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Simultaneous Tactile Exploration and Grasp
Refinement for Unknown Objects
Cristiana de Farias, Naresh Marturi, Rustam Stolkin, Yasemin Bekiroglu

Abstract—This paper addresses the problem of simultaneously
exploring an unknown object to model its shape, using tactile
sensors on robotic fingers, while also improving finger placement
to optimise grasp stability. In many situations, a robot will have
only a partial camera view of the near side of an observed object,
for which the far side remains occluded. We show how an initial
grasp attempt, based on an initial guess of the overall object
shape, yields tactile glances of the far side of the object which
enable the shape estimate and consequently the successive grasps
to be improved. We propose a grasp exploration approach using a
probabilistic representation of shape, based on Gaussian Process
Implicit Surfaces. This representation enables initial partial
vision data to be augmented with additional data from successive
tactile glances. This is combined with a probabilistic estimate of
grasp quality to refine grasp configurations. When choosing the
next set of finger placements, a bi-objective optimisation method
is used to mutually maximise grasp quality and improve shape
representation during successive grasp attempts. Experimental
results show that the proposed approach yields stable grasp
configurations more efficiently than a baseline method, while also
yielding improved shape estimate of the grasped object.

Index Terms—Grasping, force and tactile sensing, perception
for grasping and manipulation

I. INTRODUCTION

HUMANS often begin a reach-to-grasp motion with only
a brief visual glimpse of the object being grasped. Once

our hand makes contact with the object, we exploratively wrap
our fingers around it, progressively modifying and refining a
stable grasp, while also improving our mental model of the
object’s 3D structure, using extremely rich tactile information
from the human hand and fingers. Studies show that humans
combine visual and tactile information in optimal ways for
perception of objects [1]; and also when planning and ex-
ecuting grasp and manipulation actions, also triggering plan
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Fig. 1. Tactile exploration and grasp refinement of two unknown objects.
Scores denoted by “P” are the success probabilities at various iterations.

corrections based on predictions [2], [3]. However, transferring
those skills to robots, to achieve safe and robust grasping,
remains a major challenge. A key technical difficulty is how
to encode, reason about and overcome the uncertainties that
are inherent in both robotic perception and also in the robot’s
physical interactions with objects and surfaces.

A variety of approaches to grasping and manipulation have
been proposed, which tackle uncertainty about diverse object
properties that are not fully observable a-priori, such as shape,
pose, friction, inertia and mass distribution [4]–[6]. One of the
most important object properties, in terms of its influence on
the way we grasp, is shape [7], [8]. A good representation of
object shape should ideally allow for: i) encoding uncertainty
about the shape, with uncertainty varying over different surface
regions; ii) optimal fusion of different sources of information,
including e.g. tactile and visual; iii) incremental improvement
and modification of the shape model over time, with successive
sensory inputs; iv) supporting probabilistic estimate of success
in different grasp poses, and the generation of fluent reach-to-
grasp motions.

A probabilistic shape representation, notably Gaussian pro-
cess implicit surfaces (GPIS) [9], which can be built from
sensory data [10]–[12], is a good candidate to address above
requirements. They have been shown to yield sufficient surface
reconstructions to identify or categorize objects [10], [11]. In
this paper, we show how GPIS-based shape modelling can be
used to generate stable grasp configurations, given partial point
clouds of a-priori unknown objects, in combination with an
efficient tactile exploration strategy.

Planning reach-to-grasp motions which, when executed, will
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reliably result in stable grasps actually being achieved, is
challenging and faced with fundamental limitations. A good
motion plan can be disrupted by numerous sources of small
errors and uncertainties, which can accumulate catastrophi-
cally during open-loop execution. Nothing can be perfectly
modelled, with diverse types of additive uncertainty including:
kinematic, dynamic and stiffness parameters of high-dof arms
and hands; shape and 6-dof pose of the object being grasped;
calibration errors between the robot and vision system; noise
and distortions in visual and other sensory reconstruction
data; material properties affecting frictional and contact forces.
Without sensory feedback during task execution, and reactive
online plan corrections, original reach-to-grasp plan often fails.

