n|xref = P (θ), θ ∈ Θ}, (18)

which is described by a projection P : Θ → X , from a

parameter interval Θ = [θ0, θend] ⊂ R to the state space

X . This parameter can be regarded as an additional degree

of freedom to be optimized in the NMPC. However, changing

θ(t) directly can result in undesired jumps along the path. To

avoid this effect, a virtual dynamics model of reference target

is designed as another integrator:

θ̇ = θvel, θ̇vel = θacc, (19)

in which θvel > 0, θacc ∈ AΘ ⊂ R is the control input to the

virtual system (19) and AΘ is a compact set containing the

origin in its interior. This control input θacc can be regarded as

the acceleration of the reference target evolution. The relative

degree of virtual system is designed corresponding to the

linearized system (11) and can provide smooth evolution of θ
by optimizing its acceleration. [5] gives a differential algebraic

and geometric explanation of this kind of virtual reference

target dynamics.

Based on the linearized system dynamics (9) and the linear

virtual target dynamics (19), a continuous time sampled-data

NMPC scheme is constructed. As commonly in the MPC, the

system input is obtained by repetitively solving a finite-time

optimal control problem (OCP). Denote the sampling instance
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tk = t0+k ·dt, where k ∈ N, t0 is the initial time instant, and

dt is the control period. Specifically, at each sampling instance

tk, the following OCP is solved:

min
ā(t), θ̄acc(t)

J
(

x(tk), θ(tk), ā(t), θ̄acc(t)
)

, (20)

s.t. ˙̄x1(t) = x̄2(t), ˙̄x2(t) = ā(t), (21)

˙̄θ(t) = θ̄vel(t),
˙̄θvel(t) = θ̄acc(t), (22)

θ̄vel(t) > 0, (23)

x̄(tk) = x(tk), θ̄(tk) = θ(tk), (24)

x̄ (t) ∈ X, ā(t) ∈ A, (25)

θ̄ (t) ∈ Θ, θ̄acc(t) ∈ AΘ, (26)

where the superscript .̄ denotes the predicted state or control

variables.

The objective function J at tk can be designed as follows.

J(x(tk), θ(tk), ā(t), θ̄acc(t)) =

∫ tk+H·dt

tk

‖x̄(t)− P (θ̄(t))‖2Qmpc

+ ‖ā(t)‖2Ra
+Rθ θ̄acc(t)

2
dt,

(27)
where H is the predictive steps, positive semi-definite matrix

Qmpc ∈ R
2n×2n weights the tracking error between the

system states and reference targets, and positive definite matrix

Ra ∈ R
n×n and Rθ > 0 ensure regularization of the inputs.

Notice that constraint (23) guarantees forward moving of

reference target along the path.

The solution to the OCP (20)-(26) contains reference target

P (θ̄∗(t)), state x̄∗(t) and control input ā∗(t), ∀t ∈ [tk, tk+dt].
The reference and control are applied to the LB-FBLC as xd(t)
and ad(t). At the next sampling instant tk+1 = tk + dtmpc,

the OCP (20)-(26) will be solved again with new measured

states served as an initial condition. As discussed in [5], the

path convergence and recursive feasibility in the presence of

system constraints can be ensured by carefully adding an end

penalty and a terminal constraint to the OCP (20)-(26).

IV. APPLICATION TO QUADROTOR AND

SIMULATION RESULTS

In this section, the proposed approach is applied to a quadro-

tor to follow different predefined paths in the presence of

unknown wind disturbances. Predictive following performance

and adaptability to the uncertain disturbances of the proposed

framework are verified via simulation.

A. Quadrotor Dynamics and Control

The quadrotor is a well-modeled dynamic system with

torques and forces generated by four rotors and gravity.

The Euler angles (roll φ, pitch θ and yaw ψ) are defined

with the ZYX convention. Thus, the attitude rotation matrix

R ∈ SO(3) from the body frame B to the world frame W
can be written as

R =





cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ



 , (28)

where s and c represents sin and cos, respectively [21].

Given quadrotor states as position p ∈ R
3 and velocity

v ∈ R
3 in the world frame W , we consider the following

translational dynamics:

Fig. 2. The five different paths used to test the proposed path following
control scheme.

