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Depth Estimation under Motion with Single Pair

Rolling Shutter Stereo Images
Ke Wang, Chuhao Liu, Kaixuan Wang, and Shaojie Shen

Abstract—Many methods have been proposed to process stereo
matching for rolling shutter image pairs, they treat all pixels
from an image pair in an identical way and require additional
estimation approaches to estimate motion states of the camera.
However, pixels from a rolling shutter image pair naturally have
diverse baseline lengths, and motion estimation methods are
unstable for one instantaneous image pair input. In this paper,
we present a rolling shutter stereo depth estimation pipeline,
which can robustly estimate motion states and depth maps by
alternating the estimation of the depth maps and refining the
motion states from coarse image levels to fine image levels. What
is more, we design a novel cost volume building method for rolling
shutter image pairs, which adapts depth candidates to the change
of baseline lengths for all pixels. We further demonstrate the
usability of the proposed method by constructing a new platform,
building an outdoor evaluation dataset, and comparing it with
baseline methods.

Index Terms—Mapping and Range Sensing

I. INTRODUCTION

B INOCULAR stereo matching techniques have been well

studied [1]–[6]. In general, stereo matching approaches

are independent of vision odometry systems and depend on

one instantaneous image pair. The decoupling property is

useful for data fusion, and the stereo setup can continue

working when the odometry system has a large drift or loses

track. However, stereo matching approaches published so far

usually assume cameras with global shutter (GS) sensors,

which capture images so that all pixels of the same image

are exposed at the same time. For the popular rolling shutter

(RS) sensors [7], this exposure assumption is not applicable.

In RS cameras, exposure of rows (scanlines) happens in

sequential order, leading to undesired distortion effects when

the camera is not static during exposure. There are two main

approaches to using RS cameras. The first is to estimate the

distortion and synthesize a global shutter image that can be

fed to standard vision algorithms [8]–[11], while the second

is to include an RS camera model in the vision algorithms

[12]–[16]. The former approach usually requires a Manhattan
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Fig. 1. The left column illustrates an image pair captured from our RS
binocular, while the red lines in the first image present the rolling shutter
effect produced by camera motion. The right figure shows the estimated depth
map from this image pair by our method.

world assumption to search for lines or a small translation as-

sumption to approximate pure rotation, which make it difficult

to generalize these methods. Meanwhile, the latter approach

keeps the original distorted images, and has led to many RS-

aware algorithms for 3D vision pipelines, including RS camera

calibration [12], RS structure from motion reconstruction [13],

[16] and RS absolute camera pose [14], [15].

RS stereo depth estimation encounters two main difficulties:

1) High-quality depth estimation requires accurate motion state

input to build correct cost volumes, but the deviation of motion

states will lead to rapid degradation of depth estimation results.

2) Pixels from a rolling shutter image pair naturally have

diverse baseline lengths, which means the general epipolar

geometry is represented as a curve when the cameras are

moving, and the fundamental matrix is related to the sampling

position of scanlines, rather than just determined by intrinsic

and extrinsic matrices. Stereo rectification of image pairs

(e.g. [17]) is in general not possible as it requires all pixels of

an image to have the same pose.

Recently, [18] presented a method to process RS stereo

matching; it requires to be fed additional motion parameters

and treats pixels with different baseline lengths from an RS

image pair in the same way. At the same time, [19] proposed

a minimal solver to estimate the motion state of an RS stereo

setup from an RS image pair. However, the baseline length

of their setup is minimal, and the estimated motion states

are unstable in high-speed environments (as tested in our

experiments).

In this paper, we utilize two properties to estimate motion

states robustly. One is that photometric error based direct

alignment frameworks [20]–[23] involve thousands of photo-

metric constraints, which promotes the convergence of motion

states. The other is that the camera motion is small during
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exposure, which causes the reprojection positions based on

the pre-calibrated extrinsic parameters to tend to be located in

the convergence range of the photometric-based cost function.

Meanwhile, because every pixel has a different baseline length

when the RS stereo setup is not static, we propose a novel

cost volume building method to adapt the number and values

of depth candidates to the change in baseline lengths for all

pixels. Our new cost volumes can avoid the overestimation

of depth accuracy in a small baseline area and enhance the

accuracy of the estimated depth in a large baseline area. An

example depth result is shown in Fig. 1. In summary, the

contributions of our paper are the following:

• We build an iterative motion estimation pipeline based

on photometric error, which can estimate motion states

from an instantaneous RS image pair stably.