To this end, we propose an approach to grasping which
combines pre-execution planning with online sensing and re-
planning in a principled way. Our method is initialised using a
partial point cloud of the object, captured from a single depth-
camera view. This is used to plan an initial grasp configuration
of the hand and a reach-to-grasp trajectory. We show how a
probabilistic object shape representation constructed as a GPIS
can be used in a Bayesian Optimisation (BO) approach to
plan grasps with a high probability of success. We propose
a bi-objective optimisation framework, in which successive
finger placements are planned to mutually improve both grasp
stability and shape representation. Our approach enables tactile
exploration for simultaneously refining grasps and perceived
shape iteratively. We present a simulated robot with a dexter-
ous hand as in Fig. 1. The proposed approach yields stable
grasp configurations more efficiently than a baseline method,
improving the shape estimate of the grasped object.

II. RELATED WORK

Autonomous robotic grasping of a-priori unknown objects
(i.e., methods that do not rely on object CAD models) has
become a significant research topic, with many approaches
proposed in recent years. However, a robust and generalisable
grasp-planning solution remains elusive [13]. As an alternative
to precise grasp planning computation, with complex fully
actuated robotic hands, under-actuated gripper designs have
also been proposed, which mechanically adapt to different
object shapes [14]. Grasp planning algorithms for unknown
objects can be categorized into global grasping approaches
[15] considering the whole object to find the best grasp, and
local grasping approaches [16], [17] using partial data from
the object, e.g. local contact moments [17], or a hierarchical
representation using edge and texture information to generate
grasps from only visible parts of objects that may cause
failures [16]. In general, global approaches are preferred for
multi-finger grasping [13].

Choice of object representation has a direct effect on
the characteristics, efficiency and performance of a planner.
Coarse approximations of underlying true shape has been pro-
posed to simplify grasp generation [15]. In addition, making
use of local symmetry properties of objects has been shown
to capture key shape features and generate heuristics based
grasp candidates [18], which however requires full observation
of objects. Shape modelling, where objects are parameterized

using smooth differentiable functions from point clouds via a
spectral analysis [19] has been employed to represent objects
and grasps jointly in a common space allowing for transferring
grasps on various objects. However this smooth parametriza-
tion can deteriorate with partial point cloud data, the shape
space needs to accommodate missing data while avoiding
unrealistic shape reconstructions. An alternative approach to
explicit shape modeling is based on maximizing the contact
surface between the object and the hand’s surface to find
enveloping grasps, where precision grasping is not applicable
that can be used for dexterous manipulation [20].

Touch sensing has also been used for understanding ob-
ject shape, e.g. multi-finger tactile exploration using dynamic
potential field [21], which is used for extracting geometric fea-
tures for grasping, tactile-servoing to explore surface features
such as edges [22], 3D modelling to support vision where
predicted shape from single camera image is refined with
tactile sensing [23]. Probabilistic approaches have also been
studied for shape modelling and reconstruction. Probabilistic
generative models of object geometry, trained with shape cor-
respondences, have been used for inferring two-dimensional
boundaries of partially occluded, deformable objects, and to
recognize and retrieve complex objects from a pile for grasping
tasks [24]. However, these methods do not directly extend to
processing views of three dimensional objects which contain
multiple articulations and self-occlusions. Another promising
shape modelling approach is GPIS, which has previously
been used for: learning continuous sliding paths [25], single-
finger tactile exploration to guide a sensor to high uncertainty
regions [26], grasp planning in 2D using visual data only
[5], blind grasping by following surface contours for shape
estimation [12], and grasping based on pre-trained systems
using wrist poses [6]. In contrast, this paper addresses grasp
planning with multi-finger hands in 3D given unknown objects,
fusing visual and tactile data, and simultaneously optimizing
grasp stability and enhancing perceived shape model without
exhaustive exploration. We show how to iteratively improve
grasp stability, by successive finger re-positioning, while also
refining shape estimation.

