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Vehicle Trajectory Prediction Using Generative Adversarial Network
With Temporal Logic Syntax Tree Features

Xiao Li1, Guy Rosman3, Igor Gilitschenski1, Cristian-Ioan Vasile4, Jonathan A. DeCastro3,
Sertac Karaman2 and Daniela Rus1

Abstract— In this work, we propose a novel approach for
integrating rules into traffic agent trajectory prediction. Con-
sideration of rules is important for understanding how people
behave — yet, it cannot be assumed that rules are always
followed. To address this challenge, we evaluate different
approaches of integrating rules as inductive biases into deep
learning-based prediction models. We propose a framework
based on generative adversarial networks that uses tools from
formal methods, namely signal temporal logic and syntax trees.
This allows us to leverage information on rule obedience as
features in neural networks and improves prediction accuracy
without biasing towards lawful behavior. We evaluate our
method on a real-world driving dataset and show improvement
in performance over off-the-shelf predictors.

I. INTRODUCTION

Priors and structure have received increasing attention
as elements of recent successful prediction models [1]. By
designing structure/inductive biases into the model, sample
efficiency and explainability of the model can be consider-
ably improved. Useful priors include interaction with road
agents [2], [3], [4], vehicle dynamics [5] and structure such
as multi-modality [6], [7], [8], [9]. While rule-based priors
such as traffic rules and driving best practices are commonly
incorporated into ego-vehicle planning, they are much less
thoroughly explored in the prediction literature.

Vigorous definition of complex rules can be difficult.
While some rules are simple (e.g., “don’t hit the car in
front of you”, “don’t cut in recklessly” [10]), traffic rules
in general are more involved. For example, the 2020 Illinois
rules of the road [11] describes a flagger sign as a warning
for drivers that a flagger is ahead. It mandates that a driver
should use caution when approaching a flagger as the indi-
vidual will be working close to traffic. It also requires that the
driver should slow down and be prepared to obey the signals
of the flagger including being prepared to stop if signaled
to do so. It is here where compositional formulations of
rules, i.e. the ability to combine simple individual statements
into rich behavioral expressions, can greatly simplify their
definition. Without such a structure, maintaining a large set
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of rules and have them interact coherently at scale poses a
challenge. We will exploit the structure and discriminative
nature (define what is considered bad driving, instead of
which trajectory should the driver take) of rules in trajectory
prediction.

While traffic rules provide a strong prior on behaviour,
they cannot be used as a hard constraint in prediction
approaches because in certain situations it is common to
disobey them. This is in contrast to planning where it is
much more meaningful to incorporate rules as objectives or
constraints. Figure 1 illustrates an example where both vehi-
cles to be predicted (in green) are approaching a pedestrian
crossing. Even though it is desirable to “slow down near
pedestrian crossings”, their ground-truth futures (black dotted
trajectory) show that one indeed slows down (Figure 1 (a))
but the other did not (Figure 1 (b)). This is different than
the situation in planning for the ego-vehicle, where we can
constrain ourselves to trajectories that enforce the satisfaction
of the rules [12].

(a) (b)

Fig. 1 : Typical Rule Violation. While the rule “slow down
when approaching pedestrian crossings” is usually satisfied (a), its
violation (b) is still common. In this example, from the NuScenes
dataset [13], the vehicle to be predicted is highlighted in green. The
black dotted trajectory shows their ground-truth trajectory. The red
patches represent stop areas (stop sign, pedestrian crosswalk, etc).

