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A Metric Space Perspective on Self-Supervised
Policy Adaptation

Cristian Bodnar , Karol Hausman , Gabriel Dulac-Arnold, and Rico Jonschkowski

Abstract—One of the most challenging aspects of real-world
reinforcement learning (RL) is the multitude of unpredictable and
ever-changing distractions that could divert an agent from what
was tasked to do in its training environment. While an agent
could learn from reward signals to ignore them, the complexity
of the real-world can make rewards hard to acquire, or, at best,
extremely sparse. A recent class of self-supervised methods have
shown promise that reward-free adaptation under challenging dis-
tractions is possible. However, previous work focused on a short
one-episode adaptation setting. In this letter, we consider a long-
term adaptation setup that is more akin to the specifics of the real-
world and propose a metric space perspective on self-supervised
adaptation. We empirically describe the processes that take place
in the embedding space during this adaptation process, reveal some
of its undesirable effects on performance and show how they can be
eliminated. Moreover, we theoretically study how actor-based and
actor-free agents can further generalise to the target environment
by manipulating the Lipschitz constant of the actor and critic
functions.

Index Terms—Continual learning, deep learning methods,
reinforcement learning.

I. INTRODUCTION

R EAL-WORLD environments are characterised by an ever-
changing set of distractions such as modifications in light-

ing conditions, object colour variations or evolving backgrounds
that are irrelevant for the tasks RL agents should perform. These
distractions are often so complex and diverse that they cannot all
be anticipated at training time. While further RL training in the
target environment could address this problem, RL assumes the
existence of a reward signal, which usually requires instrumenta-
tion or manual labelling. Another way to address the problem of
changing distractions is to have the agent continuously adapt to
them – without requiring reward – in a self-supervised manner.

Hansen et al. [1] have made important progress in this di-
rection. They propose an RL agent that implicitly adjust its
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state encoder by training an inverse dynamics network that
predicts actions from pairs of abstract state representations. This
model is pre-trained via RL in the source environment and then
fine-tuned (reward-free) in the target environment that includes
the distractions. The fine-tuning adjusts the state representations
and improves RL performance is the target domain. While their
work opened up this exciting avenue of research, the authors
mostly focused on a one-episode adaptation process for a Soft
Actor-Critic (SAC) [2] agent.

In this work, we consider a long-term reward-free adapta-
tion scenario both in an actor-critic and actor-free setting and
describe the processes that take place in the embedding space
during the adaptation phase. Firstly, we demonstrate that while
the two environments move towards each other in the embedding
space, the original representation of the source environment that
the agent was trained on is altered. To address this problem,
we propose a parallel training procedure that adjusts the actor
and critic weights to compensate for the changes in the state
representations. Secondly, we formulate an upper bound on the
mismatch between the actions taken between the two environ-
ments and show how this can be reduced in practice.

II. BACKGROUND

Problem Statement: We consider two Partially Observ-
able Markov Decision Processes (POMDPs) [3], [4] M1 =
(O,S,A, T,R,Ω1, γ) and M2 = (O,S,A, T,R,Ω2, γ) shar-
ing the same observation space O, state space S , action space
A, transition function T (s′|s, a), reward function R(s, a), and
discount factor γ, but with distinct conditional observation den-
sitiesΩ1(o|s, a) andΩ2(o|s, a), respectively.M1 represents the
source environment the agent is trained in and M2 represents
the target (adaptation) environment the agent is deployed in.
Because we are interested in reward-free adaptation in the target
environment, we assume we do not have access to the reward
functionRwhen interacting with environmentM2. We formally
define our objective as maximizing the expected total reward
E[
∑∞

t=0 γ
tR(st, at)] in the target environment M2.

Environments: For our experiments, we consider the Distract-
ing Control Suite [5] based on DM Control [6]. We proceed by
training in the distraction-free DM Control environments and
consider two different environments for adaptation: video back-
grounds and random colour changes. In the video background
environment, for each episode, a random frame from a set of
10 videos is used in the background. In the colour distraction
environment, the colours of all objects are uniformly sampled
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Fig. 1. The evolution of the representations of two matching observations
during self-supervised adaptation. The dotted lines indicate the original position
of the representations before adaptation. The dashed lines indicate how they
move in the embedding space and approach each other.