Deep learning approaches are popular for predicting stable
grasps given partially observed objects [27]–[29]. They require
training with grasp data extracted from a selection of training
objects, which may sometimes fail to generalize well to new
objects that have different properties from those trained on.
A promising alternative to find stable grasp configurations
for novel objects is through exploratory actions [12], [30].
Exploration-based approaches for grasping focus on finding
grasp configurations without relying on expert knowledge
or heuristics. [30] follows an exhaustive exploration strategy
using tactile data for shape estimation while applying different
grasps. [31] chooses successive reach-to-grasp trajectories
which maximise tactile information gain during iterative grasp-
ing attempts, in order to refine uncertain pose estimations for
an object for which size and shape are known a-priori. In [32],
a control strategy for continuous exploration and grasping is
proposed by exploiting the null-space of a multi-fingered hand.
In [33], a BO-based search is proposed, which however relies
on complete object models and optimizing only wrist poses.
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Tactile sensing has been used for improving grasp planners
e.g. using reinforcement learning to support open loop systems
[34]. In [35], a grasp adjustment approach was proposed,
based on learning from tactile sensing alone, focusing on
local re-grasping to improve stability, but without considering
3D geometry of the object. Differently from these works,
we focus on improving the placement of the fingers of a
multi-finger hand in terms of optimising grasp stability, while
simultaneously exploring the shape of a partially unknown
object, augmenting initial visual data with additional data from
tactile glances.

III. BAYESIAN OPTIMISATION FOR GRASP PLANNING

This section presents the methodology for obtaining stable
grasps and shape reconstruction based on the integration
of visual perception with exploratory touching actions. The
search for optimal grasps is performed by means of Bayesian
Optimisation (BO), which is used to optimize functions that
are either unknown or expensive to evaluate [36]. For grasp
planning, it is a convenient tool for handling complexity
and uncertainty in various parameters. It searches for the
extremities of an unknown objective function from which
samples can be obtained.

BO is mainly comprised of two components used iter-
atively, (i) a statistical model to describe the observations
of an objective function—the surrogate model—and (ii) an
acquisition function that decides where to sample next guiding
the search to the optimum, while balancing the exploration vs
exploitation trade-off. Gaussian Process Regression (GPR) is
often used to create a statistical model (surrogate) which will
be detailed in Section III-A. In Section III-B, we present the
acquisition function. We focus on maximizing grasp stability
and the target function is the quality of a given grasp configu-
ration. We use a probabilistic grasp quality metric, Probability
of Force Closure (PFC), a robust metric that deals with the
uncertainties inherent to the complex task of grasping un-
known objects detailed in Section III-D. Furthermore, explicit
information about the perceived object shape to improve grasp
search is added to the target function based on a GPIS model
from visual and tactile observations, described in Section
III-C. The resulting target function combining both PFC and
information from GPIS model is discussed in Section III-E.
In summary, let f (f : X → R, X ⊂ Rd, where d is the
dimensionality of the input space that is considered) be the real
function to be optimised. Then, after placing a GP prior over
f , the acquisition function is optimized based on the current
surrogate model, which generates a novel query point xi (that
defines a grasp configuration as the locations of fingertips
and the wrist). The grasp defined by xi is executed and the
corresponding grasp performance outcome yi is observed by
means of evaluating the target function. The pair xi and yi
is thereafter used to update the surrogate model (posterior
distribution) of f . These steps of choosing a new query point,
augmenting the data with new observations and, updating the
surrogate model is repeated. In Section III-E, we present a
detailed overview of our pipeline.

A. Gaussian Process Regression

Gaussian process regression (GPR) is a powerful tool to deal
with regression problems, as it allows prior knowledge to be
leveraged in order to estimate a smooth distribution of func-
tions over the data, meanwhile providing uncertainty estimates.
Formally, a Gaussian process (GP) can be a collection of N
random variables which have a joint Gaussian distribution,
and therefore, can be completely specified by its mean and
co-variance functions. Given a set of input points X =
{x1,x2, . . . ,xN} and observations Y = {y1, y2, . . . , yN},
such that yi = f(xi) + ε, where ε ∼ N (0, σ2

ε ) denotes
Gaussian noise with zero mean and σ2

ε variance, the GP can
be written as f(x) ∼ GP ( m(x), k(x,x′) ), where, m(x) is
the mean function and k(x,x′) is the kernel or covariance
function [37]. Thus, given the kernel, the data, the predictive
mean f̄(x∗) and variance V(x∗) at a query point x∗ are

f̄(x∗) = E [f(x∗) |X,Y ,x∗ ] = k(X,x∗)TΣY

V(x∗) = k(x∗,x∗)− k(x∗,x)TΣk(x∗,x)T (1)

with Σ =
(
k(X,X) + σ2

εI
)−1

. In this work, GPR is em-
ployed to model both the BO surrogate function and the
implicit surface representation of objects. For the surrogate
model in BO, we use the squared exponential kernel which
yielded a good performance in our experiments, kSE(x,x′) =

σ2
SE exp

(
− r2

2l2

)
with r = ‖x− x′‖, σSE = 0.001 and l = 1.

