
1

Multi-goal path planning using multiple random
trees

Jaroslav Janoš , Vojtěch Vonásek and Robert Pěnička

Abstract—In this paper, we propose a novel sampling-based
planner for multi-goal path planning among obstacles, where the
objective is to visit predefined target locations while minimizing
the travel costs. The order of visiting the targets is often achieved
by solving the Traveling Salesman Problem (TSP) or its variants.
TSP requires to define costs between the individual targets, which
— in a map with obstacles — requires to compute mutual paths
between the targets. These paths, found by path planning, are
used both to define the costs (e.g., based on their length or time-
to-traverse) and also they define paths that are later used in
the final solution. To enable TSP finding a good-quality solution,
it is necessary to find these target-to-target paths as short as
possible. We propose a sampling-based planner called Space-
Filling Forest (SFF*) that solves the part of finding collision-free
paths. SFF* uses multiple trees (forest) constructed gradually and
simultaneously from the targets and attempts to find connections
with other trees to form the paths. Unlike Rapidly-exploring
Random Tree (RRT), which uses the nearest-neighbor rule for
selecting nodes for expansion, SFF* maintains an explicit list
of nodes for expansion. Individual trees are grown in a RRT*
manner, i.e., with rewiring the nodes to minimize their cost.
Computational results show that SFF* provides shorter target-
to-target paths than existing approaches, and consequently, the
final TSP solutions also have a lower cost.

Index Terms—Motion and Path Planning; Planning, Schedul-
ing and Coordination

I. INTRODUCTION

(a) Goals (b) Partially grown trees (c) Connected trees (d) Final path
Fig. 1: Example of multi-goal path planning with target locations (black) (a). We first build a set of trees from each goal (b) and expand
them until they touch obstacles or each other (b). Paths between the targets are found by searching the connected trees (c). Finally, TSP
computes final sequence of goals (d). Visualization of SFF* is available at https://youtu.be/vBQVO GP5Sc

The task of multi-goal path planning is to find a collision-
free path connecting several targets [27], which is required in

Manuscript received: October 15, 2020; Revised January 18, 2021; Ac-
cepted February 20, 2021.

This paper was recommended for publication by Editor Nancy Amato upon
evaluation of the Associate Editor and Reviewers’ comments. This work has
been supported by the Czech Science Foundation (GAČR) under project No.
19-22555Y.

The authors are with Department of Cybernetics, Faculty of Electrical
Engineering, Czech Technical University in Prague, Technická 2, 166 27
Prague, Czech Republic, janosjar@fel.cvut.cz

Digital Object Identifier (DOI): see top of this page.

data collection [8], [19], active perception [2], [19], and man-
ufacturing [27], [26]. Visiting multiple goals in the shortest
possible time is crucial for systems with limited operational
time like flying vehicles [22], e.g., for their recharging [18].

In the general version of multi-goal path planning, both
the sequence of visiting the targets and also the trajectory
connecting them have to be found such that the travel cost
(e.g., traveled distance or execution time) is minimized. The
classical approach, which is also considered in this paper, is
to decouple the task to the combinatorial part (finding the
sequence of targets to be visited) and to path planning part
that connects the targets in the found order. The combinato-
rial phase is usually considered as an instance of Traveling
Salesman Problem (TSP) and can be solved heuristically [19],
[14].

Formulation of multi-goal path planning using the TSP
requires knowledge about mutual reachability and trajectory
cost between the targets. For robots moving among obstacles,
path planning between all pairs of targets is necessary to obtain
the cost of their connection. To enable TSP finding a low-
cost solutions, it is furthermore desired that this target-to-target
path planning provides good quality paths.

In theory, paths between all pairs of targets should be
computed to define the distance matrix for TSP, but it is time-
consuming. Practically, paths between near targets are likely to
be used in the final TSP sequence due to their low cost, while
paths between distant targets may be ignored. For example in
Fig. 1a, it is more useful to find paths between targets A, B, C
and D as they are close to each other rather than finding paths
between D and E as the final TSP solution (Fig. 1d) would
rather connect the near targets. This observation motivates
the search proposed in this planner: instead of finding paths
between all pairs of targets (to define costs of visiting the
targets for TSP), we propose to find good-quality paths only
between near targets.

