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A Hybrid Dynamical Modeling Framework for
Shape Memory Alloy Wire Actuated Structures
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Abstract—In this paper, a hybrid model for single-crystal
Shape Memory Alloy (SMA) wire actuators is presented. The
result is based on a mathematical reformulation of the Müller-
Achenbach-Seelecke (MAS) model, which provides an accurate
and interconnection-oriented description of the SMA hysteretic
response. The strong nonlinearity and high numerical stiff-
ness of the MAS model, however, hinder its practical use
for simulation and control of complex SMA-driven systems.
The main idea behind the hybrid reformulation is based on
dividing the mechanical hysteresis of the SMA into five operating
modes, each one representing a different physical state of the
material. By properly deriving the switching conditions among
those modes in a physically-consistent way, the MAS model is
effectively reformulated within a hybrid dynamical setting. The
main advantage of the hybrid reformulation is the possibility
of describing the material dynamics with a simplified set of
state equations while maintaining all benefits of the physics-
based description offered by the MAS model After describing the
novel approach, simulation studies are conducted on a flexible
robotic module actuated by protagonist-antagonist SMA wires.
Through comparative numerical analysis, it is shown how the
hybrid model provides the same accuracy as the MAS model
while saving up to 80% of the simulation time. Moreover, the
new modeling framework opens up the possibility of addressing
SMA control from a hybrid systems perspective.

Index Terms—Soft Sensors and Actuators; Modeling, Control,
and Learning for Soft Robots; Tendon/Wire Mechanism; Flexible
Robotics.

I. INTRODUCTION

AS a result of their unique flexibility and scalability,
continuum robots have found applications in challenging

areas such as medical [1], industrial maintenance [2], and
inspection [3]. Mechanical structures conventionally adopted
for the realization of continuum robots allow them to reach
specific positions without the aid of joints or rigid links. The
actuators commonly adopted in those applications are either
based on pneumatic systems [4] or motorized tendons [5].
Despite their popularity, those actuation solutions are often
noisy, not efficient, and bulky, with an overall size which is
significantly larger than the true dimension of the active part.
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It is remarked how Shape Memory Alloy (SMA) wires
represent a promising technology to improve the performance
and further the miniaturization of continuum robots. A SMA
consists of a metal alloy which contracts when heated via an
electric current. This phenomenon is generated by a phase
transformation in the material microstructure, which results
into macroscopic changes in shape up to 4-8%. After removing
the electric current, the initial shape of the wire can be
recovered by applying an external force (provided, e.g., by
a spring load or by another SMA wire). Features such as high
energy density, flexibility, and self-sensing operations make
SMA wires particularly attractive for many application fields,
including bioinspired robots [6], endoscopes [7], and artificial
hands [8]. However, the temperature- and rate-dependent hys-
teretic response of the material makes the design, modeling,
and control of SMA systems a highly challenging task. This
issue is even more critical in case multiple SMA wires are
used to activate a complex mechanical structure, thus resulting
in a strongly nonlinear dynamic system [9], [10], [11]. The
development of models and simulation tools, which account
for the physical coupling between actuator and structure in
a numerically efficient way, represents a fundamental step
towards the design and control of high-performance SMA
robots.

With the aim of developing improved numerical tools for
SMA systems, in this paper we present a novel hybrid model
for single-crystal SMA wire actuators. The proposed hybrid
reformulation is grounded on the SMA model originally
developed by Müller-Achenbach-Seelecke (MAS) which, in
turn, is based on a statistical thermodynamic framework [12],
[13]. Due to its physics-based nature, the MAS model allows
to effectively describe the hysteretic behavior of SMA wire
actuators under different operating conditions and thermo-
mechanical loads. The high level of detail of the MAS model,
however, results in strong nonlinearities which affect the
simulation time and complicate the design of control systems.
By properly exploiting some structural properties of the MAS
model, the original system equations are reformulated within
the hybrid systems framework in [14]. The new hybrid model
enables to describe the same input-output behavior of the
original MAS one by means of a simplified set of equations,
which rely on a reduced number of continuous state variables.
In this way, all the physical features of the original model
can be accounted for in a more numerically efficient way. At
the same time, the hybrid formalism opens up the possibility
of analyzing and controlling complex SMA systems based
on powerful analytical tools [14]. In our previous work, we
have shown for the first time the effectiveness of the hybrid
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Fig. 1. Example of SMA continuum robot [16] (a) and its graphical
representation with a flexible link between two rigid spacer (b). Port-based
model of the structure based on the power-preserving interconnection I (c).