In this work, we address this problem by using signal
temporal logic (STL) [14] as an expressive formalism to
encode rules. For a given set of STL formulas, a syntax tree
of their conjunction is constructed. This is used to extract
features that represent different stages of rule satisfaction
(further discussed in Section III-A). We observe that judging
the usefulness of rules is similar to a discriminator in a GAN
framework as it relates to how people use rules to reason
about the plausibility of events. Thus, we use a discriminator
to incorporate the extracted rule features into off-the-shelf
trajectory predictors to make them rule-aware. Specifically,



our contributions include (1) introducing features constructed
from the sub-formulas of an STL syntax tree (which we refer
to as syntax tree features) as a means to integrate temporal
logic rules into existing trajectory predictors; (2) evaluation
of different approaches to incorporate rules in a GAN-like
prediction model. Specifically, we look at STL as a set of
discriminator features as well as a generator auxiliary loss;
(3) evaluating our architecture on a real world driving dataset.

II. RELATED WORK

Our work relates to several active topics of research. Re-
cent advances in vehicle trajectory prediction have explored
the representation of multi-agent interactions [15], [2], [3],
[16], [4], [17], uncertainty representation [2], [15], [5], [9],
and different modality representations [16], [18]

Utilizing rules to constrain motion of dynamic systems
is more commonly seen in trajectory planning of the ego
vehicle. Recent work that use temporal logic to learn control
policies in an RL setting include [19], [20], [21] whereas
the authors of [22] use a differentiable linear temporal logic
(LTL) loss in to learn policies from demonstrations. In
[23], the authors transformed the syntax tree of an STL
formula into a computation graph that can be integrated
into existing deep architectures which we have adopted in
this work. The authors of [24] introduce the RuleBook as
a pre-ordered set of rules designed to help maintain traffic
rules and driving heuristics in a explainable and prioritized
manner. In [25], the authors use LTL to integrate rules of the
road into route and trajectory planning. The authors of [26]
use STL to specify safety contracts for evaluation of self-
driving systems. In the more general context of planning,
inference of active constraints can serve as a basis for more
efficient learning from demonstration [27]. In prediction,
rules are more commonly incorporated as feature maps [28]
and cost-maps [29]. However, it is difficult to control the
level of rule enforcement in the feature map approaches as
it is determined by the features the network has extracted.
The costmap approach utilizes a MPC (model predictive
control)-like optimization rollout to enforce the costs onto
the predictions. Multiple costmaps are combined using a
weighted sum. The weights can have a significant impact
on the meaning of the rules and hence the predictor’s per-
formance. Weight tuning can be difficult when the number of
costmaps scales. In comparison, the STL rules we use follow
a set of rigorous syntax and semantics. Our method uses the
syntax tree of STL formulas to compute feature vectors that
encode explicitly the satisfaction level at different stages of
the rules at different time-steps. We introduce tree-level and
node-level dropouts to control the influence of the rules on
the predictions. We are able to make the prediction model
rule-aware without explicitly enforcing predictions to follow
the rules (which in certain cases will neglect rule-violating
behaviors of road agents). The structure our method improves
the predictor’s explainability (by monitoring the satisfaction
of the sub-formulas of the syntax tree with respect to the
predicted trajectories).

III. BACKGROUND

A. Signal Temporal Logic (STL)

STL offers a formalism for expressing and reasoning about
rules for cars to follow. Properties expressed in STL capture
rich car behaviors with timing constraints. The syntax of STL
formulas is φ ::= p(s) > 0 | ¬φ | φ ∨ φ | FIφ, where I ⊂
IR≥0 is a bounded time interval, p(s) > 0 (p : IRn → IR) is
a predicate over state s ∈ S ⊆ IRn, ¬ (not) and ∧ (and) are
Boolean operators, and F is the eventually operator. It can
also involve other Boolean operators (e.g., ∨, ⇒) and the
always operator GI which are defined in the usual way [14].