In this paper, we propose a novel tree-based randomized

ar
X

iv
:2

10
6.

03
40

7v
1

 [
cs

.R
O

]
 7

 J
un

 2
02

1

https://orcid.org/0000-0002-0467-7356
https://orcid.org/0000-0001-9224-2151
https://orcid.org/0000-0001-8549-4932
https://youtu.be/vBQVO_GP5Sc

2

planner for finding trajectories between multiple targets con-
currently (Fig. 1a). The planner, called Space-Filling Forest
(SFF*), grows multiple trees simultaneously, starting from
the given targets (Fig. 1b). The trees are expanded in the
configuration space in a randomized manner until they ap-
proach each other or get close to an obstacle. The nodes of
two different trees are connected if they are close to each
other. This forms a roadmap where the path connecting the
targets can be found (Fig. 1c). The paths are then used in the
subsequent TSP computation to obtain the final sequence of
visiting the targets and minimizing the overall cost (Fig. 1d).
SFF* will be released as an open-source1.

II. RELATED WORK

Multi-goal path planning requires, besides constructing the
final trajectory, also finding the order of the goals (targets) to
be visited [27]. In the case of one vehicle, the problem can be
considered as an instance of TSP. Solving the combinatorial
part, i.e., TSP, requires to define costs between the individual
targets. Dubins-TSP is a variant of TSP, where the robots
are considered as Dubins vehicles moving in an obstacle-free
environment [21], [25]. In Dubins-TSP, the trajectory between
targets can be found analytically in a short time.

However, the approach cannot be used in the case of
robots moving among obstacles, where more general planners
need to be used to obtain trajectories avoiding the obsta-
cles. This is formulated in the Physical TSP problem [23]
and used, e.g., for the mine countermeasure missions [19].
Generally, finding paths among obstacles for robots of arbi-
trary shape can be solved using sampling-based planners like
Rapidly-exploring Random Tree (RRT) [16] and Probabilistic
Roadmaps (PRM) [12]. A number of planners were derived
from basic RRT and PRM, e.g., their asymptotically optimal
variants RRT* and PRM* [11]. We refer to the survey [6]
about many other variants of these planners.

A widely used approach to utilize sampling-based motion
planning in multi-goal path planning is to derive target-to-
target paths between all pairs of targets. The final sequence of
visiting the waypoints is achieved using TSP [27], [26], [7].
Alternatively, other TSP-related formulations like Watchman
Routing Problem [4] or Vehicle Routing Problem [24] can be
used in special cases. The work [20] uses a finite automaton
to determine the sequence.

Finding all target-to-target trajectories is computationally
demanding due to its O(n2) complexity for n targets. For
scenarios with tens or a few hundreds of targets, the runtime
of the TSP solution is minor compared to the runtime of all
target-to-target path planning [26] and therefore, the speed of
path planning is crucial.

Lazy-TSP [7] reduces the load of path planning. For a set
of targets in the environment with obstacles, the costs of their
connection is simply defined by their Euclidean distance, i.e.,
without considering the obstacles. An initial tour is computed
using TSP and the connection between the consecutive targets
is verified by a time-consuming RRT-based planner. If the
connection cannot be found, the TSP is iteratively refined

1At https://github.com/ctu-mrs/space filling forest star

until a valid sequence and a corresponding trajectory is found.
The number of paths computed by the RRT-based planner
is therefore reduced, which also decreases the computational
time. The approach is faster than finding all target-to-target
connections using the PRM approach [4]. Additional speedup
can be achieved using online learning methods to predict
collisions of edges [13].