framework in modeling hysteretic SMA systems [15]. The
result, however, is only valid for a specific type of SMA-
spring actuator. Since the introduction of the spring element
drastically modifies the constitutive equations of the SMA
wire, the developed model cannot be used to describe more
complex types of SMA systems. In this paper, we extend the
results in [15] by developing:
• An analytical characterization of the different modes

occurring in the hysteresis of single-crystal SMAs;
• A new hybrid formulation for the model of a generic

single-crystal SMA wire, in a form which is suitable for
port-interconnection with a mechanical structure;

• An experimental validation of the SMA hybrid model;
• A simulation study of a flexible robotic structure actuated

by bundles of SMA wires, in which the performance of
both MAS and hybrid models are compared.

The remainder of this paper is organized as follows. In
Section II, a motivating example of SMA continuum robot
is presented. Section III provides a formal and exhaustive
description of the new hybrid model, while parameter iden-
tification and simulation studies are reported in Section IV.
Finally, concluding remarks are discussed in Section V.

II. MOTIVATION: SMA WIRE DRIVEN FLEXIBLE ROBOTS

An example of SMA continuum robot is shown in Fig. 1(a)
[16]. It is based on a serial connection of several bendable
modules, each one consisting of a flexible backbone connect-
ing two rigid spacers. Three bundles of SMA wires, equally
spaced around the rigid spacer, are connected in parallel to the
backbone, working as actuator elements. When the SMAs are
inactive, the structure is in a neutral position. By activating
the wires, the resulting contraction in length generates an
asymmetry in the forces applied to the plate and, in turn, a
bending of the beam in the direction of the actuated bundle,
see Fig. 1(b). By stacking many of those modules, a flexible
robotic arm capable of large bending angles can be obtained.

To consistently model a continuum robot such as the
one in Fig. 1(a), an interconnection-based viewpoint can
be effectively adopted. A schematic depiction of such an
approach is shown in Fig. 1(c). The block Robot Structure
describes the model of the robot itself (i.e., the combined
flexible backbone and spacers). Since those model are gen-
erally obtained via Newtonian or Euler-Lagrange approaches,
their causal representation normally comes in the form of
a mechanical admittance (force-input, velocity-output) [17],
[18], [19], [20]. To implement actuation, the structure needs
to be coupled with a model of the SMA Wires. This is possible
via a power-preserving interconnection I, which acts as a
force/velocity transformer among the two subsystems [17]. In
order to effectively implement this type of architecture without
violating causality, the SMA model needs to be provided in the
form of a mechanical impedance (velocity-input, force-output).
Moreover, if the SMA model satisfies energy consistency
properties (i.e., passivity), stability of the interconnection can
be guaranteed for any passive mechanical structure [17]. Those
features will be accounted for when developing the hybrid
SMA model.

III. SINGLE-CRYSTAL SMA MODEL

In this section, the MAS model for single-crystal SMA
wires is first summarized. Subsequently, an exhaustive descrip-
tion of the hybrid reformulation is proposed.

A. MAS Model
The MAS model provides a description of single-crystal

SMA material based on a general mesoscopic free-energy
framework [21]. A SMA consist of a metal alloy which
contracts due to a phase transformation among lattice variants
when heated. In the specific case of a SMA wire actuator
we consider only two variants denoted, as austenite (A) and
martensite-plus (M). According to MAS, the macroscopic
stress-strain relationship of the material can be expressed as
follows

σ = σ(ε, xM ) =
ε− εTxM

E−1
M xM + E−1

A (1− xM )
, (1)

where ε is the SMA strain, σ is the SMA stress, xM is the
martensitic variant phase fraction, while EA, EM , and εT
are constant constitutive material parameters and represent the
austenite Young’s modulus, martensite Young’s modulus, and
transformation strain, respectively. When the phase fraction
xM varies from 0 (full austenite) to 1 (full martensite),
the angular coefficient of the hysteretic curve, equivalent to
Young’s modulus calculated at the operating point, changes
from EA to EM and vice versa. As we will see in the sequel,
the dependence of the material stress of the phase fraction xM
introduces a temperature-dependent hysteretic behavior.