Fig. 2. Color (left) and background (right) distraction environments for the
“reacher-easy” task.

from the original colour ±0.5 in each episode. One frame from
each of the environments can be seen in Fig. 2.

Self-Supervised Adaptation: Hansen et al. [1] consider a soft-
actor critic (SAC) [2] model with an auxiliary inverse dynamics
loss. The agent is composed of an actor-network (fa), a critic (fc)
and an inverse dynamics prediction network (fi), all sharing a
convolutional image encoder (fe). Importantly, this architecture
allows the policy and the self-supervised prediction network to
share features. At training time, the whole model is trained in the
source domain using the usual SAC loss combined with an aux-
iliary inverse dynamics prediction loss, effectively conditioning
the shared features on the inverse dynamics of the environment.
At deployment time, the SAC objective is dropped and the
agent is adapted to the target domain by minimizing only the
inverse dynamics loss for the pairs of consecutive observations
it encounters in the target environment. The gradients of this loss
are propagated only through the inverse dynamics network and
the common encoder. The actor and the critic are left untouched
by this adaptation procedure (Figure 3). As a result of this fine-
tuning, the shared encoder features are adapted to the distractions
present in the target environment. Ultimately, this was shown
to improve RL performance in the target environment without
ever having access to the reward signal. In this work, we aim to
improve the understanding of this method while analysing ways
the adaptation process could be improved while maintaining the
same training procedure. Additionally, we extend our analysis to
QT-Opt [7], an actor-free algorithm extensively used in robotic
applications.

Preliminaries: For our analysis and experiments, we are
interested in adapting both in an actor-critic and in an actor-
free setting. For the first setting, we use Soft Actor-Critic

Fig. 3. Schematic of the self-supervised adaptation procedure from [1] (image
adapted from the letter). At training time, the SAC agent is minimizing an RL
objective alongside an inverse dynamics loss. At adaptation time, the pre-trained
agent continues to optimize only the inverse-dynamics loss for the transitions
encountered in the target environment.

(SAC) [2], a popular choice in model-free RL. For the latter,
we use QT-Opt [7], a Q-Learning [8] based algorithm whose
real-world generalization in robotic applications has been well-
demonstrated [7], [9].

In our experiments, we use the same neural network archi-
tecture based on Yarats et al. [10]: We employ an encoder fe :
O → E with eight convolutional layers and ReLU activations
that maps from the observation space to the embedding space
E . The encoder, is shared by three similar neural network heads
fi : E × E → A (inverse dynamics), fc : E × A → R (critic),
fa : E → A (actor – used only in SAC). The actor and critic
heads can be seen as a composition of two functions fa = ha ◦
ba and fc = hc ◦ bc. The functions b{a,c} : E → B = [−1, 1]100

compute a low-dimensional and normalised “bottleneck” vector,
while ha : B → A, hc : B ×A → R. b{a,c} compute the action
to be taken and the predicted Q value, respectively. The func-
tions b{a,c} are formed of 4 convolutional layers with the last
containing a layer normalised [11] and tanh-activated bottleneck
of dimension 100. We treat the bottleneck space B as a proxy
for underlying state of the observations. h{a,c} follow the the
bottleneck with two more ReLU activated hidden layers with
1000 neurons each and an output layer of the corresponding
dimension for each function. As an additional piece of notation,
we use g to refer to state of the networks before adaptation is
started (i.e., ge, gi, ga, gc).

We train our model in the source environment for 250 thou-
sand steps using two random crop augmentations per state like
in DrQ [12] and [1]. Then, we adapt in the target environment
for 50 000 transitions, with one gradient step per frame. We use
a batch size of 512 = 64× 8 containing 64 states with eight
random crop augmentations for each. We adapt from a replay
buffer with capacity 50 000 that is filled initially with 3200
transitions collected by the trained policy.