ṗ = v,

v̇ = −ge3 +
1

m
Rfu +

1

m
fa,

(29)

wherem is the mass of the quadrotor, e3 = [0, 0, 1]T is the unit

vector, g is the gravitational acceleration, and fu = [0, 0, fT ]
T

with fT the total thrust generated from four rotors. The wind

disturbance is fa = Kdrag(vw − v), where vw ∈ R
3 is the

velocity of wind disturbances in W and Kdrag ∈ R
3×3 is a

drag coefficient diagonal matrix. We define in the dynamics

equation (1) the state x = [x1, x2]
T = [p, v]T, with x1 =

p = [px, py, pz]
T ∈ R

3 and x2 = v = [vx, vy, vz]
T ∈ R

3, and

define the total desired rotor force as control u = (Rfu)d ∈ R
3

following [12].

We assume that the attitude controller is provided by a

commercial quadrotor with the control interface (φcmd, θcmd,

ψcmd, fTcmd). Given geometric paths as described in IV-B,

reference states xd and controls ad are provided by the MPFC.

With these references, the control u = [ux, uy, uz]
T

as well as

a = [ax, ay, az]
T

are computed using (10), (12) and (14) with

kc computed by solving (17). As shown in Fig. 1, an inner-loop

controller leveraging the differential flatness property of the

quadrotor [22] converts the computed controls to the attitude

and thrust commands. Specifically, these commands can be

computed as follows [23].

fTcmd = ‖u‖, θcmd = atan2 (βa, βb) ,

φcmd = atan2

(

βc,
√

β2
a + β2

b

)

,
(30)

where βa = −ax cosψcmd − ay sinψcmd, βb = −az + g, and

βc = −ax sinψcmd + ay cosψcmd. The command of yaw is

set as ψcmd = 0.

B. Simulation Setup

We create a simulation platform using Python 3.7 to numeri-

cally validate the performance of the proposed control method-

ology for quadrotor following paths under unknown wind dis-

turbances. The quadrotor model corresponds to the commercial

quadrotor Crazyflie 2.1 with mass m = 0.036kg. The control

constraints of u are set umin = m · [−2,−2,−2+g]T (N) and

umax = m · [2, 2, 2+ g]T (N) [24]. The drag coefficient is set

Kdrag = diag[0.02, 0.02, 0.02]. The proposed path following

controller runs at 100 Hz with a control period dt = 0.01s.
The internal prediction steps of the MPFC is H = 20. The

weights in the objective function (27) of NMPC are set as
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TABLE I
AVERAGED PATH FOLLOWING RMSES (IN METER) OVER THE FIVE PATHS

FOR DIFFERENT CONTROL SCHEMES

High-level Low-level
Without

Disturbances

Uncertain

Disturbances

MPFC FBLC 0.0190 0.0346

MPFC LB-FBLC 0.0144 0.0162

MPFC FFLC 0.0353 0.0376

MPFC LB-FFLC 0.0380 0.1102

MPFC ROBUST [15] 0.0168 0.0368

Carrot-chasing LB-FBLC 0.1580 0.1653

NLGL LB-FBLC 0.1692 0.1785

TABLE II
MAXIMUM FOLLOWING ERRORS (IN METER) OF A QUADROTOR

FOLLOWING 5 PATHS WITH DIFFERENT HIGH-LEVEL CONTROLLERS

High-level Lemniscate Parabola Circle CH CS

MPFC 0.5667 0.2221 0.1384 0.8190 0.4397

Carrot-chasing 0.6050 0.3299 0.3637 1.4188 0.5945

NLGL 0.6020 0.3290 0.3868 1.3200 0.6638

Qmpc = diag[10, 10, 10, 1, 1, 1], Ra = diag[0.1, 0.1, 0.1] and

Rθ = 0.1.

The control gain matrix in PD control is Kp = diag[2, 2, 2]
and Kd = diag[1, 1, 1]. The Q matrix in the Lyapunov func-

tion is set as Q = diag[1, 1, 1, 1, 1, 1]. The penalty coefficients

of the slack variable in the QP are set kǫ = 1e20. The QP

is solved with the OSQP solver [25]. We use the scikit-learn

Python package [26] to build 3 GPs to estimate unknown wind

disturbances fa. Each GP uses the same squared-exponential

kernel with parameters L = 10 and σf = 1. The GPs

update with the past N = 5 data pairs as the training set for

prediction. We set β = 3 in (8) for each GP. The computing

time for GP learning is 0.1s and for inference is below 0.003s
on average on a 2.10GHz Intel Xeon CPU. Solving the NMPC

in the simulation takes 0.07s on average using the CasADi

[27] with the IPOPT solver [28] in Python. These codes have

not been optimized for speed and can be much accelerated in

C++.