Material stress and strain can be related to the wire force
f , length l, and deformation rate v (cf. Fig. 2(a)) by means of
the following equations

f = πr2
0σ, (2)

l = l0(1 + ε), (3)

v = l̇ = l0ε̇, (4)
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Fig. 2. Inputs and outputs for a generic SMA wire (a), SMA hysteresis at
two different temperatures (b), and SMA model block diagram (c).

where r0 and l0 are the radius and the length of the unde-
formed SMA wire, respectively.

To describe the dynamic evolution of xM , the following
equation can be derived through statistical thermodynamics

ẋM = −pMAxM + pAM (1− xM ) . (5)

The generic transition probability pαβ from phase α to phase
β can be computed as follows

pαβ = pαβ(σ, T ) = ωxe
− VL
kBT

∆gαβ(σ,T )
, (6)

where ωx is a natural frequency associated to thermal acti-
vation, VL is the volume of a mesoscopic crystal layer, kB
is the Boltzmann constant, T is the SMA temperature, and
∆gαβ(σ, T ) is the Gibbs free-energy barrier of the phase
transformation. The energy barriers ∆gαβ depend in a complex
mathematical way on the transformation stresses of austenite
and martensite, denoted as σA and σM respectively (details
are omitted for conciseness, the reader may refer to [12], [13]
for details). Such quantities are given by

σA = σA(T ) = σMW (T ) + 0.5∆σ, (7)
σM = σM (T ) = σMW (T )− 0.5∆σ, (8)

where ∆σ is the size of the σ-ε hysteresis, while

σMW (T ) = σMW (T0) + σT (T − T0) , (9)

for some constant parameters T0 and σT . The physical mean-
ing of ∆σ and σMW is shown in Fig. 2(b).

Finally, the temperature evolution of the SMA can be
derived from the following internal energy balance equation

ΩρV cV Ṫ = −λAS(T − TE) + J + L̇, (10)

where Ω = πr2
0l0 is the SMA material volume, ρV is the

SMA density, cV is the SMA specific heat, λ is the convec-
tive cooling coefficient between SMA wire and environment,
As = 2πr0l0 is the lateral surface area of the wire, TE is the
environmental temperature, J is the Joule heating produced by
an electric current, and L̇ is the internal latent heat production
due to the phase transformation. In this work, the latent heat
L̇ in (10) is modeled according to the following

L̇ = LxM ẋM + LT Ṫ , (11)

where functions LxM and LxT are given by

LxM = Ω
(
TΓT (T ) + Γ(σ)− Γ(σMW (T ))

)
, (12)

LT = ΩTΓTT (T )(xM − 1), (13)

with

Γ(σ) =
(
E−1
M − E

−1
A

)
0.5σ2 + εTσ, (14)

ΓT (T ) =
(
E−1
M − E

−1
A

)
σMW (T )σT + εTσT , (15)

ΓTT (T ) =
(
E−1
M − E

−1
A

)
σ2
T . (16)

As recently proved in [22], choice (11)-(16) makes the SMA
model satisfy energy consistency properties, i.e., it can be rep-
resented in a port-Hamiltonian form. This is highly desirable
in case a port-based perspective is adopted.

The complete model of the single-crystal SMA wire can be
obtained by collecting equations (1)-(4), (10), and (11)

ε̇ =
v
l0

ẋM = −pMAxM + pAM (1− xM )

Ṫ =
J − λAs(T − TE) + LxM ẋM

ΩρV cV − LT

f = πr2
0

ε− εTxM
E−1
M xM + E−1

A (1− xM )

. (17)

SMA strain ε, phase fraction xM , and temperature T represent
the states of (17). External inputs are the deformation rate v,
the environmental temperature TE , and the Joule heating J ,
while the force f is the system output, cf. Fig.2(c). Coupling
between SMA and an external load can be performed via the
power-conjugated input-output pair v-f .

