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Abstract— We present a new method for learning control law
that stabilizes an unknown nonlinear dynamical system at an
equilibrium point. We formulate a system identification task in
a self-supervised learning setting that jointly learns a controller
and corresponding stable closed-loop dynamics hypothesis. The
input-output behavior of the unknown dynamical system under
random control inputs is used as the supervising signal to train
the neural network-based system model and the controller.
The proposed method relies on the Lyapunov stability theory
to generate a stable closed-loop dynamics hypothesis and
corresponding control law. We demonstrate our method on
various nonlinear control problems such as n-link pendulum
balancing and trajectory tracking, pendulum on cart balancing,
and wheeled vehicle path following.

I. INTRODUCTION

Designing a controller to stabilize a nonlinear dynamical
system has been an active area of research for decades.
Classical approaches generally involve linearization of the
system. In Jacobian linearization, the system dynamics is
linearized within a small neighborhood around the equilib-
rium point and then a linear control, e.g., linear-quadratic
regulators (LQR [1]), is applied to stabilize the system. This
method is not suitable when a large region of operation is re-
quired or the system involves ‘hard nonlinearities’ that do not
allow linear approximation [2]. Feedback linearization, on
the other hand, constructs a nonlinear controller by canceling
system nonlinearities with algebraic transformations so that
the closed-loop system takes a (fully or partially) linear form
[2]. Another powerful method for nonlinear controller design
is the method of control-Lyapunov function [3], [4]. However,
the problem of constructing a Lyapunov function is very hard
in general [5].

Neural networks have been explored for designing control
of nonlinear systems. However, most of the prior works
are focused on control-affine systems [6], [7], [8]. Neural
network-based control design for nonaffine systems generally
assumes the system to be in Brunovsky form [9] or pure-
feedback form [10]. Recently, Patan and Patan [11] used
a neural network-based iterative learning control for an
unknown nonlinear plant. They model the system dynamics
using a neural network and develop a neural controller using
the learned model of the system dynamics.

The aforementioned works use neural networks with a
single hidden layer and saturating activation functions. How-
ever, it has been observed that a deep network requires
less number of parameters in comparison with its shallow
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counterpart to approximate a composite function with similar
accuracy [12]. Hence, there has been a growing interest
in utilizing deep neural networks (DNNs) to design con-
trollers for nonlinear systems. Chang et al. [13] used DNN
to learn a Lyapunov function and design a controller for
a complex system when the dynamics is known a-priori.
Authors trained a neural Lyapunov function and update the
parameters of an initial LQR controller by minimizing a
Lyapunov-constrained loss function. Taylor et al. [14], [15]
used DNN to learn the uncertain part of a partially known
system and iteratively update the corresponding Lyapunov
function to improve an existing controller. Bhatt et al. [16]
used a neural network to predict trajectory execution error
of industrial manipulator and used that to design a context-
dependent compensation scheme.

Most of the deep learning methods mentioned above
require some knowledge of the system dynamics. However,
in many real problems, the system dynamics is unknown.
The need for automatic synthesis of control algorithms for
unknown systems has long been recognized in formal control
[17], [18]. We present a novel deep learning approach,
referred to as the neural identification for control, to de-
sign controller for an unknown nonlinear dynamical system
that couples the expressive power of neural networks with
concepts from classical feedback linearization and Lyapunov
stability theory. We consider the following constraints: (1)
only observations of inputs and states, rather than any (fully
or partially) known model, of the system is available, (2)
a stable closed-loop response of the system is not available
for supervision and no pre-existing controller is available for
initialization.

Our approach is motivated by the extensive research in
formal control on identification for control [17], [18]. We
recognize that directly learning an accurate model of an
unknown nonlinear dynamics can be arbitrarily complex.
However, in identification for control, the closed-loop per-
formance of the learned controller is of primary concern,
rather than an accurate model of system dynamics [18]. We
leverage this observation to formulate a system identification
task in a self-supervised setting that learns the control law to
stabilize a system at an equilibrium point without explicitly
seeking an accurate model of the unknown dynamics. We
analytically show that a neural network can be utilized to
generate a stable closed-loop dynamics hypothesis exploiting
Lyapunov stability theory. We use that hypothesis to learn
the control law from the observations of the input-output
behavior of the system. We illustrate the proposed method on
several nonlinear control problems, namely, balancing an n-
link pendulum and trajectory tracking, balancing a pendulum
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on a cart, and tracking the path of a wheeled vehicle.
Training neural networks for unknown systems requires a

large amount of data which can be challenging for safety-
critical systems, particularly, when training data must be
collected from a broad region of operation. We propose to
address this problem using an iterative approach, where we
initially collect training data from a known small safe region
around the equilibrium point and learn an initial controller.
Next, we use the learned controller to collect data over a
wider region to update the controller. Using the example of
an n-link pendulum, we show that our method can learn a
controller that yields a region of attraction (ROA) beyond the
training domain making such an iterative approach possible.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