III. TOWARDS UNDERSTANDING SELF-SUPERVISED

ADAPTATION

A. The Embedding Space Dynamics

In this section, we analyse the dynamics in the embedding
space for the representations of the two environments in an
attempt to explain the internal mechanisms of self-supervised
adaptation. For the purpose of our analysis, we equip the bot-
tleneck space B with a metric d(e1, e2) providing the distance
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Fig. 4. Distance between the embeddings of matching states in the reacher-easy (left), finger-spin (middle) and cartpole-swingup (right) environments. We report
the mean and standard error over five different episodes. The matching states of the two environments move towards each other during adaptation. Lines show
means and shaded areas cover two standard deviations of the mean estimate.

between any two embeddings. Throughout our experiments
and theoretical results, we select this distance to be Euclidean
distance between the bottleneck representations of the two
embeddings such that d(e1, e2) = ||e1 − e2||2. The use of the
Euclidean distance will later be motivated by our theoretical
results. The decision to measure it at the bottleneck layer is
justified by the fact that the output features of the bottleneck
layer are normalised in the range [−1, 1] and, therefore, the
Euclidean distance is well behaved. In contrast, this cannot be
guaranteed by the convolutions features of the encoder, which
are (unbounded) ReLU activations.

Firstly, we hypothesise that the representations corresponding
to observations sharing the same underlying state of the two en-
vironments become more similar during adaptation. To validate
this, we measure the expected distance between the embeddings
of observations sharing the same underlying state, formally
given by Es,a[d(b(fe(o1)), b(fe(o2)))], with o1 ∼ Ω1(s, a) and
o2 ∼ Ω2(s, a). To do so, we collect five matching episodes in
the two environments by synchronising the initial state of the
two and taking the same actions in both of them.

In Figure 4 we plot this average distance as a function of the
adaptation step for the reacher-easy, finger-spin and cartpole-
swingup environments with colour distractions. It shows that the
auxiliary loss minimization during the adaptation process im-
plicitly minimizes the distance between matching observations
of the two environments. Consequently, this allows the agent
trained on the source environment to generalize to the target
environment. It remains to be examined as part of future work
what types of auxiliary objectives implicitly produce a better
alignment of the features and how feature alignment could be
perhaps explicitly optimised for.

However, even though the two environments move closer
to each other in the embedding space as we have just shown,
we further hypothesise that the original representations of the
source environment are progressively forgotten. A large pertur-
bation in the original representations would cause catastrophic
forgetting of the actions learned in the source environment,
which would likely propagate to the actions taken in the target
environment.

To quantify this forgetting, we measure the expected Eu-
clidean distance between the representations of a set of source
observations before adaptation and the representations of the
same observations at a later time in the adaptation process. We

plot the evolution of these distances during adaptation in Figure 5
for three of the environments. We see that the Euclidean distance
monotonically increases during adaptation, meaning that the
original policy is gradually forgotten. Later, in Section IV,
we will show how forgetting directly hurts performance in the
source and target environments during adaptation.

We find that the cosine distance at the encoder-level, which is
invariant to the magnitude of the convolutional features, shows
the same behaviour as the Euclidean distance at the bottleneck
layer. This empirical finding supports the metric choice of our
analysis. Due to limited space, we illustrate this only on the
reacher-easy environment in Figure 6.

B. Bounding the Action-Mismatch

We visually summarize these findings in the diagrammatic
illustration in Figure 1 for a pair of matching observations of
the source and target environments. Starting from this model, in
this section, we perform a theoretical analysis of self-supervised
adaptation.

Let ge : O → E be the state of the encoder fe before adapta-
tion. Then, based on the previous results, we expect the embed-
dings of two matching observations o1 and o2 to be at some
distance εe = d(b(ge(o1)), b(fe(o2))) away from each other.
This distance would depend on how much forgetting has taken
place and how close to each other the two environments have
become. At the same time, we would expect the action mismatch
between the two environments to increase with this distance. In
what follows, we formalise these intuitions.