B. Preliminaries on Hybrid Systems

We consider hybrid systems with state x ∈ Rn and input
u ∈ Rm of the form

H :

{
ẋ = f(x, u) (x, u) ∈ C
x+ ∈ G(x) (x, u) ∈ D , (18)

where f : Rn+m → Rn is the flow map, C ⊂ Rn is the
flow set, D ⊂ Rn is the jump set, and the set-valued map is
G : Rn ⇒ Rn the jump map. The symbol ẋ denotes the time-
derivative of state x during flows, while x+ represents the
value of state x after an instantaneous change. To denote the
above hybrid system, we use the following shorthand notation
H = (C, f,D,G). A solution pair to H is any pair (φ, u),
where φ is a hybrid arc, u is a hybrid signal, domφ = domu
that satisfies the dynamics ofH; see [23] for formal definitions
of hybrid arc, signal, and solution pairs to hybrid systems. A
solution pair is said to be complete if its domain is unbounded
and maximal if it is not the truncation of another solution
pair. Following [24], we say that H satisfies the hybrid basic
conditions if: C and D are closed in Rn+m; f is continuous on
C, G is nonempty, outer semicontinuous1, and locally bounded
on D. For more details on hybrid systems, the reader may refer
to [14].

1A set valued map G : Rn ⇒ Rn is outer semicontinuous if its graph is
closed; see [14, Chapter 5].
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Fig. 3. Example of stress-strain hysteresis in single-crystal SMA wire (a) and
corresponding hybrid automaton with modes and edges (b).

C. Hybrid Dynamical Model

The main result of this paper is presented in this section. The
SMA wire model defined in (17) provides a good description
of the material physical behavior. However, it turns out to be
highly stiff from the numerical standpoint. This issue is mainly
due to the terms pMA and pAM appearing in state equation
(5). A potential way to improve the numerical robustness
consists of eliminating the stiff dynamics by means of a hybrid
reformulation of (17).

The key idea is based on a specific structural property of
the model. In particular, it can be shown that during phase
transformation (i.e. ẋM 6= 0) the following equation provides
a tight representation of the dynamics of (17) (see [22]){

σ(ε, xM ) = σA(T ) if ẋM > 0

σ(ε, xM ) = σM (T ) if ẋM < 0
, (19)

where σ(ε, xM ), σA(T ), and σM (T ) are given by (1), (7),
and (8), respectively. Relationships (19) can be exploited to
eliminate the stiff state equation from (17), as shown next.

By looking at the mechanical hysteretic characteristic of the
material reported in Fig. 3(a), we can identify five different
operating modes having the following physical interpretations:

1) Full austenitic phase (ẋM = 0, xM = 0)
2) Full martensitic phase (ẋM = 0, xM = 1)
3) Inner hysteresis loop (ẋM = 0, xM ∈ (0, 1))
4) Austenite to martensite transformation (ẋM > 0)
5) Martensite to austenite transformation (ẋM < 0)

The transition between those modes can be described
via the hybrid automaton in Fig. 3(b), with the set
of modes Q = {1, 2, 3, 4, 5} and the set of edges
E = {(1, 4), (2, 5), (3, 5), (3, 4), (4, 2), (4, 3), (5, 1), (5, 3)}.
The mode transition conditions are also reported in Fig. 3(b).

First, we denote ε̇(i), ẋ(i)
M , and Ṫ (i) the time derivatives of

strain, phase fraction, and temperature for the generic mode i.
For the ease of notation, we also define

ε̇(i) := φ(i)
ε = φ(i)

ε (ε, xM , T, v, J, TE), (20)

ẋ
(i)
M := φ(i)

xM = φ(i)
xM (ε, xM , T, v, J, TE), (21)

Ṫ (i) := φ
(i)
T = φ

(i)
T (ε, xM , T, v, J, TE), (22)

for i = 1, 2, 3, 4, 5. In order to characterize the hybrid system
evolution, auxiliary functions φ(i)

ε , φ(i)
xM , and φ

(i)
T need to be

properly characterized for each mode.

It can be readily observed that the state equation for ε in
(17) is only affected by the input velocity. Thus, we have

φ(i)
ε =

v
l0

with i = 1, 2, 3, 4, 5. (23)

Based on (17), we can also write without loss of generality

φ
(i)
T =

J − λAs(T − TE) + LxMφ
(i)
xM

ΩρV cV − LT
with i = 1, 2, 3, 4, 5.