Consider a time-invariant controlled dynamical system of
the form

dx

dt
= f(x,u), x(0) = x0, (1)

where x(t) ∈ X ⊂ Rn and u(t) ∈ U ⊂ Rm are the system
state and control input, respectively, at time t. f : X ×U →
Rn is some unknown nonlinear function. When the control
input is zero, i.e. u = 0, we call the system, dxdt = f(x,0) =
f0(x), an autonomous dynamical system. For the dynamical
system of (1), assuming it is stabilizable, we consider the
following problem.

Problem. Learn a feedback control law u = π(x)
for an unknown time-invariant dynamical system of (1)
that makes the corresponding closed-loop dynamics dx

dt =
f(x, π(x)) asymptotically stable at an equilibrium point xe,
i.e., ∀ x(0) ∈ Xπ, limt→∞ ‖x(t)‖ = xe, where Xπ is the
ROA of the closed-loop system under the control law π.

B. Lyapunov stability

Stability of a dynamical system at equilibrium points
is usually characterized using the method of Lyapunov.
Suppose the origin x = 0 be an equilibrium point for a
dynamical system dx

dt = h(x), where h : X → Rn is a
locally Lipschitz map. Let V : X → R be a continuously
differentiable function such that

V (0) = 0, and V (x) > 0 ∀ x ∈ X \ {0}, (2)

and the time derivative of V along the trajectories

dV

dt
= ∇V (x)T

dx

dt
= ∇V (x)Th(x) ≤ 0 ∀ x ∈ X . (3)

Then, the origin is stable and V is called a Lyapunov
function. Moreover, if there exist constants k1 > 0, k2 > 0,
and α > 0 such that

k1‖x‖2 ≤ V (x) ≤ k2‖x‖2,
and ∇V (x)Th(x) ≤ −α‖x‖2 ∀ x ∈ X , (4)

then the origin is exponentially stable [19].

III. PROPOSED LEARNING APPROACH

We formulate a system identification task to learn a control
law to stabilize a nonlinear system without explicitly seeking
an accurate model of the system dynamics. Our learning
method involves two steps which are designed based on the
following rearrangement of the controlled dynamics of (1):

dx

dt
= f(x,u) = f(x,0) + (f(x,u)− f(x,0))

= f0(x) + g(x,u), x(0) = x0 (5)

Based on (5), the two steps of learning methods are defined
as follows.
• First, we train a neural network to learn the effect of

control input (i.e. an approximate model for g(x,u)).
• Next, we train two neural networks jointly. One net-

work learns to generate a stable closed-loop dynamics
hypothesis fs(x) and the other one learns a control law
π(x) that drives the system toward fs.

Figure 1(a) shows these two steps schematically. Note, the
neural network approximation does not require the function
g(x,u) to be affine with respect to control input u; therefore,
our method can be used for non-affine systems in general.

We assume a self-supervised learning setting where all
the training data, i.e. the observations of input u, state x
and dynamics f(x,u), are collected beforehand within the
region of operation X and U .

A. Learning the effect of control input

To learn the effect of control input in dynamics i.e., a
neural network approximation of function g of (5), we use
the difference between autonomous dynamics and dynamics
subjected to a random nonzero control input (Figure 1(b)).
We sample state x and control input u from X×U with joint
distribution pxu and train a neural network for ĝ (denotes an
approximation of g) to minimize the loss

Lĝ = Ex,u ∼ pxu(X×U) ‖f(x,u)−f0(x)− ĝ(x,u)‖2 (6)

It is important to note that the values of f and f0 are obtained
from observations of the system (training data), not computed
from a known model. Specifically in experiment, N samples
(xi,ui), i ∈ {1, 2, · · · , N} are drawn from X ×U according
to pxu and the model is trained to minimize the following
empirical loss.