• We introduce a novel cost volume building method, which

increases the accuracy of estimated depths.

• We build a new platform and collect a new dataset for

RS stereo depth estimation.

To demonstrate the effectiveness of our method, we build a

new setup, which consists of two RS cameras and one LiDAR.

We take point clouds measured from the LiDAR as a reference

to evaluate the estimated depths. We compare the results of

our method with the methods from [19], [4] and [18], which

are the baseline methods for motion estimation from an RS

image pair, global shutter stereo matching and rolling shutter

stereo depth estimation, respectively.

II. RELATED WORKS

Belief propagation (BP) [1] is a pioneering approach that

formulates the stereo matching problem as a Markov network

and solves it using Bayesian BP. SGM [4] uses a pixelwise,

Mutual Information-based matching cost and performs a fast

approximation for the global cost function by pathwise op-

timizations, which dramatically increases the efficiency of

stereo matching. Geiger [5] proposed an efficient large-scale

stereo matching method, which builds a prior on the disparities

by forming a triangulation on a set of support points and

reduces the matching ambiguities of the remaining points.

Although all these stereo matching methods feature high

accuracy, they rely on global shutter stereo rectification to

ensure specific search area.

In [12], Oth proposed an algorithm to calibrate the readout

time of RS cameras, while [15] focused on their epipolar

geometry, defining a 7×7 generalized essential matrix for

RS stereo, a formalism that explains the epipolar relation-

ship between two RS images. Schubert [24], [25] combined

DSO [20] and an RS camera to compute the pose trajectory

and instantaneous motion states of the RS camera.

Saurer proposed a method [18] to build cost volumes from

an RS stereo image pair. It back projects the pixels in the

first image to sweep planes in the left frame and then projects

these space plane points to the second image. The projection

process of every pixel requires solving at least a two-order

function. Although this stereo matching method can handle the

rolling effect to build cost volumes, the accuracy of its result

depends on the quality of the input motion states. Saurer [14]

also proposed a closed-form solution to solve the motion states

of two RS images and the relative pose between them.

Recently, Albl [19] proposed an algorithm to generate a

global shutter image from two rolling images. It rotates the

orientation of the right camera to increase the contribution of

the correspondences for the convergence of motion state esti-

mation. A minimal solver is presented to calculate the motion

states of an RS image pair by giving five correspondences.

However, the solver is sensitive to the feature extraction and

matching noise.

In this paper, we propose a different solution to estimate

dense depths from an RS stereo image pair. Our method

involves an iterative photometric based motion estimation

solver in the depth estimation process, and finally outputs

motion states, a dense depth map and the uncertainties of the

estimated depth map.

III. PRELIMINARIES

To clarify our approach, we first introduce the RS projection

model and the depth estimation model of RS stereo.

Projection model in RS cameras A critical difference

between an RS camera and a GS camera is that the former does

not possess a single center-of-projection in the general case.

Instead, in an RS image, scanlines generally have different

projection centers (temporally dynamic), local frames and

orientations. Since an RS camera typically has a rapid and

constant readout time (∼20 us per line), it is reasonable to

assume that the camera undergoes a uniform rotation and a

uniform translation during exposure.

We use v ∈ R
3 and w ∈ R

3 to denote the constant linear

velocity and angular velocity per scanline, respectively. Let

P0 = [R0|t0] represent the pose of the first scanline, the

pose of the ith scanline is

Pi = [Rw(i)R0 | t0 + iv], (1a)

Rw(i) = exp(iw∧), (1b)

where exp(·∧) transforms a three-dimensional angle-axis vec-

tor to a rotation matrix. The translation component in Eq. (1a)

is a first-order approximation.

Projection model in RS Stereo As hardware synchroniza-

tion is easily conducted between two cameras, we assume the

ith scanlines in the left and right cameras have an identical

exposure start time. We use Pi and P′
i to represent the pose

of the ith scanlines in the left and right cameras, respectively.

Then, we take the frame of the first scanline in the left camera

as the world frame; thus P0 = [I|0]. Tr
l = [Rr

l |t
r
l ] denotes the

pre-calibrated relative pose between the left and right cameras.

The transformations from the frame of the ith scanline in the

left camera to the frame of the jth scanline in the right camera

is

T(i, j) = [Rr
lRw(j)R

T
w(i)|R

r
l (jv− iRw(j)R

T
w(i)v) + trl ],

(2)

where RT means the transpose of matrix R.