Definition III.1 (Lipschitz continuous function [13]): Given
two metric spaces (X, dx) and (Y, dy), a function f : X → Y is
K-Lipschitz continuous if there exists a constantK ≥ 0 such that
dy(f(x1), f(x2)) ≤ Kdx(x1, x2) for all x1 and x2. We refer to
the smallest such K as the Lipschitz constant of the function f .

As before, we use the usual Euclidean distance as the metric
associated with the domain and co-domain of the functions.

Proposition III.1: Let ha(e) = [μ(e), σ2(e)] be the compo-
nents of fa that specify the mean and variance of the multivariate
(normal) action distribution of the SAC actor. Additionally,
let μ and σ2 be K-Lipschitz continuous and σ2

i ≥ σ2
min for

all components i. Let e1 and e2 be the embeddings of two
matching observations with d(e1, e2) = εe. Then we have that
DKL(N (μ(e1), σ(e1))||N (μ(e2), σ(e2))) ∈ O((εeK)2).
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Fig. 5. The distance between the source environment embeddings at different adaptation steps and the same embeddings before adaptation in the reacher-easy (left),
finger-spin (middle) and cartpole-swingup (right) environments. We report the mean and standard error over five different episodes. The original representations
are progressively forgotten during adaptation (i.e. the source environment representations are increasingly different from those seen in training).

Fig. 6. The cosine distance at the encoder level has a similar qualitative
behaviour during adaptation as that of the Euclidean distance.

Proof: The KL divergence between two mul-
tivariate normal distributions is given by DKL =
1
2

[
ln |Σ2|

|Σ1| −D +Tr(Σ−1
2 Σ1) + (μ2 − μ1)

TΣ−1
2 (μ2 − μ1)

]
,

where D is the dimension of the random vector. Let δ =
max{‖μ1 − μ2‖, ‖σ2

1 − σ2
2‖}. Throughout the proof, we re-

peatedly use the fact that max(σ2
1,i, σ

2
2,i) ≤ min(σ2

1,i, σ
2
2,i) + δ

since the Euclidean distance upper-bounds the difference
between the individual components of the vectors. We begin by
bounding each of the terms in this expression by a function of
K and εe. We start by bounding the logarithm.

ln
|Σ2|
|Σ1| = ln

∏
i

σ2
2,i

σ2
1,i

≤ ln
∏
i

min(σ2
1,i, σ

2
2,i) + δ

min(σ2
1,i, σ

2
2,i)

(1)

=
∑
i

ln

(
1 +

δ

min(σ2
1,i, σ

2
2,i)

)
(2)

≤
∑
i

ln

(
1 +

δ

σ2
min

)
(3)

≤
∑
i

δ

σ2
min

(since ln(1 + x) ≤ x, x > −1) (4)

=
D

σ2
min

δ ≤ D

σ2
min

Kεe ∈ O(Kεe) (5)

We can obtain a similar bound for the trace term.

Tr(Σ−1
2 Σ1) =

∑
i

σ2
1,i

σ2
2,i

≤
∑
i

min(σ2
1,i, σ

2
2,i) + δ

min(σ2
1,i, σ

2
2,i)

(6)

= D +
∑
i

δ

min(σ2
1,i, σ

2
2,i)

(7)

≤ D +D
δ

σ2
min

≤ D +D
Kεe
σ2
min

∈ O(Kεe) (8)

Finally, we bound the last term of the KL divergence:

(μ2 − μ1)
TΣ−1

2 (μ2 − μ1) (9)

≤ 1

σ2
min

(μ2 − μ1)
T (μ2 − μ1) ≤ 1

σ2
min

δ2 (10)

≤ 1

σ2
min

(Kεe)
2 ∈ O((Kεe)

2) (11)

Putting it all together, we have DKL ∈ O((Kεe)
2). �

This proposition formalises the intuition that the closer the
two states are and the smoother the actor function is, the more
similar the two action distributions are going to be.

Obtaining a similar bound for QT-Opt is more challenging.
Because the actions are selected through a maximisation op-
eration argmaxa Q(s, a), any potential bound on the action
mismatch would depend on the landscape of Q(s, ·). This is
stated formally in the following proposition.