Let st0:t1 = (st0 , ..., st1) denote the discrete-time trajec-
tory from t0 to t1. The finite-horizon trajectory st0:t1 satisfies
φ, denoted by st0:t1 |= φ, if

st0:t1 |= (p(s) > 0) ⇔ p (st0) > 0

st0:t1 |= ¬φ ⇔ ¬(st0:t1 |= φ)

st0:t1 |= φ1 ∧ φ2 ⇔ (st0:t1 |= φ1) ∧ (st0:t1 |= φ2)

st0:t1 |= FIφ ⇔ ∃t′ ∈ t0 + I, t′ < t1, st′:t1 |= φ

For example, STL formula φex = G[t1,t2](u > ε1) ∧
F[t3,t4](v < ε2) means that “ut > ε1 is true for all of
t ∈ [t1, t2] and vt < ε2 holds for at least one of t ∈ [t3, t4]”.

STL admits quantitative semantics called robustness that
assigns degrees (real numbers) of satisfaction or violation to
trajectories with respect to formulas. It is defined by

r(st0:t1 , p(s) > 0) = p (st0)

r(st0:t1 ,¬φ) = −r(st0:t1 , φ)

r (st0:t1 , φ1 ∧ φ2) = min(r(st0:t1 , φ1), r(st0:t1 , φ2))

r (st0:t1 ,FIφ) = max
t′∈(t0+I)∩[t0,t1)

r (st′:t1 , φ)

(1)

where max over an empty set is −∞.
A robustness greater than zero signifies that the trajec-

tory satisfies the given formula, i.e. r(st0,t1 , φ) > 0 ⇒
st0,t1 |= φ. Negative robustness implies violation of the
formula. We define the robustness trace as r̃(st0:t1 , φ) =
[r(st0:t1 , φ), r(st0+1:t1 , φ), ..., r(st1−1:t1 , φ)].

For any STL formula φ, there is an abstract syntax tree
Tφ = {Nφ, Eφ}, where intermediate nodes Nφ correspond
to Boolean and temporal operators, leaf nodes correspond to
predicates, and edges Eφ connect operators to their operands.
We identify a node n ∈ Nφ with the associated sub-formula
φn as shown in Figure 2 (solid arrows) for formula φex.

The robustness (1) can be computed by traversing the
syntax tree. As noted in [30], the recursive computation can
be thought of as a computation graph from predicate states to
the root node. Figure 2 shows the edges of the computation
graph as dash arrows, and input nodes in blue. We take
advantage of this computation graph to construct features
for our prediction models.

B. Generative Adversarial Network (GAN)

A Generative Adversarial Network consists of two neural
networks trained adversarially to each other [31]. A genera-
tive model G that takes in a source distribution and outputs
samples of the target distribution, and a discriminative model



Fig. 2 : Syntax tree for STL formula G[t1,t2](u > ε1)∧F[t3,t4](v <
ε2) which denotes “ut > ε1 is true for all of t ∈ [t1, t2] and vt < ε2
holds for at least one of t ∈ [t3, t4]”. Blue indicates input nodes.

D that takes in a sample and estimates the probability that
it comes from the target distribution (as oppose to being
constructed by the generator). The generator takes a latent
variable z as input (often from a well-known distribution
such as uniform or Gaussian distribution), and outputs sam-
ple s = G(z). The discriminator D takes in a sample s
and outputs D(s) which represents the probability that it is
from the target distribution. The training process mimics a
two-player min-max game with the objective function:

minG maxD L(G,D) =
Es∼pdata (s)[logD(s)] + Ez∼p(z) [log(1−D(G(z)))].

(2)

GANs can used for conditional models by providing both the
generator and discriminator with additional input X , yielding
G(X , z) and D(X , s) [2].

IV. STL-GAN

Let X be the input features (semantic maps, state vectors,
etc) to a given prediction model, s0:T be the ground truth
future trajectory of the agent to be predicted (s here is the 2D
coordinate and steering, T is the prediction horizon). Denote
s̃0:T and ã0:T to be the predicted trajectory and controls
generated by the model. We state the prediction problem as:
given X generate samples from the distribution P (s0:T |X ) -
the distribution over trajectory s0:T given input features X .

