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Abstract— Accurate indoor localization is a crucial enabling
technology for many robotics applications, from warehouse
management to monitoring tasks. Ultra-wideband (UWB) time
difference of arrival (TDOA)-based localization is a promising
lightweight, low-cost solution that can scale to a large number
of devices—making it especially suited for resource-constrained
multi-robot applications. However, the localization accuracy
of standard, commercially available UWB radios is often
insufficient due to significant measurement bias and outliers. In
this letter, we address these issues by proposing a robust UWB
TDOA localization framework comprising of (i) learning-based
bias correction and (ii) M-estimation-based robust filtering to
handle outliers. The key properties of our approach are that
(i) the learned biases generalize to different UWB anchor setups
and (ii) the approach is computationally efficient enough to
run on resource-constrained hardware. We demonstrate our
approach on a Crazyflie nano-quadcopter. Experimental results
show that the proposed localization framework, relying only on
the onboard IMU and UWB, provides an average of 42.08%
localization error reduction (in three different anchor setups)
compared to the baseline approach without bias compensation.
We also show autonomous trajectory tracking on a quadcopter
using our UWB TDOA localization approach.

I. INTRODUCTION AND RELATED WORK

Over the last few decades, global navigation satellite
systems (GNSS) have become an integral part of our daily
lives, providing localization—under an open sky—with sub-
meter accuracy anywhere on Earth [1]. Today, indoor posi-
tioning solutions promise to enable similar capabilities for
a plethora of indoor robotics applications (e.g., in ware-
houses, malls, airports, underground stations, etcetera). Small
and computationally-constrained indoor mobile robots have
led researchers to pursue localization methods leveraging
low-power and lightweight sensors. Ultra-wideband (UWB)
technology, in particular, has been shown to provide sub-
meter accurate, high-frequency, obstacle-penetrating ranging
measurements that are robust to radio-frequency interference,
using tiny integrated circuits [2]. UWB chips have already
been included in the latest generations of smartphones [3]
with the expectation that they will support faster data transfer
and accurate indoor positioning, even in cluttered environ-
ments.

In autonomous indoor robotics [4], [5], the two main
ranging schemes used for UWB localization are (i) two-way
ranging (TWR) and (ii) time difference of arrival (TDOA).
The first is based on the time of flight (ToF) of a signal
between an anchor (a fixed UWB radio, Figure 1) and a tag
(a mobile robot). The second uses the difference between
the arrival times of two signals—from different anchors—to
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Fig. 1. Sketch of our localization system setup (top) and block diagram
of the proposed localization framework (bottom)—including the neural-
network-based bias compensation and an M-estimation-based Kalman filter.
Autonomous flight footage using the proposed localization scheme can be
found at http://tiny.cc/uwb-tdoa-bias-ral21.

one tag. One of the perks of TDOA is that, unlike TWR, the
number of required radio packets does not increase with the
number of tracked robots/tags—as tags only passively listen
to the messages exchanged between fixed UWB anchors [6].
This enables TDOA localization to scale to a large number
of devices, beyond what TWR could achieve.

Nonetheless, many factors can hinder the accuracy of
UWB measurements, for either of the two schemes. Non-
line-of-sight (NLOS) and multi-path radio propagation, for
example, can lead to erroneous, spurious measurements (so-
called outliers, Figure 1). Even line-of-sight (LOS) UWB
measurements exhibit error patterns (i.e., bias), which are
typically caused by the UWB antenna’s radiation character-
istic [7]. The ability to effectively (i) remove outliers and
(ii) compensate for bias is essential to guarantee reliable and
accurate UWB localization performance.

Multiple approaches have been proposed for the mitigation
of UWB outlier measurements when using the TWR scheme.
In [8], a channel impulse response-based approach detects
NLOS propagation from the received UWB waveforms,
without the need for prior knowledge of the environment.
In [9], the measurement error caused by NLOS is estimated
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directly from the received radio waveform using support
vector machines (SVM) and Gaussian processes (GP).

Concerning the bias of TWR localization, the authors of
[10] and [11] model and correct UWB pose-dependent biases
using sparse pseudo-input Gaussian processes (SPGP) and
demonstrate their approach on a quadrotor platform equipped
with a Snapdragon Flight computer. An iterative approach to
estimate bias in TWR measurements is presented in [12].