Proposition III.2: Let |hc(e1, a1)− hc(e1, a2)| = Δ1 be the
predicted Q-value difference for actions a1 and a2 at obser-
vation embedding e1 with hc(e1, a1) > hc(e1, a2). Let e2 be
the embedding of another observation. Assume we have a



BODNAR et al.: METRIC SPACE PERSPECTIVE ON SELF-SUPERVISED POLICY ADAPTATION 4333

metric over E × A with the property that d([e1, a1], [e2, a1]) =
d([e1, a2], [e2, a2]) = d(e1, e2) = εe. Additionally, let fc be K-
Lipschitz continuous. Then if εe < Δ1/(2K), the order between
predicted Q values at e2 is preserved and we have hc(e2, a1) >
hc(e2, a2).

Proof: Let |hc(e1, a1)− hc(e2, a1)| = Δ2 and |hc(e1, a2)−
hc(e2, a2)| = Δ3. Then if Δ1 > Δ2 +Δ3, the order is pre-
served, since the summed variation in the two predicted
Q values at the state s2 compared to s1 is insufficient to
change the order between the two. Using the Lipschitz prop-
erty of the Q function fc, we can require a stronger in-
equality to be satisfied Δ2 +Δ3 ≤ K[d([e1, a1], [e2, a1]) +
d([e1, a2], [e2, a2])] = 2Kεe < Δ1. It follows that the order be-
tween Q values is preserved if εe <

Δ1

2K �
This result says the order between any two predicted Q values

can be preserved for states in a certain neighbourhood given by
an open ball B(εe,e1) centred at e1. To increase the size of this
ball, we would like to maximise Δ1/(2K). A first idea would
be to increase the value of fc(e1, a1) as much as possible and
decrease the other Q values in order to increase Δ1. However,
Δ1 also depends on K as shown in the next result.

Proposition III.3: Let d be a metric with
d([e1, a1], [e1, a2]) = d([e2, a1], [e2, a2]) = d(a1, a2) = εa.
Then Δ1/(2K) can be at most εa

2 .
Proof: This follows directly from the Lipschitz continuity of

fc and we have εe <
Δ1

2K ≤ Kd([e1,a1],[e1,a2])
2K = 1

2εa �
This shows that the best we could do for a K-Lipschitz critic

function is to have a unimodal landscape, where the Q values of
other actions strictly decrease with the distance from the optimal
action.

From the perspective of Lipschitz continuity, these results
describe how one can manipulate the policy’s behaviour in the
target environment by exploiting the “stiffness” of the manifold
produced by the actor or critic functions, where the “stiffness” is
given by the Lipschitz constant. While a low Lipschitz constant
gives more power to control the behaviour in the target environ-
ment, it can affect the performance in the source environment if
the actor and critic functions are not flexible enough. Therefore,
these trade-offs must be carefully considered.

From a distance minimization perspective, it is clear that one
should try to reduce d(b(ge(o1)), b(fe(o2))) as much as possible
to reduce the action mismatch between the two embeddings. To
that end, we can use the following remark.

Remark: From the triangle inequality we have that

d(b(ge(o1)), b(fe(o2))) ≤ d(b(ge(o1)), b(fe(o1)))

+ d(b(fe(o1)), b(fe(o2))) (12)

This explicitly upper bounds d(b(ge(o1)), b(fe(o2))) on the
amount of forgetting that has taken place (the first term) and how
well the auxiliary objective has brought the two environments
closer to each other (the second term). As shown in Section III-A,
the inverse dynamics objective of [1] implicitly minimizes the
second term and undesirably increases the first. Therefore, one
would like to keep d(b(ge(o1)), b(fe(o1))) as close to zero as
possible. However, this could interfere with the self-supervised

objective. In the next section, we propose a better alternative that
allows us to consider only d(b(fe(o1)), b(fe(o2))).