The speed-up of the multi-goal planning can also be
achieved by improving the underlying sampling-based planner,
e.g., by using multiple RRT trees. Bidirectional-RRT alter-
nately grows two trees rooted at the start and goal, respectively,
towards the random samples [15]. One global tree (rooted
at the initial configuration) and several local trees are grown
in [28]. The random sample is first tested for connection to
the global tree, and if it fails, all local trees attempt to connect
to the sample. If none of the trees can connect to the sample,
a new tree is set up at the sample with a given probability. A
similar approach is presented in [3], but in contrast to [28],
the new tree is always set up at a random sample if the sample
is not reachable from any other tree. Instead of creating new
trees everywhere (as in [28], [3]), the method [30] establishes
a new tree only if the random sample is estimated to be in a
narrow passage.

Multiple RRT trees for multi-goal path planning was in-
troduced in [5]. The trees are rooted at the targets, and
they are selected for expansion using a round-robin, i.e., in
each iteration, only a single tree expands toward the random
sample. If two trees approach each other close enough, they are
connected (if possible), and the trajectory between the roots of
the trees is retrieved. Then, the connected trees are merged, so
they continue to grow as a single tree. Due to the merging of
the connected trees, the algorithm can provide at most one path
between each pair of waypoints and no alternative path can
be found even if the number of samples increases. Moreover,
the trajectory between each pair is not optimal due to the non-
optimality of the underlying planner [5].

In our previous work [29], we proposed to grow multiple
random trees and connect them at any two nodes being close
enough. In contrary to [5], where the trees are merged into a
single one after they approach each other, our approach [29]
considers the connection as ‘virtual’, i.e., the trees remain
separated and grow further independently. This results in a
roadmap of trees that are connected by multiple virtual edges,
so more than one path can be found between two targets.

In this paper, we further extend our method [29] for multi-
goal path planning in environments with obstacles; the planner
proposed in this paper is referred to as Space-Filling Forest
(SFF*). In comparison to [29], we improve the quality of
the paths by using the rewiring technique while growing the
trees. The growth of the trees towards other targets is boosted
via a priority queue to bias finding connections between near
trees. For each tree, a list of priority queues (for every target
location) is maintained; the priority queues define the priority
of nodes for the expansion. Therefore, nodes that are believed
to be close to a target location are more likely expanded.
Priority queue provides an efficient way to prioritize expansion
towards promising areas and it has been already used in
sampling-based motion planning [10].

https://github.com/ctu-mrs/space_filling_forest_star

3

III. PROBLEM FORMULATION

The multi-goal path planning problem being solved in
this paper focuses on finding collision-free minimal-cost path
over multiple target locations. Such a problem includes two
challenging parts. The first one is the finding of collision-free
paths with a minimal cost between all target locations. The
second one contains a combinatorial optimization problem of
TSP that finds the appropriate sequence to visit the targets
to minimize the overall path cost using the already found
collision-free target-to-target paths. This paper proposes the
SFF* method for the first part, while the second part is solved
by an existing state-of-the-art algorithm. In the rest of this
section we summarize the problem and used notation.

Let C denote the configuration space and let Cfree ⊆ C is
the collision-free region of the configuration space where the
robot can move. The distance between two configurations is
denoted as %(a, b), a, b ∈ C.

Multiple target locations are specified R = {r1, . . . , rn},
ri ∈ Cfree and need to be visited by the robot. The sequence
to visit the target locations can be described by a vector of
their indexes Σ = (σ1, . . . , σn), 1 ≤ σi ≤ n, σi 6= σj for
i 6= j. The combinatorial TSP optimization part, therefore,
finds the appropriate Σ.

However, the collision-free paths connecting the targets in
R together with their costs have to be known before finding
Σ. A path between targets ri and rj can be described as τij :
[0, 1] → Cfree with τij(0) = ri and τij(1) = rj . Its cost
is denoted %(ri, rj) = %(τij) =

∫ 1

0
|τij(t)|dt. Additionally,

the shortest possible path τ∗ij is required such that %(τ∗ij) =
min{%(τij)|τij ∈ Cfree}. Therefore, the necessary task is to
find set T ∗ = {τ∗ij |i = 1, . . . , n, j = 1, . . . , n} of all collision-
free paths with minimal costs between the targets.