As TDOA localization involves three UWB radios instead
of two, modeling the measurement error is inherently more
challenging. Most existing works focus on mitigating errors
caused by NLOS and multi-path propagation. Pioneering
research was conducted in [13], [14], where an online expec-
tation maximization (EM) algorithm addresses TDOA NLOS
measurement errors. In [15], a semi-definite programming
method is applied to the same problem. Much of the research
on UWB TDOA localization including [13]–[15] has been
conducted in 2D scenarios and demonstrated using ground
robots. In [16], the authors mention that UWB TDOA
measurements are also affected by a systematic, position-
dependent bias in line-of-sight conditions. Yet, to the best of
our knowledge, no existing work focuses on addressing this
spatially varying source of bias.

In this work, we propose a framework to improve the
accuracy and robustness of TDOA-based localization for
resource-constrained mobile robots. We separately tackle the
challenges posed by (i) systematic bias and (ii) outlier mea-
surements. We leverage the representation power of neural
networks (NN) to compensate for the bias. With the multi-
radio nature of TDOA measurements in mind, we select
appropriate input features to our NN model; in particular,
we show that the bias is affected by the complete anchor
pose and not just its position. Bypassing the need for raw
UWB waveforms [9], we use M-estimation based Kalman
filtering [17] to handle outliers and improve localization
robustness. We finally deploy our proposed approach on-
board a Crazyflie 2.0 nano-quadcopter with limited computa-
tional resources. We evaluate the proposed approach in flight
experiments, and demonstrate the generalization capabilities
of our approach by flying using three different, not previously
seen UWB anchor setups.

Our main contributions can be summarized as follows:
1) We propose a learning-based bias correction approach

for UWB TDOA measurements, which generalizes to
previously unobserved UWB anchor placements.

2) We present a lightweight TDOA-based localization
framework for resource-constrained mobile robots—
combining bias correction and M-estimation [17].

3) We implement the proposed framework on a nano-
quadcopter and demonstrate the effectiveness and gener-
alizability of our method by flying the nano-quadcopter
using different UWB anchor setups. We show that
our approach runs in real-time and in closed-loop on-
board a nano-quadcopter yielding enhanced localization
performance for autonomous trajectory tracking.

We use localization performance with the proposed M-
estimation technique alone as our baseline (note that a
Crazyflie nano-quadcopter cannot take off reliably using
the raw UWB TDOA measurements). Even compared to
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Fig. 2. Two-dimensional comparison of TWR (left) and TDOA (right)
multilateration of one tag using three anchors. The same measurement
uncertainty yields larger localization uncertainty for TDOA localization.

this baseline, the proposed localization framework achieves
an average of 42.08% reduction in the root-mean-square
(RMS) error of the position estimate for three previously
unobserved UWB anchor constellations, providing an ac-
curacy of approximately 0.14m (RMS error). To the best
of our knowledge, this work is the first demonstration of a
lightweight UWB TDOA bias correction and robust localiza-
tion framework on-board a nano-quadcopter for closed-loop
flights.

II. UWB TDOA MEASUREMENTS

Our TDOA-based localization setup is sketched in Figure 1
(top). UWB localization systems can either rely on the
time-of-flight of a signal—as in TWR—or the difference
between the arrival times of two signals—as in TDOA—to
compute range (w.r.t. one anchor) or range difference (w.r.t.
two anchors), respectively. In TWR, two-way communication
between an anchor and a tag is required to compute the
range distance. For TDOA, similar to a satellite positioning
system, a set of stationary UWB anchors (whose positions
are known) transmit radio signals into the surrounding space.
Mobile robots equipped with UWB radio tags passively
listen to these signals and localize themselves by compar-
ing the arrival time of signals from each pair of anchors.
Since the tags do not need active communications (unlike
TWR), TDOA-based localization systems scale better with
the number of tags and are the more appropriate choice
for large-scale, multi-robot applications. To motivate our
proposed approach—detailed in Section III and IV—we start
by analyzing some of the known limitations of existing UWB
TDOA localization systems.