A set of five paths, i.e., lemniscate, parabola, circle, cylin-

drical helix (CH) and conical spiral (CS), are used to test the

path following performance, as shown in Fig. 2. These paths

are parameterized by θ ∈ [0, 20] with nominal velocity profiles

by setting θvel(t) = 1s−1. We start the reference target and

initial position of the quadrotor on the path at P (θ = 0). To

quantify the following performance, we test for T = 20s and

compare the root mean square error (RMSE) of the minimum

distance from the quadrotor position to the path:

E =

√

√

√

√

1

M

M
∑

k=1

‖dmin‖2, (31)

where the minimum distance is calculated as dmin =
minθ (x1(tk)− P (θ)), and M = T/dt = 2000 represents the

total control steps in the discrete control.

To evaluate the algorithm performance under unknown

disturbances, a wind model in [29] is utilized, consisting of a

constant component vc, a turbulent component vt and a wind

gust component vg , i.e., wind velocity vw = vc + vt + vg.

The horizontal constant wind vc is randomly set from 3m/s
to 10m/s. The turbulence wind uses the von Kármán velocity

model defined analytically in the specification MIL-F-8785C

[30], with the low-altitude model in the specification for the

(a) (b)

Fig. 3. (a) The estimated disturbances in three axes via GPs when following
the lemniscate path. (b) The nominal trajectory followed by the ideal system
(9) is compared to the actual trajectory followed by the quadrotor.

Fig. 4. The RMSEs of the quadrotor following five different paths using
different high-level controllers without disturbances and under the same wind
disturbances.

model parameters. The turbulent wind component vt can be

generated following [31] and [32] with the model. The gusting

profile vg is defined as a 1−cos model in the specification. We

randomly generate 10 sets of parameters of the wind model

to evaluate the algorithm performance.

C. Results

1) Adaptability: In this subsection, we verify that (i) the

actual nonlinear system remains close to the ideal integrator

model, and (ii) the adaptive performance benefits from the

designed LB-FBLC.

White noises are added to the acceleration measurements to

simulate the real sensor condition. The noise level on the mea-

surements is considered in the GPs (5)-(7), corresponding to

the noise level parameter α in the scikit-learn package of GPs.

Table III shows the following errors for the lemniscale path.

When the parameter α in the GPs are properly chosen, the

proposed method is robust to the measurement noises unless

the measurement noises increase beyond a certain range. In the

following numerical validation, white noise wi ∼ N(0, 0.005)
and α = 5e-4 are set.

To validate (i), we compare the actual trajectory of the

quadrotor following the lemniscale path with the reference

trajectory generated by MPFC, as shown in Fig. 3(b). The

reference states satisfy an ideal integrator (9). The actual

system under unknown wind disturbances does behave close

to the ideal integrator using the LB-FBLC. Fig. 3(a) shows the

estimations of wind disturbances fa on quadrotor using GPs.

It can be seen that the actual disturbances lie in the uncertainty

bound of the estimations.
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(a) MPFC (b) Carrot-chasing (c) NLGL (d) MPC

Fig. 5. Position error of quadrotor following the aggressive lemniscate path under wind disturbances. Note that the deviation at the beginning is caused by
wind disturbances, which has not been estimated and compensated by GPs with limited data. The jumps at around 7s are caused by an irresistible wind
gust. The proposed control scheme with MPFC as the high-level controller outperforms the other three baseline controllers in terms of position error and
overshooting.

(a) Path Parameter θ (b) Control Inputs

Fig. 6. (a) The evolution of parameter θ in the aggressive lemniscate path.
(b) Control constraints are satisfied when following the lemniscate path with
the proposed method.

TABLE III
THE RMSES (IN METER) WITH DIFFERENT LEVELS OF MEASUREMENT

NOISES AND NOISE SETTINGS α IN GPS.
Measurement noise α = 0.0005 0.005 0.05 0.5

0.005 0.00852 0.01346 0.01346 0.01345

0.05 0.01226 0.01362 0.01498 0.01518

0.1 0.01645 0.01423 0.01500 0.01518

0.5 0.02847 0.28544 0.38680 0.01518

We keep the high-level MPFC the same to fairly compare

the designed low-level LB-FBLC with five controllers: a)

a nominal feedback linearization controller (FBLC) with no

GPs; b) a nominal feedforward linearization controller (FFLC)

with no GPs; c) a learning-based feedforward linearization

controller using GPs (LB-FFLC), which removes the PD feed-

back control from the LB-FBLC; d) the robust control method

proposed in [15] (ROBUST). For the ROBUST method, we

selected the parameter ǫ = 0.1. The Lyapunov function and PD

control gain matrix in the ROBUST method are set the same as

those in our method. The settings on GPs among the learning-

based methods are the same for fairness of comparison.