B. Acquisition Function

The acquisition function is used to select the next query
point. Let f(x) be the real objective function we wish to
evaluate and, X ∈ RM×N and Y ∈ RN are respectively the
input/output pair of observations acquired, where M is the
input dimensionality and N is the number of observations.
Given the surrogate model derived from [X,Y ] and (1) with
the squared exponential kernel, we select the next point by
optimising an acquisition function, the Expected Improvement
(EI), defined as

EI(x) =
(
f̄(x)− ybest

)
ϕ (α) + V(x)Φ (α) (2)

where, α = f̄(x)−ybest
V(x) , ybest is the best sample so far, Φ (·)

is the standard probability density function and ϕ (·) is the
standard cumulative distribution function. Intuitively, EI can
be maximised by optimizing two main elements of (2), i.e.,(
f̄(x)− ybest

)
and V(x). Maximising (f̄(x)− ybest) means

the next observation point will be where we expect the value
will improve the most, and maximising V(x) means that the
next observation should be made around the points we have
less information about, which should refine our model and
allow for a more informed decision about where the optimum
point is. These two elements balance the main trade-off in
the BO algorithms, exploration versus exploitation, with the
EI function allowing us to explore the regions we know less
about while at the same time looking for the highest difference
between the current maximum and the rest of the function.
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Fig. 2. BO-based exploration pipeline for shape reconstruction and grasp search.

C. Shape representation based on GPIS

While observing the data pair [X,Y ], we also aim to
reconstruct the surface of the object we are exploring so we
can further use this information to guide our algorithm. We
construct an implicit surface (IS) representation based on GPR
[9] as depicted in (1) to create a model of an unknown surface,
while maintaining uncertainty about the reconstructed surface.
The IS is formally defined as fIS(x) : R3 → R, in which
fIS(x) is the piece-wise function where x ∈ R3 is the observed
point:

fIS(x) =


−1, if x is below the surface
0, if x is on the surface
1, if x is above the surface.

(3)

The IS is then modelled via GPR using vision and tactile
points acquired from the camera and tactile sensors during
object exploration.

To construct GPIS model of an object, we use the thin-
plate kernel given by kTP(x,x′) = 2r3 − 3Rr2 + R3, where
r = ‖x− x′‖ and R is the maximum possible value of r
[9]. Similarly to [10] this kernel leads to better reconstruction
performance, compared to other kernels, such as the squared
exponential kernel. Finally, in order to guarantee the GPIS is
both closed and bounded, we place additional points in the
boundaries of the scene and in the data’s centroid, according
to (3).

D. Probabilistic grasp quality

Besides guiding the exploration over unknown surfaces, we
are also interested in ensuring high-quality grasps. To this
extent, we follow a probabilistic approach for grasp quality
based on force closure, which we aim to maximise during the
exploration. Various grasp quality metrics have been proposed
in the literature, most focusing on analytic approaches [38]–
[40]. A common metric, based on force closure is presented
in [41], which requires to compute the space spanned by the
friction cones generated by all contacts, the Grasp Wrench

Space (GWS). By approximating the GWS by its convex hull,
the metric computes the quality of a grasp as the smallest
wrench εGWS that can break the grasp. However, this approach
requires precise parameters, which are usually uncertain in
realistic settings [5], [42]–[44].