A. Time Difference of Arrival Principles
For TWR-based localization, two-way communication be-

tween anchor and tag is required to compute a range mea-
surement. In the ideal case, in a TWR localization system
with m UWB anchors at positions ai = [xi, yi, zi]

T ∈
R3, i = 1, . . . ,m and one tag at position p = [x, y, z]T ∈
R3, each of the m range measurements ri can be written as:

ri = ‖p− ai‖, (1)

where ‖·‖ is the Euclidean norm. TWR measurements can be
used to solve the multilateration problem as the intersection
of spheres (see Figure 2).
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Fig. 3. Definition the relative poses between tag T and anchors A0, A1

through ranges (∆p’s), azimuth (α’s), and elevation angles (β’s).

In TDOA localization, the tag listens to messages from
anchor i and j and compares the difference of arrival times
of these two messages. The ideal TDOA measurement dij
can be written as:

dij = ‖p− ai‖ − ‖p− aj‖. (2)

Geometrically, the locus of points with a fixed distance differ-
ence from two given points (foci) is a hyperbola (Figure 2).

However, in real world scenarios, UWB measurements (for
both TWR and TDOA) are corrupted by systematic errors,
also called bias, and measurement noise. Therefore, a more
realistic UWB TDOA measurement d̄ij is:

d̄ij = ‖p− ai‖ − ‖p− aj‖+ bij(χ) + nij

= dij + bij(χ) + nij ,
(3)

where bij(χ) indicates the systematic bias parametrized by a
feature vector χ and nij ∼ N (0, σ2

ij) is a zero-mean Gaus-
sian noise with variance σ2

ij . Since hyperbolic localization
(Figure 2) is more sensitive to imperfect measurements than
TWR [18], [19]—especially outside or near the edges of the
anchors’ convex hull—compensating for the systematic bias
is even more crucial for TDOA-based localization.

B. UWB TDOA Measurement Bias

As reported in previous work on TWR localization [7],
[10], [12], off-the-shelf, low-cost UWB modules exhibit
distinctive and reproducible error patterns. TDOA measure-
ments suffer from a similar systematic bias [16].

To demonstrate and characterize the TDOA bias in our
experimental setup, we devised experiments using one tag
and two Decawave DW1000 UWB anchors. First, we placed
two DW1000 UWB anchors at a distance of 4.5m from
one another, in line-of-sight conditions. A Crazyflie nano-
quadcopter mounted with a tag was commanded to spin
around its z-axis while hovering at the midpoint between
the two anchors. The TDOA measurements d̄01 from the tag
was collected at 50Hz. Ground truth values—for both UWB
measurements and tag/anchor poses—were obtained through
a millimeter-accurate motion capture system. We used the
range-azimuth-elevation (RAE) model to uniquely define the
relative pose between the tag and each of two anchors (see
Figure 3). We repeated this experiment three times, each time
changing the angles (αA0 , βA0 ) of anchor A0.

The TDOA measurement biases b01 resulting from these
experiments are presented in Figure 4 (left). These measure-
ments show that both the pose of the tag and the anchors
have a non-negligible influence on the resulting bias pattern.
Furthermore, these biases proved consistent and reproducible
through repeated experiments as they are ascribable to UWB
radio’s doughnut-shaped antenna pattern [20].

In a second experiment, to assess the influence of the
UWB chips’ manufacturing variability, we repeated the ex-
periment with five different DW1000 UWB tags, for fixed
poses of the two anchors. The resulting biases are shown in
Figure 4 (right). We note that the patterns created by the five
different UWB chips are extremely similar to one another.
This is in contrast with the UWB TWR bias reportedly
affected by small tag manufacturing differences in [10], [11].

The results of the two experiments above suggest that
the systematic bias in UWB TDOA measurements bij(χ)
depends on the poses of the anchors and tags—i.e. they
should appear in χ—but that it is consistent among different
off-the-shelf DW1000 UWB tags—i.e. function bij(·) is the
same for different tags.