LNĝ =
1

N

N∑
i=1

‖f(xi,ui)− f(xi,0)− ĝ(xi,ui)‖2 (7)

B. Learning the stable dynamics hypothesis and control law

We propose the following:

A control law u = π(x) that stabilizes the system at the
origin and the corresponding stable closed-loop dynamics fs
can be learned jointly by minimizing the loss

Lfs,π = Ex ∼ px(X ) ‖f0(x) + ĝ(x, π(x))− fs(x)‖2 , (8)

where the x is a random variable over the state space X
with a distribution px.
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Fig. 1. The two steps of the learning process. (a, b) First, the effect of control input on the dynamics is learned by the neural network NNĝ using observed
data of autonomous dynamics f0 and dynamics f under random control input. (a, c) Next, the stable closed-loop dynamics hypothesis fs and corresponding
control law π are learned jointly by neural networks NNP and NNπ , respectively, using observed data of autonomous dynamics f0. Structure of NNP is
shown separately in (a). The red curve in (c) shows a stable trajectory hypothesis converging to the origin and fs is its current component at state x.

Effectively, we propose to train two neural networks
jointly: one for hypothesizing a stable closed-loop dynamics
fs directly from system state (since closed-loop dynamics
can be described using only the system state) and, the
other neural network for generating a control input π(x).
The estimated effect of the control input ĝ(x, π(x)) when
added to the autonomous dynamics f0(x) should match
with the hypothesis fs (Figure 1(c)). The difference between
the hypothesized closed-loop behavior fs and the estimated
behavior of the actual system, subjected to the policy π, is
minimized using the loss function (8).

The true value of autonomous dynamics f0 is obtained
from the system by applying zero control input. Specifically
in experiment, N samples xi, i ∈ {1, 2, · · · , N} are drawn
from X according to px and the neural networks for fs and
π are trained to minimize the following empirical loss.

LNfs,π =
1

N

N∑
i=1

‖f(xi,0) + ĝ(xi, π(xi))− fs(xi)‖2 (9)

A key component of our approach is a neural network
that generates a stable dynamics hypothesis. This network
is designed in such a way that the hypothesized closed-
loop dynamics is proportional to the negative gradient of
a Lyapunov energy function. The proportionality matrix, say
P ∈ Rn×n, should be such that vTP(x)v > 0, for any
v ∈ Rn. We first form a matrix P ensuring vTP(x)v ≥ 0,
for any v ∈ Rn, and show how it can be used to generate
a stable dynamics. However, exponential stability requires
strict inequality (vTP(x)v > 0). For that purpose, we use
the technique proposed in [20] that ensures a positive decay
in Lyapunov energy resulting in exponential stability. The
overall method of designing a neural network to generate a

stable dynamics hypothesis is developed using the following
result.
Theorem 1. Let V : X → R be a function defined by

V (x) = xTQx, x ∈ X ⊂ Rn, (10)

where Q ∈ Rn×n is a positive definite matrix. Suppose P :
X → Rn×n be a function such that

P(x) = A(x)TA(x) + B(x)−B(x)T , (11)

where A(x) ∈ Rl×n and B(x) ∈ Rn×n are some arbitrary
functions of x. Then, the dynamics defined by

dx

dt
= −P(x)∇V (x), x(0) = x0, (12)

is stable at the origin x = 0. Moreover, for any constant
α > 0, the dynamics

dx

dt
= fs(x)

= −P(x)∇V (x)−
ReLU

(
−W (x) + αV (x)

)
‖∇V (x)‖2

∇V (x),

x(0) = x0,
(13)

where W (x) = ∇V (x)TP(x)∇V (x), and ReLU(z) =
max(
0, z), z ∈ R, is exponentially stable at the origin x = 0.

Proof. It can be proved straightforwardly by applying
Lyapunov’s stability theorem (section II.B) and the fact that
for any v ∈ Rn, vTP(x)v ≥ 0 where P(x) is given by
(11).



By definition V in (10) is continuously differentiable and
we have

V (0) = 0, and V (x) > 0 ∀ x ∈ X \ {0} (14)

Now, for the dynamics of (12) we get

dV

dt
= ∇V (x)T

dx

dt
= −∇V (x)TP(x)∇V (x) ≤ 0 ∀ x ∈ X . (15)

Therefore, according to Lyapunov’s stability theorem, (12)
is stable at the origin x = 0.