(24)
Concerning the phase fraction, note that the first three opera-
tive modes are characterized by a constant xM , i.e.,

φ(i)
xM = 0 with i = 1, 2, 3. (25)

More specifically, we have

x
(1)
M = 0, (26)

x
(2)
M = 1, (27)

x
(3)
M ∈ (0, 1), (28)

where x
(i)
M is a shorthand notation to denote the analytical

expression of xM for mode i. The actual x(3)
M is defined by the

numerical value of xM prior to the mode change. By replacing
(25) in (24), we obtain the following

φ
(i)
T =

J − λAs(T − TE)

ΩρmcV − LT
with i = 1, 2, 3. (29)

For modes 4 and 5, we can exploit (19) to express xM as an
algebraic function of the other states variables. By replacing
(1), (7), and (8) in (19) and solving for xM , we obtain

x
(4)
M = x

(4)
M (ε, T ) = EMΣ−1

A (EAε− σA(T )), (30)

x
(5)
M = x

(5)
M (ε, T ) = EMΣ−1

M (EAε− σM (T )), (31)

where

ΣA = (EA − EM )σA(T ) + EAEMεT , (32)
ΣM = (EA − EM )σM (T ) + EAEMεT . (33)

By differentiating (30) and (31) over time and combining it
with (21)-(24), we can solve for φ(i)

T and thus obtain

φ
(4)
T =

[J − λAs(T − TE)]Σ2
A + EAEMLxMΣAl

−1
0 v

(ΩρmcV − LT )Σ2
A + EAEMLxMM

, (34)

φ
(5)
T =

[J − λAs(T − TE)]Σ2
M + EAEMLxMΣM l

−1
0 v

(ΩρmcV − LT )Σ2
M + EAEMLxMM

,

(35)

where
M = (EA − EM ) εσT + EMεTσT . (36)

The previous manipulation also leads to the final form of φ(4)
xM

and φ(5)
xM , which is given in compact form as follows

φ(4)
xM = EAEMΣ−2

A (ΣAl
−1
0 v−Mφ

(4)
T ), (37)

φ(5)
xM = EAEMΣ−2

M (ΣM l
−1
0 v−Mφ

(5)
T ). (38)

Note that algebraic equations (26)-(28), (30), and (31) can be
further replaced in (29), (34), and (35), such that φ(i)

ε and φ(i)
T

no longer depend explicitly on x(i)
M . This allows us to formally

eliminate the phase fraction from the system states.
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Based on the above considerations, we can reformulate
model (17) as a hybrid system H in the framework of [14]
(cf. Section III-B). In particular, we take as state vector

x :=
[
x1 x2 x3 q

]ᵀ
=
[
ε T xd q

]ᵀ ∈ X (39)

where X := R≥0 × R≥0 × [0, 1]× {1, 2, 3, 4, 5}, and as input
vector

u :=
[
u1 u2 u3

]ᵀ
=
[
v J TE

]ᵀ ∈ U (40)

where U := R × R≥0 × R≥0. We also define functions
φ

(q)
ε and φ

(q)
T according to (23), (29), (34), and (35) for all

q ∈ {1, 2, 3, 4, 5}. The main rational behind the hybrid model
construction is as follows. The strain x1 and the temperature
x2 represent the continuous states, which only change during
flows. The frozen phase fraction x3 computed at the time of
mode change, as well as the current mode identifier q, define
discrete states that can only change via jumps. The jump logic,
enabling the transitions between two operative modes of the
model, is related to the physical interpretation of the material
phase transformation, summarized in Fig. 3 (b) (details are
omitted for conciseness). Hence, the flow set and the flow
map can be defined as:

C :=

5⋃
i=1

Ci , (41)

where

C1 := R≥0 × {x ∈ X : x
(4)
M ≤ 0} × {0} × {1}, (42)

C2 := R≥0 × {x ∈ X : x
(5)
M ≥ 1} × {1} × {2}, (43)

C3 := R≥0 × {x ∈ X : x
(5)
M ≤ x3 ≤ x(4)M } × [0, 1]× {3}, (44)

C4 := R≥0 × {x ∈ X : x
(4)
M ≤ 1, φ

(4)
xM ≥ 0} × [0, 1]× {4}, (45)

C5 := R≥0 × {x ∈ X : x
(5)
M ≥ 0, φ

(5)
xM ≤ 0} × [0, 1]× {5}, (46)

f(x, u) :=
(
φ

(q)
ε , φ

(q)
T , 0, 0

)
, ∀(x, u) ∈ C (47)

To enable a jump jump set is defined as:

D :=

8⋃
i=1

Di , (48)

where

D1 := R≥0 × {x ∈ X : x
(4)
M ≥ 0, φ

(4)
xM ≥ 0} × {0} × {1}, (49)

D2 := R≥0 × {x ∈ X : x
(5)
M ≤ 1, φ

(5)
xM ≤ 0} × {1} × {2}, (50)

D3 := R≥0 × {x ∈ X : x
(5)
M ≤ x3, φ(5)xM ≤ 0} × [0, 1]× {3}, (51)

D4 := R≥0 × {x ∈ X : x3 ≤ x(4)M , φ
(4)
xM ≥ 0} × [0, 1]× {3}, (52)

D5 := R≥0 × {x ∈ X : x
(4)
M ≥ 1, φ

(4)
xM ≥ 0} × [0, 1]× {4}, (53)

D6 := R≥0 × {x ∈ X : x
(4)
M ≤ 1, φ

(4)
xM ≤ 0} × [0, 1]× {4}, (54)

D7 := R≥0 × {x ∈ X : x
(5)
M ≤ 0, φ

(5)
xM ≤ 0} × [0, 1]× {5}, (55)

D8 := R≥0 × {x ∈ X : x
(5)
M ≥ 0, φ

(5)
xM ≥ 0} × [0, 1]× {5}, (56)

The jump map is defined so to enforce the transitions in Fig. 3.
In particular, we define:

G(x) :=
⋃

i∈{k∈{1,2...,8} : x∈Dk}

gi(x), x ∈ D, (57)

where:

g1(x) :=
(
x1, x2, 0, 4

)
∀x ∈ D1 (58)

g2(x) :=
(
x1, x2, 1, 5

)
∀x ∈ D2 (59)

g3(x) :=
(
x1, x2, x3, 5

)
∀x ∈ D3 (60)

g4(x) :=
(
x1, x2, x3, 4

)
∀x ∈ D4 (61)

g5(x) :=
(
x1, x2, 1, 2

)
∀x ∈ D5 (62)

g6(x) :=
(
x1, x2, x

(4)
M , 3

)
∀x ∈ D6 (63)

g7(x) :=
(
x1, x2, 0, 1

)
∀x ∈ D7 (64)

g8(x) :=
(
x1, x2, x

(5)
M , 3

)
∀x ∈ D8 (65)

Note how explicit dependence of functions x(4)
M , x(5)

M , φ(4)
xM ,

φ
(5)
xM on system states and inputs has been omitted from (41)-

(65) for compactness of notation.
Based on the above defined sets and maps, the single-

crystal SMA wire can be modeled via the hybrid system
H = (C, f,D,G). The result given next establishes a few
interesting properties for H.

Proposition 1: Let C, f , D, and G be defined as in
Section III.B. Then, the following properties hold true for H:
(a) H satisfies the hybrid basic conditions;
(b) Let u be a hybrid signal and ξ ∈ C ∪D. There exists a

nontrivial solution pair (φ, u) to H such that φ(0, 0) = ξ;
(c) Let (φ, u) be any maximal solution pair toH. Then, either

(φ, u) is complete or it has a finite-escape time.
Remark 1: The fact that H satisfies the hybrid basic condi-

tions ensures that the proposed model enjoys some robustness
properties with respect to small perturbations.

Remark 2: Having defined G to be set valued enables to
ensure the satisfaction of the hybrid basic conditions for H;
see Section III-B. On the other hand, set-valuedness of G,
along with the closedness of the flow and jump sets, leads
to nonunique solutions. This is a typical consequence when
insisting on the satisfaction of the hybrid basic conditions;
see, e.g., [25], [26], [27], [28].

IV. RESULTS

In this section, the new SMA hybrid model is first iden-
tified based on available experimental data. Subsequently,
comparative simulations between MAS and hybrid models are
conducted in the context of a flexible robotic application.