C. UWB TDOA Outlier Measurements
Beyond the systematic biases observed in the previous

section, TDOA measurements are often corrupted by outliers
caused by multi-path and NLOS signal propagation. The
multi-path effect is the result of the reflection of radio waves,
leading to longer ToF and wrong TDOA measurements [21].
In indoor scenarios, metal structures, walls, and obstacles are
the major causes of multi-path propagation. NLOS propaga-
tion can occur because of the obstacle-penetrating capability
of UWB radios, with delayed or degraded signals resulting
also leading to outlier measurements [14], [15].

NLOS and multi-path propagation often result in ex-
tremely improbable TDOA measurements, which should be
rejected as outliers. In Section IV, we devise a robust
localization framework to reduce the influence of outliers
and achieve reliable and robust localization performance.

III. UWB TDOA BIAS MODEL LEARNING WITH A
NEURAL NETWORK

Knowing that TDOA hyperbolic localization is especially
sensitive to measurement bias, we aim to show that com-
pensating for the systematic bias can greatly improve the
localization accuracy.

As highlighted in Section II-B, the TDOA systematic bias
has a nonlinear pattern and is dependent on the relative poses
between UWB anchors and tags. Since two anchors and one
tag are involved in each TDOA measurement (unlike one
anchor and one tag in TWR), the TDOA systematic bias
is the result of a complex relative-pose relationship between
multiple UWB radios. We model this pose-dependent bias as
a nonlinear function bij(∆p,α,β) of the relative positions
∆p =

[
∆pTi ,∆pTj

]
with ∆pi = [xi − x, yi − y, zi − z]T ,

relative azimuth angles α =
[
αAi , αAj , αTi , αTj

]T
, and

relative elevation angles β =
[
βAi , βAj , βTi , βTj

]T
between

two anchors and the tag (see Figure 3). The UWB TDOA
measurement model (3) can then be written as:

d̄ij = dij + bij(∆p,α,β) + nij . (4)
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In Section V-D, we further show the effectiveness and
generalizability of the bias model learned from these features
(across previously unseen DW1000 tags and novel anchor
placements) compared to a model with a less rich input
feature vector.

Since our work targets resource-constrained platforms, we
propose to use a feed-forward neural network to learn a com-
putationally efficient model for the complex UWB TDOA
bias. For TWR bias compensation, an SPGP was previously
proposed in [10]. However, the time complexity of mean
and variance prediction of an SPGP with M pseudo-input
points is O(M) and O(M2), respectively [22]. On resource-
constrained platforms, the memory and power requirements
of SPGP inference are often unattainable. To highlight
this point, we compare the computational resources of the
STM32F405 MCU used in many mobile robots (including
the Crazyflie nano-quadcopter in our work) against those of
(i) the Odroid XU4 single board computer for quadcopters
(used in [23]), and (ii) the Qualcomm Snapdragon (used for
TWR bias compensation in [10]) in Table I.

Both the Odroid XU4 and the Qualcomm Snapdragon
board are equipped with powerful CPUs/GPUs and have
large (2GB) system memories, making them much more
suited for computationally intense tasks, even during flight.
The STM32F405 has significantly less memory (196kB
RAM) and a low-power CPU (1-core 168MHZ) and cannot
run demanding SPGP-based bias compensation.

In contrast, the prediction time and memory requirements
of a trained feed-forward neural network are fixed and only
depend on the network architecture (rather than the amount
of training data). Thus, the scalable (and potentially lower)
computational and memory requirements make neural nets a
fitting choice for resource-constrained platforms [24].

Below, the localization framework using the neural net-
work with the proposed input feature χ = [∆p,α,β]T ∈

TABLE I
COMPUTATIONAL RESOURCES COMPARISON

Name STM32F405 Odroid XU4 Snapdragon Board

CPU 1-core
168MHz

Exynos 5422
Quad-core 2GHz

Krait
Quad-core 2.26GHz

GPU n/a Mali-T628 MP6 Qualcomm Adreno 330
DSP n/a n/a Hexagon DSP
RAM 196kB 2GB 2GB

R14 is called “proposed approach”. The output of the net-
work is the predicted TDOA measurement bias bij(χ) ∈ R.
We integrate the bias compensation into a Kalman filter (KF)
framework for indoor localization. The architecture of the
proposed network can be chosen to fit the computational
limitations of the mobile robot platform.