RS stereo depth estimation model Similar to the GS stereo

depth estimation model, the RS stereo depth estimation prob-

lem can be formulated as a Maximum Posterior Probability
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Fig. 2. Overview of our method.

(MAP) estimation problem, but additional motion states v and

w are required to be estimated. The model is defined as

D̂, v̂, ŵ = argmax
D,v,w

P (Il, Ir|D,v,w)P (D), (3)

where variables with (̂·) mean corresponding estimated results,

Il and Ir are an image pair captured from RS stereo cameras,

and D is the depth map between these two images.

Following the classic assumption from [1], the observation

noise follows an independent identical negative exponential

distribution, the likelihood P (Il, Ir|D,v,w) is defined as

P (Il, Ir|D,v,w) ∝
∏

s

exp(−F (s, ds, Il, Ir,v,w)), (4)

where F (·) is the matching cost of pixel s with depth ds, and

motion states v and w. As found in [1], a depth map D is a

Markov Random Field (MRF) [26], P (D) is defined as

P (D) ∝
∏

s

∏

t∈N (s)

exp(−ϕ(ds, dt)), (5)

where N (s) is the neighbor set of pixel s, ds and dt are

the depths of pixels s and t, and ϕ(·) is a predefined smooth

penalty function. Applying a negative log operation for Eq. (3),

the resulting minimizing sum form is

D̂, v̂, ŵ =

argmin
D,v,w

∑

s







F (s, ds, Il, Ir,v,w) +
∑

t∈N (s)

ϕ(ds, dt)







,
(6)

where F (·) and ϕ(·) are also called the data term and smooth

term.

IV. APPROACH

In traditional GS stereo depth estimation, Eq. (6) is solved

by constructing a cost volume and running dynamic program-

ming in it. However, for RS stereo depth estimation, the

matching cost F (·) contains three variables, ds, v, and w.

Thus, F (·) includes seven degrees of freedom, volumes cannot

be computed directly as its super large solution space. Hence,

we decouple Eq. (6) to estimate the motion states of cameras

from one RS image pair and build a depth map from this pair

with estimated motion states.

A. Overview of the pipeline

As shown in Fig. 2, the pipeline is composed of three

stages: constructing an image pyramid, estimating motion

states, and building the final depth map. Firstly, we construct

an intensities and gradients pyramid from an image pair and

select interesting points with large gradients for all image

levels. Secondly, we estimate motion states by alternating

between building the depth map and refining motion states

from coarse image levels to fine image levels. Finally, we

build the final depth map in the finest level of the pyramid

and refine it by uniqueness rejection, sub-pixel interpolation

and a left-right check. Apart from a depth map, our pipeline

also generates an uncertainty map with respect to the estimated

depth map.

B. Estimate motion states from an RS image pair

The correspondences from an RS image pair only make

weak contributions to the convergence of motion state estima-

tion and are prone to being disturbed by the feature extraction

noise. To deal with these problems, we adopt a photometric-

based approach to estimate motion states, which does not

require extraction or matching of features and can involve

thousands of direct photometric constraints in every iteration.

The large number of constraints promotes the convergence of

motion estimation. Similar to other direct-based methods [20]–

[23], our approach requires proper initializations (motion states

and depths of interesting points), but we avoid the initialization

problem by alternating between estimating motion states and

building depth maps from coarse to fine.

Motion estimation model In order to simplify the symbol

system, we ignore the image level and optimization iteration

index symbols, and the calculation process of every itera-

tion in all image levels is similar. Following the definitions

in Sect.III, we use v and w to denote motion states. Let

dk ∈ D = {dk|k = 1 · · ·N} represent the depths of the

selected interesting pixels pk = {pk|k = 1 · · ·N} in any one

left image level. Let X = {v,w,D}, and we can refine X

by minimizing the sum of the photometric error

X̂ = argmin
X

N
∑

k=1

∑

p∈N (pk)

|e(p,X )|γ , (7)

where |·|γ donates the Huber norm of a value, N is the number

of selected pixels in this image layer, N (pk) presents the eight

adjacent points of pk and itself. The photometric error

e(p,X ) = Ir(π(p,v,w, dk, v, v
′))− Il(p) (8)

measures the intensity difference between the pixel p at Il
and its reprojection pixel at Ir, and v and v′ are the scanline

indices of p and its reprojection position, respectively. The

reprojection function

π(p,v,w, dk, v, v
′) =

∣

∣

∣

∣

∣

∣

KT(v, v′)