C. Behaviour Cloning-Based Adaptation

To address the catastrophic forgetting problem, we con-
sider a parallel data collection strategy together with a loss
split across the two environments. The loss combines the self-
supervised objective in the target environment with a behaviour
cloning loss in the source environment, which ensures that
ha(ba(ge(o))) ≈ ha(ba(fe(o))) for SAC andhc(bc((ge(o)))) ≈
hc(bc(fe(o))) for QT-Opt, even though b(ge(o)) �= b(fe(o)).
Therefore, the action mismatch would depend approximately
only on d(b(fe(o1)), b(fe(o2))).

For SAC, we clone the weights of the encoder and the actor
into networks ge = fe and ga = fa before adaptation. Then, at
adaption time, we use ga(ge) as a target action to approximate on
states coming from the source environment. The gradient of this
loss is propagated only through the actor network. Concurrently,
we continue minimizing the inverse dynamics loss as before,
with gradients propagated through the inverse dynamics network
and the encoder. Ultimately, this results in the following loss

L = L1 + L2

= Eo∼D1

[
DKL[ga(ge(o))||fa(f̄e(o)]

]
+ E(ot,at,ot+1)∼D2

[
(fi(fe(ot), fe(ot+1))− a)2)

]
,

where D1 and D2 represent the replay buffer for environments
M1 and M2 and f̄e denotes the gradients are stopped from
propagating through the encoder. The loss makes the actor adjust
to the changes in the original representation to preserve its
original behaviour.

Similarly, for QT-Opt, we use the target encoder and target
critic network from the training stage fT

e , fT
c and use it as a

target for the Q values of the state-action pairs on the source
environment. As with SAC, we backpropagate this additional
loss only through fc, but not through fe. We obtain a similar
loss function:

L = L1 + L2

= Eo,a∼D1

[
(fc(f̄e(o), a)− fT

c (fT
e (o), a))2

]
+ E(ot,a,ot+1)∼D2

[
(fi(fe(ot), fe(ot+1))− a)2)

]
,

This loss makes the critic fc adjust its weights to compensate
for the adjustment in the representations and predict the same
Q-values in the source environment.

IV. RESULTS

A. Behaviour Cloning-Based Adaptation

We compare the proposed method with an online adaptation
process [1], which adapts only on the latest collected transition
from the target environment with multiple crop augmentations.
Another baseline is the replay buffer-based adaptation previ-
ously described in the experimental section. Additionally, we
include for reference the original performance of the agent
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Fig. 7. SAC performance in the source environments during adaptation in
the color sweep environments. We report the mean and standard error across
five independently trained and adapted agents. Behaviour cloning stops the
catastrophic forgetting of the policy obtained from the training phase and
performance stays constant.

Fig. 8. SAC adaptation results for the color sweep environment. We report
the mean and standard error across five independently trained and adapted
agents. Behaviour cloning improves the adaptation performance across all
environments.

before adaptation and an agent trained normally using rewards
in the target environment.

In Section III-A we quantitatively showed how the original
representations in the source environment are progressively
forgotten. In Figure 7, we now measure the effects this has on
the source environment performance for SAC. When using the
vanilla adaptation, the total reward of the agent in the source
environment degrades significantly with the adaptation step. In
contrast, the agent adapting with the behaviour cloning loss
completely avoids the degradation in performance observed in
the vanilla model and, in average, maintains its original perfor-
mance. The source environment results are similar for QT-Opt
(see Appendix).

The consequences of catastrophic forgetting are not limited
only to the source environment. In the target environment, using
behaviour cloning to avoid catastrophic forgetting results in an
improvement in the vast majority of environments. The evolu-
tion of the rewards during adaptation in the colour distraction
environments is shown in Figure 8. For QT-Opt, the catastrophic
forgetting is significantly attenuated in most environments, but
not completely reduced because even tiny differences in the Q
values can make the maximisation step select another action
(see Appendix). Table I summarises the final adaptation results
across all models and environments. More figures describing the
reward evolution during adaptation can be found in Appendix.

At the same time, we notice that the online adaptation intensi-
fies the forgetting process when adapting for multiple episodes

Fig. 9. Normalised adaptation performance with Lipschitz constraint. In-
creased function smoothness corresponds to increased generalisation.

and performance consequently degrades. While the replay-
buffer based adaptation works better, forgetting still happens.