In the results section, the proposed approach is compared
to both (i) a bare M-estimation-based EKF baseline (intro-
duced in the next section) and (ii) a NN-enhanced framework
that does not account for the anchors’ orientations in χ.

The anchors’ position and orientation are measured in
advance using a Leica total station theodolite and stored on-
board of the mobile robot. The details about data collection,
the neural network architecture design, the training process,
and the on-board implementation are provided in Sections V-
B and V-C. In Section V-E, we also show that, with a
fairly small network, we can model the impact of anchor-
tag relative poses on the measurement bias, thus enabling
real-time TDOA bias compensation on-board of a Crazyflie.

IV. LOCALIZATION FRAMEWORK

In addition to pose-dependent bias, UWB TDOA localiza-
tion is often plagued by outliers caused by unexpected NLOS
and multi-path radio propagation. Unlike bias, these cannot
be modeled without precise prior knowledge of the robots’
trajectories and their surrounding environment. To reduce the
influence of outliers, we use robust M-estimation. Further,
our approach can handle sparse UWB TDOA measurements,
which can be a challenge for conventional Random Sam-
ple Consensus (RANSAC) approaches [25]. A complete
derivation of the M-estimation-based Kalman filter is beyond
the scope of this paper. While we provide the necessary
equations for this paper, readers are referred to [17] for
further details.

A. M-estimation-based Extended Kalman Filter
For our UWB TDOA-based localization system, the sys-

tem state x consists of the position p, velocity v, and the
orientation of the tag. We first apply bias compensation to
the TDOA measurements. After bias correction, the TDOA
measurement w.r.t. anchors i and j is given by:

d̃ij = d̄ij − bij(χ) + nij

= ‖p− ai‖ − ‖p− aj‖+ nij .
(5)



Since the tag only receives one TDOA measurement at a
time, assuming the measurement noise is identically dis-
tributed for all anchor pairs, the TDOA measurement dk at
timestep k can be written as:

dk = g(xk, nk), (6)

where g(·) is the TDOA measurement model and nk ∼
N (0, σ2) is the measurement noise. Then, we consider the
following discrete-time, nonlinear system for TDOA local-
ization (that is of general applicability to mobile robots):

xk = f(xk−1,uk,wk),

dk = g(xk, nk),
(7)

where xk ∈ RN is the system state at timestep k with
covariance matrix Pk ∈ RN×N , f(·) is the motion model
for a mobile robot with input uk ∈ RN and process noise
wk ∼ N (0,Qk).

Due to the model nonlinearity, we use an M-estimation
based extended Kalman filter (EKF) to estimate the states in
(7). Replacing the quadratic cost function in a conventional
Kalman filter with a robust cost function ρ(·)—e.g. Geman-
McClure (G-M), Huber or Cauchy [25]—we can write the
posterior estimate as:

x̂k = argmin
xk

(
N∑
i=1

ρ(ex,k,i) + ρ(ed,k)

)
, (8)

where ed,k = dk−g(xk,0)
σ and ex,k,i is the element of:

ex,k(x) = S−1k (xk − x̌k) (9)

with prior estimates denoted as x̌k, and Sk being computed
through the Cholesky factorization over the prior covariance
matrix P̌k.

By introducing a weight function w(e) , 1
e
∂ρ(e)
∂e for

the process and measurement uncertainties—with e ∈ R as
input—we can translate the optimization problem in (8) into
an Iterative Reweight Least-Square (IRLS) problem. Then,
the optimal posterior estimate can be computed by iteratively
solving the least-square problem using the robust weights
computed from the previous solution.