Both parts of the multi-goal path planning problem using
the TSP formulation can be specified as a single optimization
problem

minimize
Σ,T∗

n∑
i=2

%(rσi−1
, rσi

) + %(rσn
, rσ1

),

s.t. %(ri, rj) = %(τ∗ij), i = 1, . . . , n, j = 1, . . . , n,

σi ∈ Σ, i = 1, . . . , n.

(1)

Notice that the minimality of τij is particularly important
for the paths used by Σ, which motivates the proposed SFF*
to minimize mainly the path between neighboring targets as
they are more often used in a TSP solution.

IV. PROPOSED METHOD

The proposed SFF* is a sampling-based method that aims
to find short paths between multiple target locations. The
method has three key features. First, it grows multiple trees
simultaneously starting from the target locations. If two trees
approach each other, their connection is tested. The feasible
connections are considered as ‘virtual’ edges and stored sepa-
rately. Later, they are used to find paths between the connected
trees. Second, the nodes for expansion are explicitly defined in
an open and close lists. New nodes are added to the open list,
while nodes that were difficult to expand are moved into the

Algorithm 1: SFF
Input: root nodes R = {r1, . . . , rn}, priority queue bias pq;
Output: path between each target ri, rj ∈ R

1 T = {t1, . . . , tn} initialize the trees at targets r1, . . . , rn;
2 O = {r1, . . . , rn} ; // open list
3 C = ∅ ; // closed list
4 E = ∅ ; // virtual edges between trees
5 initialize Qi,j , i, j = 1, . . . , n; i 6= j ;
6 for iteration = 1, . . . , Imax do
7 if O 6= ∅ then
8 if rand(0,1) < pq then
9 i = index of a random tree, i ∈ 1, . . . , n ;

10 q = random queue, q ∈ Qi,j , j = 1, . . . , n ;
11 e = best node from q;
12 else
13 e, i = random node e ∈ O, index of its tree ti;
14 else
15 e, i = random node e ∈ C, index of its tree ti;
16 if ExpandNode(e, i)=failed and e /∈ C then

// Alg. 2
17 remove e from open list O;
18 remove e from all priority queues Qi,j , j = 1, . . . , n

;
19 if O = ∅ and (T + E) forms a single component then
20 break ; // we can find paths between

each ri and rj

close list. The algorithm primarily selects nodes for expansion
from the open list, as these nodes are believed to be easily
expandable. However, the method can also draw nodes for
expansion from the close list. A node is expanded in a random
direction, but expansion towards other nodes of the same tree
are prohibited. This boosts the growth towards unexplored
areas and prevents each tree to grow towards itself. Due to the
usage of open/close lists, the trees are not expanded using the
Voronoi-bias [17] (as in the case of RRT and its derivatives),
yet, the trees can spread in Cfree. Third, a priority queue is
used to boost the growth of each tree towards near targets.
Furthermore, the rewiring technique known from RRT* [11]
is used to minimize costs of the nodes.

The method is summarized in Alg. 1. First, n trees T =
{t1, . . . , tn} are created and rooted in the target locations R
and the roots of the trees are added to the open list O. In
each iteration, the algorithm selects a random node (and its
corresponding tree) for expansion and attempts to expand it by
randomly searching its vicinity for new collision-free nodes. If
the expansion fails, the selected node is considered as difficult
to expand and it is moved to the close list C (lines 17–18 in
Alg. 1). The algorithm terminates after a predefined number
of iterations Imax or when the open list is empty and all target
locations have been connected to a single component, i.e.,
when a path between each pair of targets can be found using
all created trees and considering their connection.