A. Hybrid SMA Model Calibration

An experimental identification of the SMA hybrid model
is first performed, by using the single-crystal material data
available in [29]. The calibration process is based on an ex-
perimental stress-strain measurement, conducted on a CuZnAl
single-crystal SMA material working at a constant ambient
temperature TE = 315 K. Some of the model parameters can
be set a priori, i.e., the reference temperature is arbitrarily
chosen as T0 = 323 K, while coefficients r0 = 75 µm,
l0 = 95.7 mm, and ρV = 7745 kg/m3 are derived based on
[29]. Therefore, the parameters to characterize are:
• Mechanical parameters EA, EM , and εT in (1);
• Thermal parameters σT , cV , and λ in (9) and (10);
• Hysteresis parameters σMW (T0) and ∆σ in (9).
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Fig. 4. Result of the parameter identification (center) and validation (left- and right-hand sides) based on three different isothermal experiments.

The identification, performed via a combination of hand-
tuning and nonlinear optimization tools available in MATLAB,
provides the following optimal values: EA = 12.3 GPa,
EM = 7.8 GPa, εT = 0.067, σT = 2.13 MPa/K, cV = 380
J/(Kg K), λ = 450 W/(m2K), σMW (T0) = 121.35 MPa, and
∆σ = 12.3 MPa. The resulting curve is shown in Fig. 4
(center). In addition, a validation is performed with further
stress-strain experiments conducted at TE = 292 K and
TE = 338 K, shown in Fig. 4 (left-hand side) and Fig. 4
(right-hand side), respectively. As it can be seen, the model
well predicts the hysteretic curves in each test.

B. Simulation Study: SMA-Driven Flexible Robotic Structure

The aim of this section is to compare the performance
of MAS and hybrid models in terms of both accuracy and
simulation time, based on numerical studies conducted on a
SMA-actuated device. In order to test the SMA hybrid model
within a meaningful setting for continuum robotic applications,
the multi-actuated structure shown in Fig. 5 is considered
as numerical case study. It consists of a T-shaped backbone
made of a flexible cylindrical beam and a rigid top plate. Two
tendon-like actuators made of bundles of pre-tensioned SMA
wires are mounted in parallel to the beam. The considered
system operates similarly to the flexible module described in
Section II, with the only difference that in here the motion is
constrained on a plane, for simplicity. With respect to Fig. 5,

Fig. 5. Graphic representation of the flexible robot module actuated by two
SMA bundles, idle state (a) and actuated state (b).

the size of both rigid plate and base is denoted as W . The
flexible backbone is modeled as a planar Euler-Bernoulli beam
[30] (small deformation assumption). In this way, the beam
can be uniquely described by three spatial degrees of freedom,
denoted as q = [Ux Uy α]ᵀ, which represent the displacement
and inclination of the tip, see Fig. 5(b). The corresponding
energy-conjugated generalized forces applied to the beam by
the SMAs are denoted as τ = [T F M ]ᵀ, and are reported in
Fig. 5(b) as well. We also assume that the mass of the rigid
plate dominates the one of the beam. Based on the above
assumptions, the following model is obtained

mH Üx = −EAL−1Ux − bxU̇x + T, (66)

mH Üy = −12EIL−3Uy + 6EIL−2α− byU̇y + F, (67)

JH α̈ = 6EIL−2Uy − 4EIL−1α− bαU̇α +M. (68)

where E is the Young’s modulus of the beam, A is the cross-
sectional area of the beam, L is the beam length, I is the
second moment of area of the beam, while mH and JH
are the mass and the moment of inertia of the top platform,
respectively. Dissipative phenomena are rendered through vis-
cous friction coefficients bx, by , and bα, while gravitational
effects are neglected for simplicity. To establish a physically
consistent coupling between the flexible structure and the
SMA actuators, we define the following power-preserving
interconnection [

v
τ

]
=

[
0 J(q)

−Jᵀ(q) 0

] [
f
q̇

]
, (69)

where f and v denote (with an abuse of notation) the vectors
of SMA forces and velocities, linked together via the model
developed in Section III, while J(q) is the Jacobian matrix
which relates the generalized velocities q̇ to the SMA veloci-
ties v. Such a matrix is derived via the kinematic model

J(q) :=
∂l(q)

∂q
, (70)

where the vector of SMA lengths l is simply given by

l(q) =

 √
[Uy − W

2
(1− cosα)]2 + (L+ Ux − W

2
sinα)2√

[Uy + W
2
(1− cosα)]2 + (L+ Ux + W

2
sinα)2

 .
(71)
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The overall system model, provided with the hybrid system
H, is implemented in MATLAB/Simulink environment via the
Hybrid Equation (HyEQ) Toolbox [31].