From the definition of V in (10), we have

λmin(Q)‖x‖2 ≤ V (x) ≤ λmax(Q)‖x‖2, (16)

where, λmin(Q) and λmax(Q) denote the smallest and
largest eigenvalues, respectively, of Q and have positive
values since the matrix Q is positive definite. Now, W (x) =
∇V (x)TP(x)∇V (x) ≥ 0 and for the dynamics of (13), we
have
dV

dt
= ∇V (x)T

dx

dt

=


−∇V (x)TP(x)∇V (x),

if W (x) ≥ αV (x)

−∇V (x)TP(x)∇V (x)− (−W (x) + αV (x)),

otherwise

=

{
−W (x), if W (x) ≥ αV (x)

−αV (x), otherwise
(17)

Equation (17) implies

dV

dt
≤ −αV (x) ≤ −αλmin(Q)‖x‖2 < 0 ∀ x ∈ X (18)

Hence, according to Lyapunov’s stability theorem, (13) is
exponentially stable at the origin x = 0. �

C. Discussion

Choice of P(x). It is important to note that the ma-
trix A(x)TA(x) in (11) is positive semi-definite, i.e,
vTA(x)TA(x)v ≥ 0, for any v ∈ Rn and therefore, if we
use P(x) = A(x)TA(x) in (12), the dynamics would be
stable. However, A(x)TA(x) is a symmetric matrix which
is not a necessary constraint for the stability matrix of a
generic stable system. Therefore, we relax that constraint by
adding a skew-symmetric matrix B(x)−B(x)T in (11).

Exponential stability. The equation (12) represents a
dynamics that is stable at the origin. We follow the meth-
ods developed in [20] to generate the exponentially stable
dynamics hypothesis fs(x), shown in (13), by subtracting
a component in the direction of gradient of V . As shown
in [20], this ensures a positive decay in Lyapunov energy
(V ) along the trajectory which in-turn guarantees exponential
stability.

Differences with [20]. In [20], authors considered the
problem of modeling a stable dynamical system using DNN.
They use the trajectory data from a given stable system
to train a model that replicates the stable behavior of the

(a) (b)

𝑥1 𝑥1

𝑥2 𝑥2

Fig. 2. Phase portraits of a dynamics generated using neural network for
a two-dimension system with state x = [x1, x2]T . (a): Phase portrait of
dynamics generated using a standard neural network with random weights.
(b): Phase portrait of dynamics generated using the neural network (with
random weights) designed according to equation (13).

system. The model is trained using a loss that compares the
dynamics obtained from the neural network with the true
stable behavior of the underlying system. On the other hand,
we consider the problem of learning a control law to stabilize
an unstable system. Therefore, we do not have any true stable
behavior to compare against in the loss function. Rather,
we only use the unstable trajectory data to define a loss
function for joint learning of the stable dynamics hypoth-
esis and control law. The problem of learning a Lyapunov
function, a control law and a stable dynamics hypothesis
jointly from unstable trajectories is very hard due to the
local nature of stochastic gradient descent. Therefore, we
use a specific type of Lyapunov function, namely quadratic
Lyapunov function (defined by (10)), and constrain the stable
dynamics hypothesis to be proportional to the gradient of the
Lyapunov function. The positive definite matrix Q (in (10))
is a hyperparmeter and requires manual tuning. Choosing the
values of Q is similar to selecting the cost matrices for LQR
and depends on the prioritization of the state variables as per
requirement. The value of the decay constant (of Lyapunov
energy) α should be decided based on the requirement of
underdamped or overdamped control; we show the effect of
α in closed-loop system response in the experimental section.

D. Implementation

We use neural networks NNĝ , NNP, and NNπ to represent
the functions ĝ, P and π, respectively. The neural network
NNP is designed based on (11). The output neurons of a neu-
ral network constitute the entries of matrices A and B, which
are connected according to (11) to provide the final output
P (Figure 1(a)). According to Theorem 1, for any arbitrary
choice of matrices A and B, we can get a stable dynamics
using (13). Therefore, the outputs of any neural network
with random weights (even without any training) can be used
as the elements of matrices A and B to generate a stable
dynamics. Figure 2 shows that the neural network designed
using (13) inherently generates globally stable dynamics, i.e.
all trajectories approaches origin, even without any training.
However, by training this neural network with trajectory
data of an unstable system, we enforce the generated stable
dynamics hypothesis to be compatible with that underlying
system.