The key part of SFF* is the selection of the nodes for
expansion. Primarily, the nodes from open list are selected
either randomly or by considering their distance towards roots
of other trees. The latter case is introduced to boost the
expansion towards target locations that are believed to be
easily reachable. This boosting is achieved via priority queues
Qi,j , i, j = 1, . . . , n, i 6= j, where i denotes the index of the
tree and j denotes the index of a target. For each tree, n− 1
queues are maintained. The queue Qi,j is an ordered list of

4

(a) Sampling around (b) Expansion of e (c) Expansion of e
e in distance l by rnew by rnew + connect.

t1 and t3 via rnew

Fig. 2: Example of SFF* expansion for trees t1, t2, t3 rooted at
target locations (red). The nodes in the open list are in green, the
nodes in the close list are in black. Let assume the node e is going
to be expanded, so its vicinity is sampled in distance l from e (brown)
(a). The candidate 1 is discarded as it approaches other nodes of the
tree closer than e. The candidate 4 is discarded as it is not collision-
free (b). If the candidate rnew = 2 is added to the tree, it becomes
member of the open list and no other action is made (b). However,
when candidate rnew = 3 is added to the tree, it is already too close
to the node f ∈ t3 because %(rnew, f) < d. Therefore, the trees t1
and t2 are virtually connected (blue edge) via new node rnew, i.e.,
edge (rnew, f) is added to the list of connections E (c).

nodes of the tree i according to their distance towards the
target rj , i.e., according to %(e, rj), e ∈ ti. The binary heap
data structure can be used to efficiently implement the queues.

The node for expansion is selected as follows. If the open
list is not empty, a node from the open list is selected randomly
with the probability 1 − pq . Otherwise, with the probability
pq , a tree is selected randomly, and then one of its queues is
selected randomly as well. From this queue, the node with the
shortest distance to a particular target is selected for expansion
(lines 8–11 in Alg. 1). If the open list is empty, the node for
the expansion is selected randomly only from the close list.

The task of the expansion (Alg. 2) is to find a new collision-
free configuration in the vicinity of the node being expanded
such that the tree grows toward other trees and does not grow
toward itself. We create up to k samples in the distance l
from e (node for expansion), and discard the colliding ones.
Samples that approach the same tree to the distance less than
the distance to the node e, are also discarded, as they would
cause growing the tree toward itself. If the expansion of a node
fails, i.e., its vicinity cannot be sampled, it is removed from
open list and moved to the close list.

If a new sample rnew is found, it is added to the open
list, to the tree and all its queues. The expansion process is
illustrated in Fig. 2. After new node rnew is added to the tree,
the rewiring at rnew according to RRT* rules [11] are used
(lines 12–17 in Alg. 2), where cost(e) denotes the length of
the path from the root of the tree to the node e. The task of
the rewiring is to minimize the cost of reaching the tree nodes,
and consequently the cost between multiple targets when the
trees are connected.

After the new node rnew is added to the tree ti, the
connection with other trees is checked. The connection is
possible if the distance %tree(rnew, tj) < d for some tree
tj , j 6= i and if this connection is collision free (lines 18–
21 in Alg. 2), where %tree(q, t), q ∈ C, t ∈ T is the distance
between a node and its nearest node in the tree t. In such a
case, the connecting virtual edge is remembered in the set E
and later used to decide if all trees form a single component or

Algorithm 2: ExpandNode
Input: index i of tree ti for expansion, node for expansion

e ∈ ti;
Global params.: sampling distance l, distance of two trees

to be connected d, open list O, list of
virtual edges E, all trees T ;

Output: failure or success
1 rnew = ∅;
2 for 1, . . . , k do // expansion around e
3 r′ = sample random node in the distance l from e;
4 if canConnect(e, r′) and %tree(ti, r

′) > %(r′, e) then
5 rnew = r′;
6 break;

7 if rnew = ∅ then
8 return failure ; // expansion failed

9 add rnew to tree ti;
10 add rnew to open list O;
11 add rnew to all priority queues Qi,j , j = 1, . . . , n;
12 Xnear = k-nearest neighbors of rnew using [11], sec. 3.3.3 ;
13 foreach h ∈ Xnear do // see Alg. 6 in [11]
14 if canConnect(r, h) and cost(r) > cost(h) + %(r, h)

then
15 set h as parent of r and update their costs
16 if canConnect(r, h) and cost(h) > cost(r) + %(r, h)

then
17 set r as parent of h and update costs

18 for t′ ∈ T\{ti} do // connection of trees
19 f = find nearest node in tree t′ towards rnew ;
20 if %(f, rnew) < d and canConnect(f, rnew) then
21 add edge (f, rnew), f ∈ t′, rnew ∈ ti to E;

22 return success;

not (line 19 in Alg. 1). This also allows evaluation of multiple
connections between the same trees (each of them between
different pairs of nodes), resulting in a different cost between
targets.