K−

[

p

1

]

dk

1





∣

∣

∣

∣

∣

∣

n

, (9)

where | · |n means the normalization of a space point (x, y, z)
and will return a two-dimensional coordinate (x/z, y/z), K is
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Fig. 3. Left column illustrates an RS image pair captured at a speed of 13
m/s, and the right image shows the baseline lengths of all pixels in the image
pair. p0 and p1 are two individual pixels with a 3 cm baseline length and a
30 cm baseline length respectively.

the camera’s intrinsic matrix, and T(v, v′) has been defined in

Eq.(2) based on motion states v and w and is a 3 by 4 matrix.

Because we do not know the reprojection position before we

finish this reprojection operation, v′ is an unknown parameter

in Eq.(9). This v′ should satisfy

v′ ≈ V (π(p,v,w, dk, v, v
′))v, (10)

where V (·) maps the reprojection position to the original

lens-distorted coordinates. In short, the scanline of using

the relative pose should be the same as the scanline of the

reprojection position. In the stereo case, we pre-compute an

initial pose map by giving zero motion, and there is an initial

v′k for every vk. With this initial pose map, v′k is refined by

iterating the update v′k ← V (π(p,v,w, dk, vk, v
′
k))v for a

few times. Compared with the reprojection operation in [18],

which requires solving at least a quadratic function (5-order

function for uniform motion), our reprojection method has

higher efficiency. The general strategy to minimize Eq. (7)

is the Levenberg-Marquardt (LM) algorithm [27].

The initial motion states for Eq. (7) in the nth image

level originate from the estimation results of the previous

(n+1)th image level (larger level is coarser). Given the latest

motion states, we use our depth estimation method described

in Sect.IV-C to generate the initial depth map for Eq. (7). For

the coarsest image level, we take zero motion as the initial

motion states.

C. Depth Estimation for RS Stereo

Given motion states w and v, the data term F (·) described

in Sect.III has one freedom, which makes building cost

volumes tractable. Our depth estimation contains three steps,

building cost volumes based on dynamic baselines, involving

smooth terms, and refining the depth map.

Dynamic baselines All pixels have an identical baseline

length in GS stereo. However, different pixels have diverse

baseline lengths in RS stereo when the RS stereo setup is not

static. Fig. 3 illustrates an RS image pair and its baseline map,

this image pair is captured with a 13 m/s velocity. The static

baseline length of the RS stereo cameras is around 15 cm.

Due to the motion of the cameras, the baseline lengths in the

top right areas increase to around 30 cm and reduce to about

3 cm in the bottom left areas. Given a correspondence p and

Fig. 4. This figure illustrates the constructed cost volumes of two individual
pixels p0 and p1 from an RS image pair with a fixed number of depth
candidates. The top two curves are the reprojection curves of p0 and p1

respectively. A colour segment in these two curves means a pixel in the
right image. In the left column, many matching costs correspond to the same
reprojection position. In right column, the adjacent matching costs do not
correspond to the adjacent reprojection positions.

p′ with scanline indices vp and v′p, the instantaneous baseline

length of this correspondence is computed by

[Rp|tp] = T(vp, v
′
p) (11a)

bp =h(v,w, vp, v
′
p) =

∣

∣R−1
p tp

∣

∣

2
, (11b)

where | · |2 means the L2 norm and T(·) is defined in Eq.(2).

Depth candidates For traditional GS depth estimation

methods, all pixels have the same depth candidates, which

are calculated by

dm = fβx−1
m xm ∈ {1, 2, · · · ,M} , (12)

where f is the focal length of the stereo setup, β represents the

baseline length of the stereo system, dm denotes the computed

depth candidate, and M is the number of depth candidates.

This definition of depth candidates is reasonable for GS stereo

systems, where every depth candidate corresponds to a unique

pixel (a unique disparity) in the right image and adjacent

depths correspond to adjacent pixels.