The path following RMSEs shown in Table.I are averaged

over five paths with or without disturbances. The proposed

low-level LB-FBLC achieves the minimum RMSE in all cases.

Both the LB-FBLC and LB-FFLC use GPs to learn the

uncertain disturbances and achieve lower tracking error than

the nominal FBLC and FFLC methods under disturbances. It

shows that the proposed approach benefits from using GPs

to compensate the unknown disturbances. Besides, the LB-

FBLC/FBLC achieves a smaller RMSE compared with the

LB-FFLC/FFLC. It demonstrates that the feedback PD control

design in the proposed approach is effective. Table.I also

shows that the proposed approach can achieve lower RMSE

compared to the ROBUST method. The results show that

the designed adaptive control law, with the form and the

condition of stability different from the ROBUST method, can

Fig. 7. Trajectories of the quadrotor following the aggressive lemniscate
path. The proposed control scheme with MPFC as the high-level controller
can achieve lower following error due to the predictive control of the system
and reference evolution. Best viewed in color.

effectively reduce the path following error under the unknown

wind disturbances.

2) Predictivity: The benefits of the predictive control in-

herent in the designed MPFC are demonstrated in this part.

For a fair comparison, we keep the LB-FBLC as the low-

level controller and compare the high-level MPFC against

two baseline path following control algorithms: a) Carrot-

chasing, b) Nonlinear Guidance Law (NLGL), and a trajectory

control algorithm: c) MPC. In the Carrot-chasing method, the

reference target is chosen at a constant distance D1 ahead

from the path point which is computed by projecting the

quadrotor position to the path. In the NLGL, the reference

target is calculated as the point on the path, which is at

a distance D2 from the quadrotor. The D1 and D2 are set

for the best following performance. Since the velocity profile

of the path is predefined with the evolution velocity of the

parameter θvel(t) = 1s−1, we can compare the trajectory

control performance with the predefined time-parameterized

reference trajectory P(θ(t)) = P(t), to illustrate the advantage

of path following described in Section I. The MPC uses

the same double integrator predictive model and parameter

settings as in the MPFC.

As shown in Table.I, the proposed method with MPFC as the

high-level controller can largely reduce the averaged RMSE

compared with the Carrot-chasing and NLGL method in all

cases. To assess the robustness to irresistible disturbances, a

large wind gust of around 20m/s is added to the wind vw
from 7s to 8s to push the quadrotor away from the path.

The proposed approach reduces both the maximum following

error and the RMSE under disturbances, as shown in table

II and Fig.4, respectively, compared with the Carrot-chasing

and the NLGL method. Without disturbances, the following

errors can also be reduced largely with the MPFC as the high-
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level controller. To obtain an intuitive view on the control

performance under disturbances, Fig. 7 shows the trajectories

of the quadrotor following the aggressive lemniscate path

using different high-level controllers, with the position errors

shown in Fig. 5. It can be seen that the quadrotor is blown

away but soon converges back to the path rapidly with smaller

deviation and obviously less overshooting using the proposed

method compared with the baseline NLGL and Carrot-chasing

methods. Lower following errors can also be observed in the

sharp turns.

Figure 6(a) shows the evolution velocity of the reference

parameter θ. The MPC tracks the time-parameterized trajec-

tory with higher tracking errors after the quadrotor deviates

from the path as shown in Fig. 5(d). With MPFC as the

high-level controller, the evolution of the reference target

slows down when the quadrotor deviates from the path at

around 7s and sharp turns. It reveals that the path following

error can be largely reduced with the help of optimization of

reference target evolution in the MPFC. Figure 6(b) illustrates

the control constraints of u can be satisfied with the designed

learning-based control scheme.

V. CONCLUSIONS

In this paper, a novel learning-based predictive control

scheme is presented for nonlinear systems to accurately follow

paths under uncertain environmental disturbances. A low-level

LB-FBLC with GPs is designed to track the reference states

accurately under disturbances with a probabilistic stability

guarantee. A high-level MPFC exploits an integrator system

model and a virtual linear path dynamics model to simulta-

neously optimize the reference target revolution, and provides

the reference states and controls for the LB-FBLC. Simulation

results show that the proposed control scheme can successfully

drive a quadrotor to accurately follow various geometric

paths under different unknown wind disturbances. Both the

maximum and the mean following errors are shown to be

effectively reduced using the proposed method. The quadrotor

with the proposed control scheme exhibits predictive ability

when following aggressive paths and robustness to the wind

disturbances. In future work, estimation delay and limited

update frequency will be considered, as well as hardware

experiments under real conditions.
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