Let us look at an STL formula φ and s0:T |= φ describing
whether the trajectory obeys the driving rules. We also
consider the sub-formulas of φ given by its syntax tree.
While computing φ does not generate new information, φ
is an informative and compact representation for many of
the samples in the dataset. This poses the question: “what
is a good way to leverage φ as a representation, so that we
may capture P (s0:T |X ) more accurately?”

In this section, we introduce two approaches of integrating
STL rules into trajectory prediction models. Figure 3 illus-
trates our proposed architecture which consists of 3 com-
ponents — a generator, a discriminator and a set of syntax
tree features. Each of the components will be discussed in
detail in the following sections. It is worth noting that even
though our method is GAN-based, one can replace the base
predictor with any trajectory generator provided that it can
be made stochastic and able to cover the space of trajectories.
In our case, we added a random variable to the input of the

base predictor (the multimodal trajectory predictor [32]) such
that samples of the random variable map to samples of the
prediction. Given that the discriminator serves to incorporate
information from the rules, the generator needs to be trained
in conjunction with the discriminator (can not be pretrained
with frozen weights).

Generator. We now describe our generator. We chose a
generator based on dynamics integration rather than direct
trajectory emission similar to [5] as the resulting control
signals make it easier to consistently define rules. Given
observation X , noise feature z drawn from a uniform or
normal distribution and a base predictor BP, a sequence of
predicted controls are generated by ã0:T = BP(X , z).
Here we define controls at time t as ãt = (vt, ωt) where
vt, ωt are the speed and steering rate respectively. The state
trajectory is calculated using the unicycle model

[ẋ, ẏ, ψ̇]> = V(s, a) = [v cos(ψ), v sin(ψ), ω]
>
. (3)

Let s = (x, y, ψ) be the 2D coordinates and heading
respectively. Given the agent’s current state s0 (assumed to
be part of input features X ), controls a0:T and Equation (3),
future trajectory can be calculated by s0:T = Dyn(s0, a0:T )
where st+1 = st + ∆t · V(st, at), and ∆t is the time
interval. This way of predicting first the controls then the
state trajectory using a dynamics model not only allows us
to generate dynamically feasible trajectories, but also gives
us access to the controls which will be useful in defining the
STL rules. The generator takes the form s̃0:T = G(X , z) =
Dyn(s0,BP(X , z)). The generator loss is defined as

LG =E z∼N (0,1)
X∼pdata(X )

[log(1−D(X , G(X , z)))]+

wMoNLMoN + wBPLBP
(4)

where wMoN , wBP are scalar weights, LBP is the loss of
the base predictor, and LMoN is defined as

LMoN = min
k

∥∥s0:T − s̃k0:T∥∥2 . (5)

Here s̃k0:T denotes the kth trajectory sampled from the
generator (by sampling multiple noise terms for a given X ).
Similar to [2], adding such a loss encourages the generator to
produce diverse samples to increase the chance of covering
the ground-truth.

Discriminator. The discriminator takes input X and con-
structs a feature vector fX using a feature extractor (for
example a CNN if X contains images). fX along with the
best predicted trajectory from the generator s̃0:T are passed
to an LSTM encoder (s̃0:T as input, fX used to initialize the
hidden state) to generate feature fenc. fenc can be passed
directly to an MLP to obtain a classification score.

The discriminator loss is defined as

LD = −
[
EX∼pdata(X )
s∼pdata(s)

[logD(X , s)]+

E z∼N (0,1)
X∼pdata(X )

[log(1−D(X , G(X , z)))]
] (6)

STL Robustness As The Generator’s Auxiliary Loss.
We introduce a simple approach to integrate STL rules with
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Fig. 3 : Architecture for STL-GAN. The generator can be constructed with off-the-shelf trajectory predictors by injecting noise to its
inputs. Syntax tree features are used to enhance the capacity of the discriminator and/or in training costs for the generator

the generator. We add the weighted absolute value of the
robustness as an additional term to the generator loss in
Equation (4). The new loss is defined as

L̄G = LG − wr min
{

0, r((s̃0:T , ã0:T ), φ)
}
. (7)

Note that here the robustness takes also the controls as
input arguments, this allows us to design rules such “if
pedestrian crossing then slow down”. Minimizing this loss
encourages the generator to output trajectories that comply
with φ (robustness loss is non-zero if the generated trajectory
is rule-violating and zero otherwise). One caveat to this
approach is that depending on wr, the generator can become
overly biased towards the rules and neglect realistic but rule-
violating behaviors.