First, we train NNĝ using the loss function of (7). Next,
we train NNP, and NNπ jointly using the loss function of
(9). The overall procedure is summarized in Algorithm 1.
During evaluation of the closed-loop performance, we only
need the output of NNπ to generate the control signal u.

Algorithm 1 Neural Identification for Control
1: input: Black-box controlled dynamical system f , State

space X and input space U , decay constant α, positive-
definite matrix Q ∈ Rn×n

2:
3: Arbitrarily initialize the neural networks NNĝ , NNP, and

NNπ
4:
5: repeat . Training NNĝ
6: x,u ∼ px,u(X × U) . Sample batch of states

and control inputs
7: ĝ(x,u)← NNĝ(x,u) . Forward pass the neu-

ral network
8: Get f(x,u) and f(x,0)
9: Compute the loss LNĝ using (7)

10: Update the parameters of NNĝ by backpropagating
LNĝ and using SGD

11: until convergence
12:
13: repeat . Training NNP, NNπ
14: x ∼ px(X ) . Sample batch of states
15: P(x), π(x)← NNP(x), NNπ(x) . Forward pass

the neural
networks

16: ∇V (x)← 2Qx . Compute the gradient of the
Lyapunov function

17: Compute fs(x) according to (13)
18: ĝ(x, π(x))← NNĝ(x, π(x))
19: Get f(x,0)
20: Compute the loss LNfs,π using (9)
21: Update the parameters of NNP and NNπ by back-

propagating LNfs,π and using SGD
22: until convergence

IV. SIMULATION RESULTS

We provide simulation results using the proposed method
on several nonlinear control problems, namely, balancing
an n-Link pendulum and trajectory tracking, balancing a
pendulum on a cart, and tracking the path of a wheeled
vehicle. We first describe the general simulation settings
used for all the examples and then provide example specific
details. Finally, we discuss the results.

A. Simulation settings

Verification of the learned controller. We evaluate a
learned control law π by estimating the corresponding ROA
Xπ , i.e., every trajectory of the closed-loop system that
begins at some x ∈ Xπ asymptotically approaches the
origin. Estimating the ROA is an exhaustive search problem.
We arbitrarily sample multiple initial points from the state
space X and then forward simulate the black-box system

for a period of time by applying the control law π. We
record the trajectories from different initial points in ROA
Xπ . At any point in time, if the system state goes out of
X for any simulation, then that simulation stops, and the
corresponding trajectory is removed from Xπ . Furthermore,
for each trajectory, we record the running average of the
Lyapunov energy and if its final value is above some thresh-
old, the corresponding trajectory is removed from Xπ . If the
cardinality of Xπ is below some threshold, then the control
law π is classified as invalid.

Bounded actuation. We limit the magnitude of the control
input both during training and evaluation. During training
we impose the bounded control in two ways: (i) the input
space U (of the dataset) is bounded (ii) the control input
generated by the neural network is also bounded by this
limit. In other words, our neural network is already trained to
generate bounded control inputs during evaluation. However,
we can restrict the control input to an even tighter bound
(compared to what was used in training) during evaluation,
but that reduces the size of ROA. The actuation bound is
determined by the maximum random actuation applied to
the system while generating the training dataset such that
the system does not leave the training domain.

Neural network configuration and training details.
In all experiments, we use 10K randomly sampled pairs
of states and control inputs of the dynamics to train our
neural networks, and another 5K randomly sampled pairs
for validation. Networks are trained using Adam optimizer
in mini-batches of 32 samples for 300 epochs starting with
a learning rate of 0.001, downscaled at every epoch by 0.99.

For all simulation examples and all neural networks (NNĝ ,
NNP, and NNπ), we use multilayer perceptrons (MLPs)
with three hidden layers each having 64 neurons with ReLU
activation. The number of neurons in the input and output
layers depends on the dimension of the state vector of the
specific system. We apply bound on the output of NNπ using
tanh activation.

Baselines for comparisons. We compare the estimated
ROA and closed-loop response for the control law obtained
from the proposed method with baseline controllers obtained
using LQR and RL. For the RL baseline, we use the proximal
policy optimization algorithm [21] in actor-critic framework
[22]. We train the RL agent for 3000 episodes or less if
the cost function converges before that. Each episode can
have 200 steps at most and can end early if the system
goes beyond the allowed domain. To induce randomness, at
each step, we store the transition (using the current policy)
in a buffer of size 1000 and when the buffer is filled, we
randomly sample batches to update the policy. The buffer is
then emptied, and we repeat the process.