Remark 3: As mentioned in Remark 2, solutions of system
H are nonunique. Nonuniqueness can be handled in simula-
tions by setting specific rules, thereby performing a selection
of the most suitable solution.

The control input of each SMA actuator is an electrical
power, thus it must always be greater or equal than zero. We
denote as J1 and J2 the Joule heating signals used to control
SMA bundle 1 and 2, respectively. For simplicity, we assume
that the two bundles are never activated simultaneously. To
implement this driving strategy in a compact way, we define
a new virtual command Jeq which can be either positive
or negative. Signal Jeq uniquely determines both J1 and J2

according to the following rules:

• If Jeq > 0 then set J1 = |Jeq| and J2 = 0, i.e., only the
first wire bundle is activated;

• If Jeq < 0 then set J1 = 0 and J2 = |Jeq|, i.e., only the
second wire bundle is activated;

• If Jeq = 0 then set J1 = 0 and J2 = 0, i.e., both wire
bundles are not activated;

Therefore, the sign of the new input signal Jeq determines
which bundle is activated, while the magnitude of Jeq deter-
mines the amount of corresponding Joule heating.

All simulations are conducted by considering the following
parameters, chosen in an arbitrary yet realistic way: W = 10
mm, L = 100 mm, E = 2 GPa, mH = 10 g, JH = W 2mH/12,
h = 2.5 mm, I = h4π/4, TE = 298 K, bx = by = 2
N·s/m and bα = 2 N·m·s. To simulate the MAS model, the
additional parameters appearing in (6) are given as ωx = 100
Hz and VL = 5 · 10−23 m3, as in [21]. Finally, a number of
n = 10 SMA wires is considered in each bundle, implying
that the SMA force and power of the single-wire model
must be scaled by a factor n and 1/n, respectively. For
each simulation, the solver ode15s is chosen to deal with the
high stiffness of the beam model. A comparative simulation
campaign is conducted, in which both hybrid and MAS models
are compared when activated with the same control input
Jeq . A number of 30 different inputs are randomly generated,
chosen as sequences of steps with random amplitudes and
duration. Each input signal has a total duration of 100 s. One
example of such a signal is shown Fig. 6. The same figure also
reports the output of both models in terms of α, as well as the
jumps that occur for both SMA wires in case of the hybrid
implementation. As it can be observed, the response curves
of both models are practically indistinguishable. This fact
holds true for all the conducted simulations, thus confirming
the validity of the hybrid implementation. The simulation
time of the hybrid model, however, is remarkably smaller
than the MAS one (1.75 s vs. 8.66 s, averaged over the
30 simulations). This result allows us to asses the improved
numerical properties of the new model, at least for the given
class of robotic systems. Finally, Fig. 7 shows the angle α as
a function of Jeq , for the hybrid model only, in case of a 1
mHz sinusoidal input. The plot clearly shows the input-output
hysteretic behavior of the system.

Fig. 6. Comparison between the hybrid dynamical model (solid blue line)
and MAS model (dashed red line) with a random input.

Fig. 7. Input-output hysteresis of the system, 1 mHz sinusoidal input.

V. CONCLUSION

In this paper, a hybrid description of the hysteresis occur-
ring in single-crystal SMA wires is presented, based on a
reformulation of the MAS model. The adopted port-oriented
representation provides a ready-to-use modeling framework
that supports simulation, optimization, and control of SMA-
driven robotic structures. The obtained results show how the
hybrid model presents a remarkable accuracy in describing the
system dynamics, while requiring only 20% of the time needed
to simulate the MAS model. Such a reduction in computation
time will play a key role when simulating complex continuum
robots, actuated by a significantly larger number of SMAs.

Future developments will concern the extension of the
hybrid reformulation to commercially available SMA materials
(i.e., NiTi) which exhibit a so-called polycrystalline (rather
than single-crystal) behavior. A polycrystalline material is
characterized by several inhomogeneities and impurities at
mesoscopic level. This results into a more complex hys-
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teresis curve, characterized by a smooth shape and multiple
inner loops, whose accurate modeling turns out to be highly
challenging. An experimental test bench for characterizing
continuum robotic structures will also be assembled, and used
to evaluate the performance of the hybrid model in fully
describing real-life SMA actuated systems. Control and self-
sensing algorithms based on the hybrid framework will also
be developed.
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