STL Syntax Tree as Discriminator Features. In order
to avoid biasing predicted trajectories into lawful behaviors,
and have the predictor use the rules as cues, we propose an
alternative approach. We use the robustness term of all nodes
in the syntax tree as discriminator features. Given a syntax
tree Tφ = {Nφ, Eφ}, for each node sub-formula φn, n ∈ Nφ,
we define a node feature as the robustness trace of that node
sub-formula

fφn = r̃((s̃0:T , ã0:T ), φn). (8)

In order to encourage the network to leverage each sub-
expression rather than counting on only the most prominent
ones, at training time we apply dropout to the different node
features, as is often done in multimodal network fusion [7]:

fφ = dT · Concat
n∈Nφ

(dn · fφn), (9)

where dn, dT ∼ Bernoulli(p) are Bernoulli random vari-
ables with probably of 1 being pn, pT respectively. pn
and pT represent the dropout probabilities for the syntax
tree node features and the entire tree respectively (which
determine the probabilities that dn, dT take values 1 or

0). dn, dT are added during training and set to 1 during
evaluation. fφ is concatenated with fenc and passed as input
to the MLP classifier. Algorithm 1 provides an overview of
our method.

Algorithm 1 STL-GAN

1: Inputs: STL formula φ; generator G(X , z|θG) parame-
terized by θG; discriminator D(X , s0:T |θD) parameter-
ized by θD; number of iterations N ; learning rate α;
number of sample trajectories to draw from generator
K; syntax tree feature dropout probabilities pn, pT .

2: Nφ, Eφ ← ConstructSyntaxTree(φ)
3: for i=0 . . . N-1 do
4: Sample minibatch of m noise z = {z0, .., zm−1}

from normal distribution N (0, 1).
5: Sample minibatch of m data samples X, s0:T =

(X 0, ...,Xm−1), (s00:T , ..., s
m−1
0:T )

6: if STL generator loss then
7: θG ← θG − α∇θG 1

m

∑m
j L̄G(X j , zj , φ)

8: else
9: θG ← θG − α∇θG 1

m

∑m
j LG(X j , zj)

10: end if
11: sample K ×m noise terms z̄ from N (0, 1)
12: ã0:T , s̃0:T = GetMoNTrajectory(θG,X, s0:T , z̄)
13: if STL syntax tree features then
14: fφ ← GetFeature(ã0:T , s̃0:T ,Nφ, pn, pT )

15: θD ← θD − α∇θD 1
m

∑m
j LD(X̃ j , sj0:T |fφ)

16: else
17: θD ← θD − α∇θD 1

m

∑m
j LD(X̃ j , sj0:T )

18: end if
19: end for

In Algorithm 1, the gradient descent steps (lines 7, 9, 16,
18) can be realized using any stochastic gradient optimizers.



The function GetMoNTrajectory on line 12 samples K
trajectories from the generator (for each element in the batch)
and returns the prediction closest to the ground truth. In many
GAN related predictors, randomly generated trajectories are
fed to the discriminator. In practice we found that feeding the
MoN trajectory to the discriminator produces better results
when the syntax tree features are used.

V. EXPERIMENTS

Dataset. We use the NuScenes dataset [13] for training
and evaluation. The dataset contains 1000 scenes of 20s
each collected in Boston and Singapore. It also includes rich
semantic information including 23 object classes (pedestrian,
vehicle, etc) and HD maps with 11 annotated layers (lanes,
walkways, etc). Our goal is to show that using these seman-
tic information we can define rules that will improve the
performance of existing predictors.