To initialize the iterative algorithm, we set x̂k,0 =
x̌k, P̃k,0 = P̌k, σ̃

2
k,0 = σ2

k. For brevity, we drop the timestep
subscript k in subsequent equations. In the l-th iteration,
the rescaled covariance of the prior estimated state and the
measurement can be written as:

P̃l = Sl (Wx,l)
−1

(Sl)
T
,

σ̃2
l =

σ2
l

w (ed,l)
,

(10)

where Wx,l is the weighting matrix for process uncertain-
ties with w (ex,i,l) in the diagonal entries, and w (ed,l) is
the weight for the measurement uncertainty. Following the
conventional EKF derivation, the weighted Kalman gain K̃l

is
K̃l = P̃lG

T
l

(
GT
l P̃lGl + σ̃2

l

)−1
, (11)

where Gl is the Jacobian of the measurement model at x̂l,

Gl =
∂g(x, 0)

∂x

∣∣∣∣
x̂l

, (12)
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The following IRLS iteration updates K̃l, P̃l, σ̃2
l . For

resource-constrained platforms, one can set a maximum
number of iterations as a stopping criterion instead of con-
vergence [17]. After the final iteration L, the posterior state
and covariance matrix can be computed as:

x̂ = x̌k + K̃L (dk − g(x̌k, 0)) ,

P̂ =
(
1− K̃LGL

)
P̃L.

(13)

B. NN-Enhanced Robust Localization Framework

Coupling the method in Section IV-A with the learning-
based bias compensation proposed in Section III, our overall
localization framework (Figure 1, bottom) aims at improving
both the accuracy and robustness of UWB TDOA localiza-
tion. The on-board neural network corrects for bias before
the M-estimation update step, thus making the measurement
model in (7) compliant with the zero-mean Gaussian distri-
bution assumption. Because of its general system formulation
and the moderate computational requirements of both a pre-
trained NN and the M-estimation-based EKF, the proposed
neural network-enhanced TDOA-based localization frame-
work is suitable for most resource-constrained platforms
including mobile phones.

V. EXPERIMENTAL RESULTS

To demonstrate the effectiveness and generalizability of
the proposed localization framework, we implemented it
onboard a Crazyflie 2.0 nano-quadcopter. We used eight
UWB DW1000 modules from Bitcraze’s Loco Positioning
System (LPS) to set up the UWB TDOA localization system.
The ground truth position of the Crazyflie nano-quadcopter
was provided by a motion capture system comprising of ten
Vicon cameras. Note that the motion capture system is only
used to collect training data and validate the localization per-
formance. It is not required to set up the UWB localization
system nor to fly the robot. The Crazyflie nano-quadcopter
is equipped with a low-cost inertial measurement unit (IMU)
and a UWB tag. All the software components of the proposed
localization framework run onboard the Crazyflie microcon-
troller. Footage of the autonomous flights is available at
http://tiny.cc/uwb-tdoa-bias-ral21.

A. Motion Model of the Nano-quadcopter

The Crazyflie nano-quadcopter is modelled as a rigid
body with double integrator dynamics, which is a simplified

http://tiny.cc/uwb-tdoa-bias-ral21


dynamic model for a quadcopter with an underlying position
controller. The system is parameterized by a state x con-
sisting of the nano-quadcopter’s position p, velocity v, and
orientation with respect to the inertial frame CIB ∈ SO(3).
Under this simplified dynamic model, the system’s state
evolves as:

ṗ = v, v̇ = CIBa+ g,

ĊIB = CIB [ω]× ,
(14)

where g is the gravitational acceleration, a ∈ R3 and ω ∈
R3 are acceleration and the angular velocity in the body
frame measured by the onboard IMU, and [·]× is the skew-
symmetric operator defined as [ω]× c = c× ω,∀ω, c ∈ R3.
Discretizing the dynamic model (14) gives the motion model
in (7), where IMU measurements are the system inputs.

After the (i) EKF prediction and (ii) NN bias compensation
steps, we perform (iii) M-estimation-based filtering using the
G-M robust cost function.