In this work, we consider four main sources of uncertainty:
1) contact normals (n) are estimated from the evolving surface
model. Furthermore due to e.g. mechanical and feedback
errors, the robot will not always be able to approach the
object with the desired trajectory to close the fingers along
the estimated surface normals. 2) Achieved contact positions
(c) may be different than the planned ones, due to e.g.,
unmodeled dynamics, imprecise kinematics of the robotic
arm, errors in estimating the surface of the object. 3) The
friction coefficient µ which affects the stability of a grasp
is often unknown, depending on the material of the object
and the finger surfaces. 4) The centre of mass (pcom) is
calculated from the GPIS based object model, that has an
associated variance for the estimations. We model uncertainties
regarding these parameters based on the assumption that they
are sampled from Gaussian distributions: i.e., n ∼ N

(
n̂, σ2

n

)
,

c ∼ N
(
ĉ, σ2

c

)
, µ ∼ N

(
µ̂, σ2

µ

)
, pcom ∼ N

(
p̂com, σ

2
com

)
,

where n̂, ĉ, p̂com and µ̂ are the means and σn, σc, σcom and σµ
are the standard deviations of the normal distributions, respec-
tively. Considering all these sources of uncertainty, the proba-
bilistic force closure (PFC) is defined as PFC = P (εGWS > δ)
where δ > 0 is a threshold that is set empirically.

E. Surface exploration and exploitation

In this section, we present our approach of tactile explo-
ration for reconstructing object surface models and finding
stable grasp configurations using a three fingered dexterous
hand. We complement visual data with tactile observations to
enhance perceived object shape, which leads to better grasp
planning in terms of finding higher quality grasps.

Fig. 2 depicts the overall pipeline of our work. It consists
of three main components: initialisation, BO-based tactile
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exploration and post-exploration evaluation. During the pre-
exploration phase, the system is initialized with the hand
placed in its initial home configuration, i.e., placed at a
distance above the object with fingers open. Using an RGB-
D camera mounted in the scene facing the object, the point
cloud of the object is captured, which corresponds to a partial
view of the object visible to the camera. To choose the query
points, a bounding box is placed around the object point cloud
to define the boundaries of the domain, S ⊂ RM , where M is
the dimensionality of the input. The initial GPIS is constructed
using the vision information. After the main BO algorithm
starts the GPIS model is updated with new tactile observations
and PFC is monitored to find good grasp configurations.

After initialisation, the process starts with the acquisition
function suggesting a new point to explore. Our work differs
from previous work using BO for grasp planning [33], [45]
in that we combine visual and tactile sensing to reconstruct
object surface while searching for grasp configurations and
considering uncertainties. We perform exploration using all
degrees of freedom of the hand, not only the wrist position,
which is done in the robot’s 6D task-space. For three-finger
Schunk SDH hand, the query point is the desired 3D global po-
sition for the thumb and the first finger. Due to the constraints
imposed by the coupled SDH joint, the last finger’s position
will be in the 2D plane relative to its knuckle. In total, the
number of dimensions is M = 12, including the Euler angles
for the wrist orientation (as the wrist position is constrained
by chosen fingertip locations) and an offset distance along the
approach vector for the wrist, which allows it to move closer to
the object. The hand is positioned accordingly for each query
point and model is updated with resulting observations after
closing the fingers until contact.

While seeking good grasps with high PFC and improving
perception of the object shape, we also aim to establish
contacts on the object surface during exploration and penalize
the cases where there is no contact. To realize this, the target
function can be defined as y(f̄IS(xFi

),PFC) in which f̄IS(xFi
)

is obtained from the GPIS model given the fingertip positions
for each finger Fi (i = 1 . . . NF ; for Schunk hand NF = 3):

y
(
f̄IS(xFi

)
,PFC) = λPFC −

∑NF

i=1

[
f̄IS(xFi

)
]2

(4)

where, we include both the probability of force closure to
maximize (scaled by a constant, λ, which is set empirically),
and a penalty term to guarantee that observations will be close
to GPIS surface model, via the predictive mean of the GPIS
in all contact points (

∑NF

i=1

[
f̄IS(xFi)

]2
). This term yields for

points on the surface f̄IS(xFi) ≈ 0, whereas contact points
moving away from the surface will quickly grow, which are
then penalized. As new samples are obtained, GPIS and its
center of mass are updated, the surrogate model uses the new
observations and this process can be repeated until the number
of desired iterations or the number of grasps is reached.
Finally, during post-exploration evaluation, grasps with the
highest PFC are evaluated by a number of tests, i.e., through
lifting and shaking tests as in [46].