Rules Used. We define the following rule

φ =
(
G[0,T ] Drive near the center lane

)
∧(

G[0,T ] Stop areas within 10 meters ahead⇒
Drive slowly

)
.

(10)

Here T is the prediction horizon. φ takes the form of the
conjunction of a set of sub-rules. Each sub-rule is enforced
at all times within the prediction horizon (one can also define
rules that are enforced at specific time intervals). Details of
the predicates in the rule definitions are as follows
• “Drive near the center lane”: denote dist(s̃t, lanet) as

the distance between the predicted trajectory and its
closest point on the center lane at time t. This predicate
is defined as dist(s̃t, lanet) < εlane where εlane is a
rule parameter that can be manually set or tuned during
training. In our experiments, we set εlane = 2 meters.

• “Stop areas within 10 meters ahead”: a stop area is
defined as a stop sign, pedestrian crossing, turning stop
or traffic light (the red regions shown in Figure 1 ).
Let dist(s0, sstop area) denote the distance between the
agent (at the current observed time) and the closest stop
area in front of it. This predicate is then defined as
dist(s0, sstop area) < 10 meters.

• “Drive slowly”: Let ãt = (ṽt, ω̃t) be the predicted
control at time t. This predicate is defined as |ṽt| < εv
where εv is another rule parameter that defines the speed
range the agent should drive within. We set εv = 1 m/s.

It is worth mentioning that within our training set, 80.4%
of the samples are compliant to the rules above (with
robustness greater than zero). 86% of the samples in the
validation set are rule-compliant. Therefore, the proposed
predictor needs to learn and be rule-aware but not blindly
follow the rules in order to be effective.

Implementation Details. We use the multi-modal trajec-
tory predictor (MTP) [33] with the MobileNet-V2 backbone
[34] (implemented in [13]) as the base predictor. We modify
this predictor to take in a noise term (drawn from a normal
distribution) of dimension 8 as an additional input feature.
Doing so transforms MTP into a generator that we can

incorporate in our GAN structure. For each input feature, we
sample 3 trajectories from the generator and the trajectory
with minimum average displacement error is fed to the
discriminator.

We train and test with an observation history of 2 seconds
and prediction horizon of 6 seconds with a frequency of 2
hz. We use a train batch size of 32 and accumulate gradient
for 3 batches. we train for a total of 20 epochs on a cluster
using 4 NVidia Tesla V100 GPUs.

Method of Evaluation. As performance metrics, we
use the average displacement error (ADE) - average L2-
norm between prediction and ground truth trajectories; fi-
nal displacement error (FDE) - L2-norm between the final
prediction and ground truth poses; max distance (MaxDist)
- max L2-norm between prediction and ground truth as
performance metrics. For each set of input features, we use
the generator to sample 3 trajectories and the minimum of
the above metrics are reported. All metrics are in meters.
We use a training set of around 20000 trajectories and a
validation set of around 4000 trajectories.

Results And Discussion. We use four training configura-
tions for comparison. Base indicates training with only the
generator and discriminator, no rules are included and the
base predictor outputs directly state trajectory (no dynamics);
BaseDyn is Base with dynamics (which is the generator
architecture shown in Figure 3 ); GLoss indicates using the
rules as a generator auxiliary loss (Equation (7)); DFeature
indicates using the syntax tree as discriminator features. Note
that except for Base, all other configurations use dynamics
(the rules require controls as part of their definition). In
addition, we have also implemented the policy anticipation
network (PAN) in [29]. In PAN, we designed 2 costmaps
corresponding to “drive near the center lane” and “slow
down near stop areas.” We have also included an integrator
kinematics in the cost function.