However, the definition in Eq. (12) is ineffective in RS

stereo depth estimation. Fig. 4 illustrates that the reprojection

positions of p0 with depth candidates defined in Eq. (12)

are located on a very short curve in the right image, and

the number of pixels that this curve passes through is far

smaller than M . Conversely, the reprojection positions of p1

are spread over a long curve. A colour segment in these two

curves means a pixel in the right image; multiple matching

costs correspond to the same reprojection position in the

cost volume of p0, and the adjacent matching costs do not

correspond to the adjacent reprojection position for p1. The

former shrinking case will overestimate the accuracy of the

depth at p0, and the latter dilating case will lose much

information and underestimate the accuracy of depth at p1.

Building cost volumes based on dynamic baselines To

deal with the dynamic baseline problem in building cost

volumes, we assign different depth candidates for pixels by

Mp = ḃpβ
−1M, (13a)

d̄m =fuβMp(xmM)−1 xm ∈ {1, 2, · · · ,Mp} , (13b)

where Mp denotes the new number of depth candidates for

the pixel p, d̄m represents the mth new depth candidate, and

ḃp is the approximation value for the real baseline of pixel p,

and is calculated by

v′p ≈ V (π(p,v,w, dM
2

, vp, v
′
p))v, (14a)

ḃp = h(v,w, vp, v
′
p), (14b)
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Fig. 5. This figure illustrates the constructed cost volumes of two individual
pixels p0 and p1 with a dynamic number of depth candidates. A colour
segment in these two curves means a pixel in right image. A matching cost
corresponds to a unique reprojection position, and the adjacent matching costs
correspond to the adjacent reprojection positions.

where dM
2

is the median value of the original depth candidates,

and functions h(·) and V (·) have been defined in Eq.(11b)

and Eq.(10). With the new depth candidates, the reprojection

positions of p0 and p1 are illustrated in Fig.5. The new

reprojection positions are more uniform, and every depth

candidate corresponds to a pixel in the right image.

The matching cost of pixel p for depth d is computed by

cp(d) = F (p, d, Il, Ir,v,w)

= ρ(Il(p), Ir(π(p,v,w, d, vp, v
′
p))),

(15)

where cp(d) denotes the matching cost and ρ(·) is a dis-

tance function to measure the difference between Il(p) and

Ir(π(p,v,w, d, vp, v
′
p)). Fig. 6(a) shows the whole con-

structed cost volumes with dynamic depth steps. To utilize the

high-efficiency dynamic programming algorithm in the next

step, we reshape the cost volumes to the same height by a cost

interpolating operation; the interpolation result is shown in Fig.

6(b). The height of the interpolated volume is the maximum

depth candidate number Mmax with respect to the pixel with

a maximum baseline ḃmax. Given a new depth dt, the closest

depths of dt in the depth candidates of p are dl and dr, and

the matching cost of p with respect to dt is

cp(dt) =
(d−1

t − d−1
r )cp(dl) + (d−1

l − d−1
t )cp(dr)

d−1
l − d−1

r

, (16)

where cp(dt) is the interpolated matching cost.

Incorporating smooth constrains The depths mentioned in

the previous sections are defined in the local frame of every

pixel. Due to the rapid scan time, the motion between adjacent

scanlines is very small. Thus, the depth domain is smooth

and also satisfies the MRF assumption. We adopt the same

smooth constraints described in SGM, and replace the judging

conditions from the changing value of disparities to those of

our depth candidates indexes.

Uniqueness constraints Rejecting low-confidence esti-

mated depth results is a useful step in depth estimation

methods. The rejection process for pixel p with minimal final

cost index ξ is

J [cp(dξ) < τcp(dk)] k > ξ + r or k < ξ − r, (17)

where J [·] is a judging function, and τ and r are two

parameters for controlling the magnitude of the uniqueness

constraint. The depth dξ will be accepted when J [·] returns

true for all dk. In the RS stereo case, r should be different for

different baselines; the r of pixel p is calculated by

rp =
⌊

r
ḃmax

ḃp

⌋

, (18)

(a) (b)

Fig. 6. (a) shows the constructed volumes with dynamic depth candidates
and (b) illustrates the interpolated result from (a).

where ⌊·⌋ is the floor operation.

Depth uncertainty map We find that the accuracy of

estimated depths are proportional to their baselines. Thus,

the baseline maps can be regarded as the uncertainties of the

estimated depths.

Finally, we remove the undesired RS effects contained in the

estimated depth map by reprojecting all pixels to the frame of

the first scanline at the left image. Poses of all pixels have

been defined in Eq. (1); thus, undistortion is easily performed

based on estimated motion states and depths.