We summarise our method in Algorithm 1. The algorithm
is initialised with the following: the GPIS model generated

from the point cloud from the camera and its initial centre
of mass (p0

com, as an additional data point as mentioned in
Section III-C), mean and variance for friction coefficient (µ̂
and σ2

µ), the variance for normals (σ2
n), the variance for

the contacts (σc2) and the priors, which are obtained from
Gaussian samples before the exploration algorithm starts.
Further details on the optimisation variables are explained in
Section IV. Additional parameters of the algorithm are the
number of samples NS for each variable to address their
associated uncertainty, and, the number of iterations NSTOP to
stop the algorithm. From input data, BO algorithm suggests a
new query point x ∈ S , we define x as the vector that includes
all M inputs. Based on x that includes the 3D position of each
fingertip (xFi

) and wrist (w), we use an inverse kinematics
based controller to send the fingers and the wrist to their
corresponding configurations, if reachable. The resulting joint
configuration that the fingers reach is depicted by θ. From
sensory feedback, we acquire mean observations regarding
target contacts ĉi and normals n̂i for each finger (indexed
by i ∈ [1 . . . NF ]). If all fingers reach these contact areas, we
obtain NS samples for n, c, µ and pcom from n ∼ N

(
n̂, σ2

n

)
,

c ∼ N
(
ĉ, σ2

c

)
, µ ∼ N

(
µ̂, σ2

µ

)
, pcom ∼ N

(
p̂com, σ

2
com

)
. From

these samples, we build the GWS and convex hull in order to
calculate the probability of force closure (PFC). If a finger
does not detect any contact, we store the fingertip position,
which is obtained based on the Forward Kinematics Model
(FKM) at the reached joint configuration together with the
wrist orientation. This configuration is recorded as an unstable
grasp, that is, we set PFC = 0. Finally, the GPIS and the
surrogate model are updated with new observations which are
passed to the next iterations, together with updated p0

com. When
a new iteration starts another query point is suggested. This
process is repeated for a fixed number of iterations, NSTOP.
The algorithm then returns a list of the j wrist poses (w)
and hand joint configurations θ, namely the grasps with the
probabilities of force closure that are larger than a threshold,
i.e., 0.5.

IV. EXPERIMENTAL VALIDATIONS

In this section we present the experiments conducted in a
simulation environment, Pybullet. Our robot setup consists of
a three finger Shunk SDH2 hand and a 7 degrees of freedom
arm, Kuka iiwa. Proof of concept of our approach has been
demonstrated with a free-floating hand and also including
the arm in explorations. Furthermore grasp evaluations are
performed using the hand mounted on the robot arm. We
validate the efficiency of our approach by comparing its
performance to a baseline method whose details are provided
below. For experiments, we have used seven different object
models from two publicly available benchmark object sets.
Five are from YCB object set [47] and the remaining two are
from CapriDB [48] database.

A. Validating GPIS evolution

Initial exploration tests are conducted with a free-floating
hand to explore the space without any reachability restrictions
as well as to demonstrate our approach. Nevertheless, this
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Algorithm 1: Exploration and grasp refinement.
input : GPIS, priors, µ̂, σ2

µ, σ2
n, σ2

c , p0
com, NS , NSTOP

output: {w1...j ,θ1...j}
1 while TRUE do
2 x← EI in (2); w,θ ← x
3 ĉi, n̂i ← sensory feedback, i ∈ [1 . . . NF ]
4 if ĉi 6=NULL : ∀ĉi then
5 xFi

← ĉi i ∈ [1 . . . NF ]
6 PFC←{a1. . .aNS

}∼N
(
â, σ2

a

)
,∀a∈{n, c, µ,pcom}

7 else
8 if ĉi =NULL then
9 xFi

← FKM(θ), i ∈ [1 . . . NF ]
10 PFC ← 0
11 else
12 xFi ← ĉi i ∈ [1 . . . NF ]
13 end
14 end
15 f̄IS(xFi

) ← (1); y(f̄IS(xFi
), PFC)← (4)

16 Update the surrogate with (xFi
, y), GPIS with xFi

17 Update pcom from GPIS
18 if NSTOP is reached then
19 if PFC > 0.5 then
20 wj ,θj ← xFi

21 end
22 break
23 end
24 end

does not limit our approach with a real setup. The exploration
process is initialised with the GPIS constructed from a partial
point cloud. Once the BO starts, the points in the task-space
are selected to which we command the fingers. If the target
position is not reachable, the closest possible location is se-
lected instead. The finger movement is stopped once a contact
is established. At this point we compute the average normal at
the centre of the contacts and calculate the probability of force
closure. Here to compute (4) we use σ2

n = π/8, σ2
c = 0.0025,

σ2
µ = 0.1250, σcom which is obtained from the object model,
NS = 10.