Figure 4 shows the metric histograms for the trained
predictors evaluated on the validation set. We also provide
their statistics in Table I. From this set of results, we can see
that between rules (GLoss and DFeature) and no-rules (Base
and BaseDyn), adding rules can considerably reduce the
long-tail error (especially in max-FDE and max-MaxDist).
However, GLoss suffers from over-correction in the low-
error regions as shown by its high min-ADE and min-
FDE (recall that not all the samples in the data are rule-
compliant). This over-correction phenomenon also slightly
affects DFeature compared to the methods without rules.
Using rules as discriminator features provide the predictor
with a set of helpful priors but does not blindly encourage it
to follow the rules in generating predictions. This can be
supported by the low mean-ADE, max-ADE, mean-FDE,
max-FDE of DFeature compared to Base and BaseDyn. It is
also noticeable that the min-ADE/FDE/MaxDist of DFeature
are slightly higher than other methods. This is also due to the
fact that the rules encourage the generator to produce rule-
compliant predictions whereas some of the ground-truths
are rule-violating. Such an effect exists with both GLoss
and DFeature but is stronger with GLoss. Therefore, GLoss



Fig. 4 : Performance metric histograms. The top of each subfigure demonstrate a box plot of each statistic over the validation set
examples. The bottom part of each subfigure demonstrates the binned distribution of each error statistic for each approach. The rule-based
predictors reduce both the average and the spread of each of the error compared to the baseline. The DFeature approach results in the
smallest overall spread of error.

Fig. 5 : Distribution of ADE versus robustness percentile. Each box plot is produced using predictions with robustness greater than
the indicated percentile.

ADE (meters) FDE (meters) MaxDist (meters)

mean max min 90th

quantile mean max min 90th

quantile mean max min 90th

quantile
PAN 3.29 20.51 0.29 6.56 7.25 50.40 0.14 15.48 7.88 50.40 0.62 15.75
Base 3.08 20.99 0.24 6.57 6.74 50.33 0.12 15.22 6.98 50.34 0.49 15.21
BaseDyn 2.83 20.07 0.18 5.99 6.33 45.57 0.05 14.37 6.58 48.58 0.4 14.38
GLoss 2.91 18.58 0.22 6.43 6.77 43.82 0.03 15.38 7.08 43.82 0.56 15.52
DFeature 2.53 18.73 0.19 5.44 5.74 43.81 0.02 12.98 5.99 43.81 0.62 12.98

TABLE I: Performance metric statistics. DFeature results in improved ADE, FDE and maximum distances compared to both prediction
without rules and the GLoss approach, in terms of both mean, max and 90th quantile statistics.

is more suitable for rules that are rarely broken (such as
“always drive on a drive-way”) where DFeature should be
used with rules that are more frequently broken (such as
“always drive below the speed limit”). PAN performed worst
of all the comparison cases. The main reason is that PAN’s
encoder module relies only on the pose and velocity history
to predict a behavior without considering other agents or the
map which limits it’s ability to make accurate prediction.
PAN is also sensitive to how the costmaps are scaled when
combined into a single cost function.

As a crude estimate of the spread of the trajectory dis-
tributions, for each scene we generate 20 trajectories. Then
we take the predictions at the last time-step (where spread
is largest) and calculate the covariance and its Frobenius
norm. For each comparison case (except for PAN which
is unimodal), we report the average Frobenius norm over
scenes in the validation set as 1.26, 1.11, 0.67, 0.83 for
Base, BaseDyn, GLoss, DFeature respectively. Intuitively

this norm can be seen as an average distance to the mean
of the trajectory distribution. Training with rule results in
distributions concentrated towards the center lane compared
to training without rules. GLoss gives the most concentrated
distribution given that it’s more strict enforcement of the
rules.