B. Simulation examples

n-Link pendulum balancing and trajectory tracking.
We consider the problem of balancing an n-link pendulum
at a desired posture. The state of the system can be described
by the vector [θ1, · · · θn, ω1, · · ·ωn]T , where θi is the angular
position of link i with respect to its target posture and ωi is
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Fig. 3. (a) Schematic diagram of the double pendulum model. (b) Example closed-loop responses of angular position of the second link. (c) Phase portrait
of the second link subject to the learned control law by our method. ROAs corresponding to the control laws obtained using different methods are shown
in different legends.
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Fig. 4. (a) Schematic diagram of the kinematic wheeled vehicle model. (b) Example closed-loop responses of crosstrack error. (c) Phase portrait of the
closed-loop system subject to the learned control law by our method. ROAs corresponding to the control laws obtained using different methods are shown
in different legends.
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Fig. 5. (a) Schematic diagram of an inverted pendulum on a cart. (b) Example closed-loop responses of angular position of the pendulum. (c) Phase
portrait of the pendulum subject to the learned control law by our method. ROAs corresponding to the control laws obtained using different methods are
shown in different legends.

its angular velocity. The system can be moved to the desired
posture by applying control input at each pendulum (n con-
trol inputs). We enforce a maximum limit on the magnitude
of the control input ‖u‖ ≤ ū = 10

√
n, such that if the system

enters the unsafe region, it cannot recover. Trajectories for
training are generated by the symbolic algebra solver SymPy,
using simulation code adapted from [23]. We use α = 0.5
and the following matrices for Q.

Q2-link = diag(0.60, 0.32, 0.045, 0.035)

Q3-link = diag(0.50, 0.35, 0.20, 0.001, 0.001, 0.001) (19)

In addition to the balancing problem, we also consider a
trajectory tracking problem for the 2-link pendulum where

both the links are required to follow two reference trajecto-
ries. For this problem, the system state includes an additional
error state (with respect to the reference trajectory). Same
value of α is used, whereas Q is adjusted to have the same
values as (19) in the diagonal elements that correspond to
the error state.

Wheeled vehicle path tracking. We consider path track-
ing control of a wheeled vehicle assuming a kinematic
vehicle model [24]. Path tracking error state can be described
by the vector [de, θe]

T , where de is the crosstrack error,
measured from the center of the front axle to the nearest
path point and θe is the heading error with respect to the
tangent at the nearest path point. The desired path needs



Fig. 6. Comparison of trajectories obtained using our controller with their
references for the 2-link pendulum tracking problem.

to be tracked by controlling the steering angle. We enforce
a maximum limit on the magnitude of the steering angle
|u| ≤ ū = π

6 . Trajectories for training are generated by
the symbolic algebra solver SymPy. We use α = 0.05 and
Q = diag(0.96, 0.04).

Pendulum on cart balancing. Balancing an inverted
pendulum upright on a laterally sliding cart is a classic
nonlinear control problem. The state of the system can be
described by the vector [x, θ, v, ω]T , where x and v are the
lateral position and velocity, respectively, of the cart, and
θ and ω are the angular position and velocity, respectively,
of the pendulum. The pendulum needs to be stabilized at
the upright posture by applying a control input to the cart.
We enforce saturation constraints on the cart position and
velocity, and a maximum limit on the magnitude of the
lateral input force |u| ≤ ū = 50. Trajectories for training
are generated by the symbolic algebra solver SymPy, using
simulation code adapted from [25]. We use α = 0.5 and
Q = diag(0.0001, 1.0, 0.0001, 0.004).

C. Results and discussion

Analysis of the closed-loop response. Figure 3(b), 4(b),
and 5(b) show the closed-loop responses obtained using
different methods for n-link pendulum balancing, wheeled
vehicle path tracking, and pendulum on cart balancing,
respectively. For the pendulum on cart example, We observed
that the pendulum attains the desired posture, but the state of
cart does not goes to the origin. Properties of the closed-loop
response (e.g. overdamped vs underdamped, overshoot, set-
tling time, etc.) for our learned controller can be adapted by
tuning the hyperparameter α. The impact of α is significant
for both pendulum examples, whereas closed-loop responses
of wheeled vehicle path following for different values of α
are very similar.