As illustrated in Fig. 3a, our approach progressively im-
proves the quality of the initial grasp configuration as we
iterate through the optimization loop, where PFC increases
during exploration steps and grasp configurations become
more stable. The perceived object shape evolves to resemble
the true object as tactile glances are added as in Fig. 3b where
the uncertainty in GPIS decreases in the explored areas.

In Table I, we present the results obtained for a list of ob-
jects. For these experiments, the optimization loop is initialized
with a prior obtained from Gaussian samples corresponding
to finger positions from pre-exploration grasps. The number
of these grasps depends on the object complexity and we
build the priors based on at least 3 grasps with PFC values
> 0.4. The exploration experiments presented in Table I are
run with NSTOP = 60 and are repeated 30 times for each
object. We report average of best PFC values, average number
of stable grasps whose PFC > 0.5 and their average success
rates from every trial. Success rates are computed based on

lifting and shaking experiments where the object is first lifted
20 cm above the table and then a series of shaking movements
(following a sinusoidal trajectory with frequency 0.4 Hz at
0.59 rad/s) are applied [46]. Grasp configurations leading to
successful lifting and shaking tests are labeled successful. It
can be seen from the table that the approach leads to stable
grasp configurations with high PFC and high lifting rates.
However, a fall in the success rates after shaking test is ob-
served for some objects. We believe this is due to uncertainties
in the physics models of the objects and fingers, e.g. imprecise
object collision models, physics engine uncertainties etc. We
highlight that we imposed harsh conditions to the shaking
test, e.g., high accelerations. We also validate our approach
by using a KUKA arm for exploration experiments as seen in
Fig. 4. This results in grasp configurations that are reachable
for the arm and, exploration that is still able to increase the
probability of force closure. Fig. 4 also shows example lifting
and shaking experiment results.

B. Baseline comparisons

We compare our approach with a point cloud-based heuristic
exploration baseline in which we run exploration trials for 60
iterations. Here, instead of BO guiding the fingers, we draw
samples from a Gaussian in the same domain as the BO. To
facilitate this heuristic, we restrict the thumb position to the
neighbourhood of randomly sampled location from the point
cloud with σth = 0.05. Table I presents the results for baseline
experiments applied to all test objects. It can be noticed that
the stable grasps and PFC values are reduced in comparison to
our approach. Our method outputs a larger number of grasps
satisfying both lifting and shaking tests. Notice that even the
percentage of success is greater with the only exceptions being
the woodblocks (where the baseline finds few stable grasps)
and the lifting test for pitcher which still corresponds to larger
number of successful cases. These results clearly demonstrate
the efficiency of our proposed method.

C. Discussion

It can be seen in Table I that our approach increases both the
best probability and the average number of stable grasps. The
advantages of our method are best illustrated with experiments
using the book model. It particularly highlights one of our
method’s strengths: the ability to search around optimal values.
In the baseline, positions are sampled randomly around the
object, whereas good grasps are only possible on the thinner
parts of the book. Hence, it rarely finds successful results. Our
method, on the other hand, uses the previous explorations to
guide the hand and grasp where it is more likely to succeed.
Most of the exploration happens in that vicinity, facilitating
local improvements. Fig. 3c shows the evolution of average
number of stable grasps for two objects: book and cleanser.
As there are less good grasp regions for the book, few grasps
are found for the baseline whereas our approach quickly
finds optimal regions. The cleanser has more good grasp
regions which are feasible, thus it is easier for the baseline
to find stable grasps. Nonetheless, our method converges to
the optimal regions. It also finds more grasps quickly.
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Fig. 3. Experimental results. (a) evolution of best PFC over 30 experiments and a few examples taken from one of those exploration experiments; (b) model
evolution for both ”cleanser” and ”ball” objects at iterations i = 0, 30, and 60 and corresponding grasps. Red regions in surface maps correspond to high
uncertainty and blue to low; (c) evaluation of the number of sable grasps compared to the baseline; and (d) evaluation of the number of iterations required
to obtain 10 grasps. More detailed results can be found in the attached supplementary video.