Figure 5 shows distributions of ADE versus the robust-
ness percentile. To produce this figure, the samples in the
validation set are sorted by their robustness values and each
box plot corresponds to the ADE statistics of samples greater
than the indicated percentile We can see that for methods
with rules, as the robustness of the data increases there
is a notable decrease in ADE. This phenomenon is less
apparent in methods without rules. This result indicates that
for DFeature and GLoss, the predictor has learned to use
the rules to improve prediction accuracy. Meanwhile, Base
and BaseDyn are not provided with the rules during training
and therefore results in weaker correlation between ADE and



robustness.
Figure 7 shows example scenarios trained with and

without rules. For each of the sub-figures (a) and (b), the
left scene depicts the prediction distribution from a BaseDyn
model whereas the right depicts that from a DFeature model.
Within each scene, the black dotted trajectory illustrates the
agent’s ground truth future; the dark gray dotted trajectory
illustrates the agent’s path history; the white trajectory dis-
tribution depicts 100 predicted trajectories sampled from the
generator; the dot-dash lines represent lane centers (brown
is incoming, yellow is current, white is outgoing).

Fig. 6 : Syntax tree dropout analysis. A grid search over the
syntax tree dropout probabilities pn and pT in Equation (9) with
the ADE of each combination reported in the matrix. A probability
of 0 indicates no dropout and probability of 1 indicates full dropout
(turning the syntax/node features off).

Figure 6 shows a grid search over the syntax tree dropout
probabilities pn and pT in Equation (9). The color scale and
numbers shown in the matrix represent the resulting ADEs.
Here pn, pT = 1 corresponds to the syntax tree features
completely turned off whereas a value of 0 corresponds to
no dropout. We can observe from the figure that neither
extreme values give satisfactory results and the best result
occurs at pn, pT = 0.6. The optimal values of the dropout
values depend on the rules and the dataset. We expect that
a lower value (keeping the tree features turned on) is more
suitable when the dataset conforms to the given rules and
vice versa.

Looking at the left scene of Figure 7 (a) we can observe
that the baseline model failed to capture the fact that the
agent has stopped in front of the stop area. However, training
with rules results in more lawful predictions. Because the
rule is provided as a set of discriminator features (as oppose
to being strictly enforced), the model has learned a spectrum
of predictions where both slowing down before and passing
through the stop areas are possibilities. Figure 7 (b) shows
example scenes where the “Drive near the center lane” takes
effect. Compared to the model that generates the predictions
in the left scene (trained without rules), the model in the
right scene is able to generate a trajectory distribution that
conforms to the provided rule and is closer to the ground
truth on average.

Figure 8 shows a scattered plot of prediction robustness

versus ADE generated from evaluating DFeature on the
validation data. We can observe a general trend that high
robustness corresponds to low ADE (most agents drive
according to the rules). In the figure we also show four
examples scenes at different locations of the scatter plot.
Scene (a) shows an example for high-robustness-low-ADE
where the agent is driving according to the rules and the
prediction is accurate. Scene (b) shows a case for low-
robustness-low-ADE where the agent is violating the rules
(does not slow down near stop areas and does not follow
the provided lanes) and the model is also able to capture
such behaviors. Scene (c) shows a case for high-robustness-
high-ADE where the prediction abides by the rules but is not
accurate with respective to the ground-truth. In this case, the
prediction closely follows the center lane but fails to predict
the correct driving speed. Scene (d) shows low-robustness-
low-ADE which is the case where the predictor fails to
predict rule-abiding agent behavior.

VI. CONCLUSIONS
In this paper, we propose two approaches of incorporating

STL rules into a GAN style trajectory predictor. The first
is to use the STL robustness as an auxiliary loss to the
generator. The second is to use the sub-formulas of the STL
syntax tree to calculate features for the discriminator. We
show that compared to enforcing the rules as constraints
as is commonly adopted in planning, our method is able
to integrate the rules as soft priors to the predictor such
that rule-violating agent behaviors can also be captured.
Future direction includes exploring the use of the proposed
architecture for ego-vehicle planning as well as considering
rule priorities and trajectory uncertainty.
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