V. EXPERIMENTS

We evaluate our method on a real dataset, which contains ten

sequences and is collected from a four-camera setup (as shown

in Fig.7). The camera setup contains two uEye UI-3881LE

cameras (RS cameras) by IDS with Lensagon BK5M3920 lens

by Lensation, two GS cameras, a Velodyne LiDAR and a DJI-

A3 controller (IMU of 400 HZ). Hardware triggers from the

IMU synchronize the four cameras. The resolutions of the

two RS cameras are up to 3088 × 2076, and the extrinsic

and intrinsic of all cameras are pre-calibrated by the Kilar-

calibration tool [12], [28]. In our setup, the right RS camera

is rotated 45 degrees from the y-axis to the x-axis and the

baseline of the two RS cameras is around 15 cm.

RS_0
RS_1

GS_0
GS_1

Maker
LiDAR

IMU

Fig. 7. Camera setup used to acquire our dataset. There are four cameras:
two global-shutter cameras and two rolling shutter cameras. All cameras are
hardware-synchronized with the IMU, and the transformations between all
frames are pre-calibrated. Outdoor structure ground-truth is recorded by a
LiDAR.

The total readout time for all scanlines (2048 scanlines)

is approximately 0.06 s. There is an approximately 0.6 m

displacement during the readout process when the speed of the

cameras is 10 m/s (36 km/h). The line exposure time used to
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Fig. 8. The estimated velocities from four methods for a sequence: the
minimal solver proposed in [19] (Mini), the combination of the minimal solver
and refinement based on reprojection error (Mini+ReProj), the minimal solver
with a refinement based on Sampson error (Mini+Samp) and our method. The
blue curve (Gt) means the ground truth of the velocities.

collect data is about 0.5 ms. Our evaluation contains two parts;

one for motion states estimation and the other for depth map

estimation. We utilize A-LOAM1, which is a public LiDAR

odometry project, to build the ground truth of the motion states

and depth maps.

A. Evaluation for Estimated Motion States

We compare our method with the baseline motion estima-

tion method from [19], for which the code is not publicly avail-

able. We build their algorithm ourselves. We utilize the auto-

matic generator of Grobner solvers provided by Kukelova [29]

to generate a closed-form motion states solver that gives up to

20 real solutions with respect to a 5-correspondence input. We

sample 200 5-correspondence subgroups for every image pair

and select the ten solutions with the most inliers as candidate

solutions of the closed-form solver. Then,we build two motion

state refinements: one the same as in [19], namely, refining

motion states by minimizing Sampson error, and the other by

minimizing reprojection errors. Therefore, we have three sets

of solutions from [19]. In order to avoid redundant references,

we use Mini, Mini+ReProj and Mini+Samp to indicate

the solutions from the closed-form solver, the solutions with

reprojection error refinement, and the solutions with Sampson

error based refinement, respectively.

There are two error metrics for the estimated motion states,

the L2 norm of the velocity residuals and the L2 norm

of the rotation residuals. For the candidate solutions from

the above three variants, we take the best one as the final

evaluation result. Fig. 9 illustrates the average performance

of our method and Mini+Samp in 10 different sequences.

The average accuracy of motion states from our method is

consistently better than that from Mini+Samp. Fig. 8 shows the

velocity details of the estimated results from the first sequence.

The blue curve in Fig. 8 means the ground truth of velocities.

It can be seen that the results from our method (green) are

smoother than those from the other three methods.

1https://github.com/HKUST-Aerial-Robotics/A-LOAM
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Fig. 9. Illustration of the average accuracy of estimated motion states from
Mini+Samp and our method in ten sequences.
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Fig. 10. Accuracy of motion estimation versus feature noise levels.

To quantitatively analyze why the solver from [19] is unsta-

ble, we simulate feature correspondences with different noise

levels. The simulation results are illustrated in Fig. 10. The

results of motion estimation quickly worsen with increasing

correspondences noise, especially when the noise level is over

0.8 pixels.

B. Evaluation for Estimated Depth Maps

We compare our method with that from [18] and SGM. As

the method in [18] requires a precomputed motion state, we

build two variants, one that takes motion estimation results

from Mini+Samp and feeds it to the method from [18] and

another that takes our motion estimation results as the input

of [18]’s method. To avoid redundant references, we use

MiniSamp+RSS and OurMS+RSS to indicate their estimated

depths, respectively. The implementation configurations for

stereo matching are identical for all methods, 8-path cost

aggregation, P1 = 10, and P2 = 120.