Figure 6 shows the desired trajectories and the trajectories
obtained using our controller for 2-link pendulum tracking
problem.

ROA analysis. Figure 3(c), 4(c), and 5(c) compare the

ROA obtained using different methods for n-link pendulum
balancing, wheeled vehicle path tracking, and pendulum on
cart balancing, respectively. Our method attains larger or
comparable ROA to the other methods. The phase portraits
shown in these figures are obtained using our method and
show that the trajectories within the ROA approach the
origin.

Safe learning from limited data. One limitation of the
proposed method is that it assumes a significant amount of
data from the underlying system is available for training. For
safety-critical systems, collecting a large amount of data,
particularly from a broad region of operation, is itself a
challenging problem. To address this problem, we propose
an iterative approach based on the observation that given a
small safe region around the equilibrium point, our method
learns a controller that yields a ROA beyond the training
domain. We start with collecting training data from a known
small safe region around the equilibrium point and learn
an initial controller. Next, we use the learned controller to
collect data over a wider region to update the controller.
Algorithm 2 delineates the iterative learning process. We
show this iterative process for the 2-link pendulum example
in Figure 7.

Algorithm 2 Iterative Learning
1: input: Black-box controlled dynamical system f , Initial

safe state space X0 and input space U0
2:
3: Xs ← X0 . Initialize safe state space
4: Us ← U0 . Initialize safe input space
5: repeat
6: NNπ ← Algorithm 1 (f , X ,U) . Learn a control

law using Algo-
rithm 1

7: Compute the ROA Xπ of controller NNπ
8: x ∼ px(Xπ) . Sample batch of states from Xπ

9: u← NNπ(x) . Get control inputs using NNπ
10: Update X ,U with new data x,u
11: until convergence

Robustness analysis for model uncertainty. Learning
with neural network is subject to inaccuracies due to insuffi-
cient data. Generally, a Monte Carlo (MC) dropout inference
technique is used to capture the uncertainty of neural network
output where the neural networks are trained with dropout
before every weight layer, and at the test time, multiple
inferences are obtained for same input using MC simulations
to quantify uncertainty [26]. We use this MC dropout method
to analyze the robustness and quantify uncertainties of the
learned controller for the 2-link pendulum balancing prob-
lem. We train the neural networks with dropout (probability
of dropping each hidden neuron is 0.2) using data collected
from a small region around the equilibrium (same as round 1
of Algorithm 2). At test time, for each random initial point,
we perform 50 MC simulations of NNs using dropout. We
count the number of times trajectory starting from an initial



Training domain (Round 1)

ROA (Round 1)

Training domain (Round 2)
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Fig. 7. Iterative training for 2-link pendulum balancing. We start training
with data collected within a small region around the equilibrium point
(Round 1). The learned controller in the first round is used to collect data
from a subset of the corresponding ROA. The new data is then used for a
second round of training.

point fails to reach the origin and use the failure probability
as the measure of uncertainty at that point. Figure 8 shows
that the learned controller is robust under model uncertainty
for a significant region outside the training domain.

Depth of neural networks. We use same depth (number
of layers) of MLPs for all examples. However, network depth
can be increased or decreased depending on the complexity
of the system dynamics. For example, wheeled vehicle
dynamics is relatively less complex than the other two cases
and MLPs having only two layers shows a very similar ROA,
whereas ROA for 2-link pendulum reduces slightly with two-
layer MLPs.

V. CONCLUSION AND FUTURE WORK

We have proposed a novel method for learning control
for an unknown nonlinear dynamical system by formulating
a system identification task. The proposed method jointly
learns a control law to stabilize an unknown nonlinear system
and corresponding stable closed-loop dynamics hypothesis.
We have demonstrated our approach on various nonlinear
control simulation examples.

The proposed approach assumes a known initial training
region from where trajectory data can be collected with zero
and random control input. However, such data collection
may not be practical in many cases. We plan to address this
issue in future work. Developing a method to determine the
initial region for an unknown system is also a challenging
future work. In this work, we used dropout to ensure the
robustness of our controller. However, in future work, we
plan to investigate this with thorough robustness analysis, to
verify if this approach indeed results in a robust controller.

ROA for NNs without dropout

Training domain

Fig. 8. Failure probability in ROA of 2-link pendulum balancing for 50
MC dropout simulations.
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