TABLE I
EXPERIMENTAL EVALUATION WITH MULTIPLE OBJECTS USING PROPOSED APPROACH.

Object1
Best Prob. (Std.)

GPIS
Evolution2[%] Total Grasps (Avg., Std.) Lifting % Shaking %

BO Baseline BO BO Baseline BO Baseline BO Baseline
Pitcher 1.0(0.0) 0.82(0.14) 18.56, 1.59 469(15.6, 8.23) 117(3.90, 2.06) 80.19 86.06 51.78 44.70
Chips 1.0(0.0) 0.92(0.08) 7.78, 3.9 792(26.4, 10.6) 242(8.07, 2.53) 86.99 84.77 78.82 60.54
Cleanser 0.99(0.04) 0.81(0.19) 20.40, 13.9 501(16.7, 7.4) 101(3.4, 1.90) 86.48 84.25 71.72 68.62
Ball 0.93(0.14) 0.71(0.19) 2.02, 10.02 148(4.9, 2.6) 62(2.07, 1.36) 72.46 68.07 60.4 46.73
Woodblocks 0.95(0.14) 0.55(0.25) 15.02, 1.06 440(14.7, 11.2) 25(0.83, 1.02) 78.74 100 32.23 44.87
Book 0.98(0.07) 0.48(0.38) 27.3, 15.53 266(8.87, 6.0) 19(0.63, 0.72) 92.76 38.89 80.36 22.22
Toy Robot 1.0(0.01) 0.83(0.18) 24.69, 1.07 375(12.5, 5.4) 87(2.90, 1.79) 86.54 61.63 77.14 59.30

1 First five are from YCB object set [47] and the last two are from CapriDB [48] database.
2 Rate of improvement of the Hausdorff distance from ground truth and rate of change of variance.

Fig. 4. Exploration and test examples (lifting and shaking) using an arm.

Fig. 3d shows how our approach can find grasps rapidly
compared to the baseline. It shows the number of iterations
needed for each method to find 10 grasps with PFC > 0.8.
These experiments are conducted 5 times for each object up
to a maximum of 300 iterations. If less than 10 grasps are
found, we consider it as no convergence possible. For three
objects shown in Fig. 3d, the baseline was only successful with
the chips can, with an average of 120 iterations (minimum
51) to finish the experiment. In comparison, our method only
required an average of 37.8 iterations (minimum 15) for the

chips can. For pitcher, using our approach, the experiments
finished at an average of 103.6 iterations (minimum 63), and
for book the average was 25.4 iterations (minimum 20). Table I
also shows the GPIS mean and variance evolution per object
with the tactile exploration, as the difference between the
distance to the ground truth in the beginning and at the end of
the exploration, and the drop in the variance of GPIS. We
observe the average distances to the ground truth and the
surface uncertainty decrease during exploration.

V. CONCLUSION

This paper has presented an exploration-based grasping
method for unknown objects using a multi-finger hand based
on visual and tactile data. Our approach is based on BO
which provides a principled way to search for parameters
that maximize grasp stability while improving perception
of object shape. Exploration starts by initially only using
visual data, then it relies on tactile sensing to search for
better configurations. We make use of a probabilistic force
closure-based evaluation of grasp configurations to account for
uncertainties in relevant parameters such as shape, friction,
contact points and normals. Results show that the proposed
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approach reaches stable grasp configurations in less iterations
than the baseline. We will validate our approach on an identical
real setup directly, as the method is well-suited to address
perception uncertainties that would arise in a real setup. We
plan to extend the work in different directions: by improving
the shape representation (e.g. using geometric priors), adding
task constraints to grasp planning, extending the approach for
grasp transfer and to bi-manual grasping, and by including
simultaneous pose tracking to deal with non-stationary cases.
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