We take the mapping results of A-LOAM as the reference

values for the estimated depth maps and the mapping results

are very sparse compared with the estimated depth maps. We

generate the ground truths of an image pair captured at time t
with three steps: 1) find the global pose of the LiDAR at time

t and transform the mapping results to the local coordinate

of the LiDAR at time t; 2) transform point clouds from the

local LiDAR coordinate to the camera coordinate by a pre-

calibrated extrinsic and remove these points out of the camera

view; and 3) remove the occluded points manually, as the

sparse mapping results and inevitable sensor noise mean we

cannot remove the occlusion area automatically.

We use two metrics to evaluate the depth maps, absolute

depth error and the fill rate of the depth maps. The former is
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defined as follows:

[

ui, vi, 1
]T

= K

[

pix

piz
,
piy

piz
, 1
]T

(19a)

ei = |piz − y(Dj, ui, vi)|1 , (19b)

where |·|1 represents the L1 norm, Dj is the depth map of the

jth RS image pair, and pi is the ith point in the reference

point cloud of jth image pair. The function y(Dj, uxij
, vyij

)
means the bilinear interpolation in the coordinate (uxij

, vyij
)

of the depth map Dj. The latter metric, the fill rate, means the

ratio of valid estimated depths, and is defined as

thi = max(piz ∗ 0.05, 0.15) (20a)

nj =

N
∑

i=0

|ei < thi|c rj =
nj

N
, (20b)

where N is the number of points in the reference point cloud.

|ei < thi|c means a conditional operation: if condition ei <
thi is true, the operation will return 1, and otherwise return 0.

The calculated result rj presents the fill rate of the jth image

pair.
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Fig. 11. Illustration of the average depth errors and average fill rates for
SGM, MiniSamp+RSS, OurMS+RSS and our method in ten sequences.

Fig.12 illustrates the change of depth error and fill rate along

with the increase of velocities for SGM, MiniSamp+RSS,

OurMS+RSS and our method. It can be seen that our method

is consistently better than the other three methods. Fig.11

illustrates the depth errors and fill rates of the above four

methods in different sequences. We can see that the results

from OurMS+RSS show obvious improvements in the accu-

racy of the estimated depth, and these improvements come

from better motion states. Compared with OurMS+RSS, the

results from our method show better depth accuracy and fill

rate, which is obtained from our novel cost volume building

method. The average depth errors and fill rates are summarized

in Table I, which again demonstrates that our method with

dynamic baselines is better than the other methods.

Fig.13 shows five qualitative results. The first column in

this figure shows the image pairs, while the second, third,

fifth, and sixth column show the estimated depths from SGM,

MiniSamp+RSS, OurMS+RSS and our method, respectively.

The fourth column and seventh column illustrate the undis-

torted point clouds generated from the estimated depths for

MiniSamp+RSS and our method, respectively. The last column

illustrates the reference point cloud with respect to the left

image, and it contains the occluded parts. We can see that

the quality of the estimated depths from MiniSamp+RSS goes

from good to poor in the five rows, all results from SGM are
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Fig. 12. Illustration of the change of depth accuracy and the fill rates of depth
maps with increasing velocity for SGM, MiniSamp+RSS, OurMS+RSS and
our method.

TABLE I
DEPTH EVALUATION

Method Average depth error (m) Average fill rate (per.)

SGM 1.739265 0.136424

MiniSamp+RSS 0.85359 0.390751

OurMS+RSS 0.32369 0.55322

Ours 0.186341 0.767058

always very poor, and the depths estimated from our method

are the best in all five rows.

C. Runtime analysis

Almost all our modules are built by C++ and run on a

CPU, which takes much time to build the enormous cost

volumes. The total time for processing an image pair is about

3 seconds. According to the runtime analysis in [18], a CUDA

implementation can dramatically reduce the time cost and

should be considered to solve this problem.

VI. CONCLUSION

In this paper, we present an algorithm to estimate a depth

map from an instantaneous RS image pair. Compared with

previous methods, our method estimates the instantaneous

motion states and a depth map of the image pair stably. In

future work, we plan to transfer our CPU implementation to

a CUDA implementation and investigate how to combine the

online extrinsic refinement with our method to increase the

accuracy of depth estimation.
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