B. Data Collection and Network Training

To train our NN, we collected UWB TDOA measurements
(and the associated ground truth labels) during a cumulative
∼ 135 minutes of real-world Crazyflie flights, using the
three different UWB anchors setups (training constellations)
shown in Figure 5 and different training trajectories (products
of multiple trigonometric functions whose amplitude, period
and phase were randomized) to cover the indoor space.
We also varied yaw along the trajectory to improve the
representative power of our data set. We chose different
constellations to represent a range of different geometries
for our 7m × 8m × 3m flying arena. The positions of
anchors were measured using a total station with an accuracy
of 5mm root-mean-square (RMS) error, when compared to
the motion capture system results. By measuring three non-
coplanar points attached to the anchor at known positions,
the orientations of the anchors were computed by point-
cloud alignment [26], leading to azimuth and elevation angles
within 1 degree of the motion capture system measurements.
Our dataset consists of over 800′000 UWB measurements
logged at 50 Hz and is available at http://tiny.cc/
ral21-tdoa-dataset. From these, we subtracted the
motion capture position information to compute the corre-
sponding measurement error labels. Measurement outliers
caused by NLOS and multi-path effects with more than 1m
error were dropped from the dataset to focus on learning the
antenna biases and not any outlier characteristics. Then, we
partitioned this dataset into training, validation, and testing
sets using a 70/15/15 split. The network was trained using
PyTorch [27] and halted when the error on the validation
set increased over five consecutive iterations (early stopping)
to prevent overfitting. As an optimizer, we chose mini-batch
gradient descent [28]. The testing set was used to evaluate
the performance of the trained network. The computing
resources were provided by the Vector Institute.

C. Implementation Onboard of a Nano-quadcopter

The Crazyflie’s limited memory is a major challenge for
the on-board implementation of a sophisticated localization
scheme. A Crazyflie 2.0 nano-quadcopter has 1MB of flash
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Fig. 6. Distribution of the TDOA measurement errors from Figure 4
(left) before bias compensation (grey), after correction with the NN
not using anchor orientations (red) and the proposed approach (teal). Using
the proposed approach (bottom plot), the fitted Gaussian probability density
function (PDF), the blue dashed line, shows a lower bias and smaller
standard deviation.

storage and 196kB of RAM, including 128kB of static
RAM and 64kB of CCM (Core Coupled Memory). The
default onboard firmware occupies 182kB flash and 102kB
of static RAM are used by the basic estimation and control
algorithms. To meet the memory constraints, we set our
NN architecture to be a three-layer feed-forward network
with 30 neurons in each layer and fixed the number of
iterations for the M-estimation update step to 2. Both the
NN and the M-estimation-based filter were implemented
in plain C. The proposed localization framework software
only takes approximately 12kB of static RAM and 13kB of
flash storage, leaving 12% and 81% of the RAM and flash
memory, respectively, free. We integrated this framework into
the Crazyflie onboard EKF, running at 100Hz.

D. Input Features Selection Evaluation

The existing work in the literature [10], [11] does not pro-
pose to use the anchor orientations for TWR bias modeling.
Yet, as we showed in Section II-B, the anchor orientation has
an impact on the systematic bias of TDOA measurements.
In this subsection, we verify this observation by comparing
the performance of a neural network trained with anchor
orientations as part of its input features—our proposed
approach—and one without them. Both networks have the
same number of hidden layers and units, hyperparameters,
and use the same training dataset.

In Figure 6 we present the normalized frequency distribu-
tion histograms of the TDOA measurement errors before and
after bias correction (using the experimental data from Fig-
ure 4). Bias correction using the NN not having the anchor
orientations as input improves the mean of the measurement
error by 3.5 cm (from −5.5 cm to −2.0 cm). However,
the standard deviation σ increases slightly, from 12.5 cm to
14.1 cm. Comparing to the NN without anchor orientation,

http://tiny.cc/ral21-tdoa-dataset
http://tiny.cc/ral21-tdoa-dataset
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Fig. 7. Root mean square (RMS) error of the nano-quadcopter position
estimate with (i) M-estimation based EKF-baseline (gray), (ii) estimation
enhanced through an NN without anchor orientations (red), and (iii)
estimation enhanced through the proposed NN approach (teal). Closed-
loop flights on reference trajectories A and B were conducted using one
training constellation and three different test constellations. The proposed
localization framework (iii) achieves 42.08% and 20.32% reduction of
average RMS errors, w.r.t. (i) and (ii) in the test constellations.

the proposed approach provides 75.0% and 21.3% improve-
ments in mean (0.5 cm) and the standard deviation (11.1 cm)
of the measurement errors, respectively, better matching a
narrower (less uncertain) zero-mean Gaussian distribution.