B. Lipschitz Continuity

In this section, we are interested in exploiting the relationship
between the smoothness of the actor function and the action-
mismatch between the two environments in order to improve
the performance in the adaptation environment. We enforce a
Lipschitz constraint on the dense layers of the SAC actor that
follow the bottleneck layer. While more sophisticated methods
exist to do so [14], we simply reduce the magnitude of the
weights with an L2 regularization loss. We train the agent with
this additional regularisation loss weighted by a coefficient l2
and then we adapt it in the target environment as before. We
show adaption results in Figure 9 for the reacher-easy environ-
ment. In accordance with our hypothesis, we find that higher
l2 coefficients, corresponding to a smaller K, make the agent
increase its adaptation performance from a factor of 1.2 to 1.8.

V. RELATED WORK

A parallel stream of work has focused on adapting to dis-
tractions in the presence of rewards. In this setting, states and
observations can be aggregated if they cannot be distinguished
with respect to the reward sequences they produce under any
action sequences. More generally, bisimulation metrics [15] can
be used to quantitatively measure this behavioural similarity.
However, they are difficult to compute [16], [17]. Recently,
Zhang et al. [18] have proposed learning distraction invariant
representations by learning an embedding space that respects the
bisimulation metric between the observations. Similarly, Gelada
et al. [19] learn in an unsupervised manner a latent MDP whose
norm they theoretically connect to bisimulation metrics.

In contrast, our work is part of a recent line of research on
reward-free adaptation. Closer to the approach we analyse in our
letter, Tzeng et al. [20] use an adversarial procedure to achieve a
similar outcome of aligning the features of the two environments
by fooling a discriminator that is trained to distinguish between
the two. Another class of methods tries to train robust policies
by applying various types of domain randomizations [21]–[23].
While these methods have been successful in making the repre-
sentations more robust, they cannot possibly anticipate the full
set of distractions from a real-world setting.
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TABLE I
SAC AND QT-OPT MEAN TOTAL REWARD AND STANDARD ERROR AFTER ADAPTATION IN THE COLOR AND BACKGROUND DISTRACTION ENVIRONMENTS. THE

STATISTICS ARE COMPUTED OVER FIVE INDEPENDENTLY TRAINED AND ADAPTED AGENTS. BEHAVIOUR CLONING (BC) EITHER PERFORMS

SIMILARLY OR BETTER THAN THE VANILLA ADAPTATION (REPLAY OR ONLINE)

VI. CONCLUSION

In this work, we take a closer look at the class of self-
supervised adaptation methods introduced by [1] in a long-term
adaptation setting. We propose a metric-space picture of the
internal process that takes place in the embedding space during
adaptation and discover an undesirable aspect of this process:
the progressive forgetting of the original representations. We
propose a method based on behaviour cloning to fix this problem.
Additionally, we quantify the mismatch between actions taken in
corresponding states of the two environments. As a next step, we
aim to apply these techniques to real-world robotic applications
and distractions specific to these environments [24].

APPENDIX

ADDITIONAL PLOTS

We include the source environment performance for SAC
adapting to background distractions (Figure 10) and QT-Opt
adapting to color distractions (Figure 11). Additionally, we

Fig. 10. SAC performance in the source environments during background
adaptation. Behaviour cloning generally attenuates the catastrophic forgetting
of the policy obtained from the training phase and performance stays constant.

Fig. 11. QT-Opt performance in the source environments during color adap-
tation. Behaviour cloning generally attenuates the catastrophic forgetting of the
policy obtained from the training phase and performance stays constant.

Fig. 12. SAC adaptation results for the background sweep environment.
Behaviour cloning either improves or displays the same performance with the
exception of the cheetah environment.

include the target environment performance for SAC adapting
to background distractions (Figure 12) and QT-Opt adapting to
color distractions (Figure 13).
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Fig. 13. QT-Opt adaptation results for the color sweep environment. Behaviour
cloning either improves or displays the same performance with the exception of
the cheetah environment.
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