E. Flight Experiments with Unseen Anchor Constellations

To demonstrate the effectiveness of the proposed localiza-
tion framework, we fly a Crazyflie nano-quadcopter using
test anchor constellations that are different from those used
for training (see Figure 5). Without any of the compo-
nents in our proposed localization framework, the Crazyflie
quadcopter cannot reliably and repeatedly take off from
the ground, due to the severe multi-path effect caused by
the floor. With just the addition of the M-estimation-based
EKF (to get rid of multi-path outlier measurements), the
Crazyflie can take off and land. Therefore, we select the
performance of the M-estimation-based EKF-only approach
as our baseline and compare it against (i) the estimation
enhanced through the proposed NN, and (ii) the estimation
enhanced through an NN without anchor orientations. Both
networks were trained using the process in Section V-B.

We conducted flight experiments using training constella-
tion #1 and three entirely new anchor test constellations
to show the generalization capability of the proposed lo-
calization framework. The Crazyflie nano-quadcopter was
commanded to fly (i) a planar (in x-y) circular trajectory,
called trajectory A, and (ii) a circular (in x-y) trajectory
with sinusoidal height (i.e. with varying z position), called
trajectory B. Neither of these two trajectories was among the
training trajectories. The RMS errors of the three localization
methods (M-estimation-based EKF alone, EKF plus bias
correction with the proposed approach, or EKF plus NN
without anchor orientations) are summarized in Figure 7.

In the training constellation setup, the proposed method
provides 52.71% and 27.65% average RMS error reduction
comparing to (i) M-estimation-based EKF alone and (ii)
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Fig. 8. Closed-loop flight paths for reference trajectory A with estimation
enhanced through an NN without anchor orientations (red) and estimation
enhanced through the proposed approach (teal), in test constellation #1.

M-estimation-based EKF enhanced through an NN without
anchor orientations. In the three test constellations, the pro-
posed framework achieves 42.08% and 20.32% reduction of
average RMS errors, w.r.t. (i) and (ii), leading to an accuracy
of approximately 0.14m RMS localization error on-board
a Crazyflie nano-quadcopter. We demonstrate the on-board
estimation results of trajectory A (see Figure 8) using test
anchor constellation #1 as an example.

The onboard estimation errors computed with respect
to the ground truth and the estimated three-σ uncertainty
bounds for the three approaches during the closed-loop flight
are shown in Figure 9. Both NN-enhanced approaches show
a reduction of the RMS estimation error compared to the
baseline (M-estimation-based EKF), especially along the z-
axis. The larger estimation error in the z direction, before
bias correction, can be partly attributed to our setup’s specific
geometry, having a narrower anchor separation in z (∼2.8
meters). We also observe that, with the M-estimation based
EKF alone, the estimation errors are out of the estimated
three-σ error bounds. This phenomenon is caused by the
uncompensated UWB measurement biases. With biased mea-
surements, KF-type estimators will provide biased estimates
and overconfident uncertainty, leading to inconsistent es-
timation results [26]. With NN bias compensation, most
of the estimation errors are within three-σ error bounds.
Also, compared to the NN without anchor orientations,
the proposed approach provides an improved and unbiased
estimation along the z-axis.

VI. CONCLUSIONS

In this article, we presented a learning-enhanced, ro-
bust TDOA-based localization framework for resource-
constrained mobile robots. To compensate for the system-
atic biases in the TDOA measurements, we proposed a
lightweight neural network model and selected appropriate
input features based on the analysis of the TDOA mea-
surement error patterns. For robustness, we used the M-
estimation technique to down-weight outliers. The proposed
localization framework is frugal enough to be implemented
on-board a Crazyflie 2.0 nano-quadcopter. We demon-
strated the effectiveness and generalizability of our approach
through real-world flight experiments—using multiple dif-
ferent anchor test constellations. Experimental results show
that the proposed approach provides an average of 42.09%
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localization error reduction compared to the baseline method
without bias compensation. In summary, our approach (i)
allows for real-time execution on-board a nano-quadcopter
during flight, (ii) yields enhanced localization performance
for autonomous trajectory tracking, and (iii) generalizes to
previously unobserved UWB anchor constellations.
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