A. Discussion

As SFF* connects two trees between multiple nodes, we can
find more paths between the same pair of target locations and
considering only the shortest of them for TSP. This feature
brings an advantage over state-of-the-art planner [5], which
can connect two trees at most once. The comparison between
SFF* and method from [5] is illustrated in Fig. 3c,d.

Another advantage in comparison to [5] is that the growth
of the trees in SFF* is not driven by Voronoi-bias, but it
is maintained using the open/close lists. Voronoi-bias boosts
the growth of the RRT-based trees towards unexplored areas
of the configuration space, but it can be counteractive when
connecting two near nodes located in large configuration
space. In such a situation, trees of RRT-based methods likely
grow to the open areas of the configuration space instead of
approaching each other, which may result in finding long paths
(Fig. 3a,b,c)

The most time-consuming operations in SFF* are collision
detection (CD) and the nearest-neighbor search. The time
complexity of one iteration of SFF* is O(k|ti| log |ti|+kCD+
REW (|ti|) +n|tj | log |tj |+nCD), where the first two terms
represent the nearest-neighbor search and CD when expanding
the tree ti using k attempts (lines 2–6 in Alg. 2), where |ti|
is the number of nodes in the tree ti. We assume that the

5

(a) (b) (c)

Fig. 3: The difference between Multi-T-RRT [5] and SFF* in a
map with the target locations r1 and r2. In classic RRT (and also
in [5]), the trees are expanded towards the random samples due to
Voronoi-bias. In the depicted scenario, more samples are generated
on the left from targets than in the right (a). Consequently, the RRT-
based method, e.g., [5], prefers to grow both trees towards the left
zone. The connection of these trees more likely happens also in the
left zone, which results in a long path between the targets (blue) (b).
Moreover, as [5] connects the trees only once, no other path can be
found even if the number of samples is increased. Contrary, SFF*
can find multiple connections between the trees and therefore, it can
also discover the shorter path (red) (c).

KD-tree is used for the nearest-neighbor search. REW (ti) is
the complexity of the rewiring procedure that depends only
on the size of the tree ti. The last two terms are for testing
the connections between the tree ti and other trees, which also
requires to compute the nearest-neighbor and perform collision
detection (lines 18–21 in Alg. 2). Therefore, the number of
targets n influences only the complexity of the connection of
the trees.

SFF* explores the free region Cfree by the multiple trees
whose nodes cannot be closer than l. Therefore, the number
of nodes required to cover Cfree is given by the volume
vol(Cfree) of Cfree. Let t̄ ∼ vol(Cfree)/vol(node) denote
the maximum number of nodes that are required to cover
Cfree assuming that each node has volume vol(node). The
nearest-neighbor search between t̄ nodes has time complexity
O(t̄ log t̄).

Now let’s assume that Cfree is covered by n trees and each
of them has t̄/n nodes. The time complexity of connecting
one tree to the others is O(n(t̄/n) log(t̄/n)) ≤ O(t̄ log t̄).
Therefore, the nearest-neighbor search for connecting the trees
does not depend on the number of targets, but rather on the
volume of Cfree. However, the expansion procedure attempts
to connect actual tree ti with all other n trees, which requires
n ·CD queries. Therefore, the overall time complexity of one
expansion step can be expressed as O(k|ti| log |ti|+ kCD +
REW (|ti|) + t̄ log t̄ + nCD), which increases linearly with
the number of targets n due to collision detection, as verified
experimentally in Fig. 4b.

The behavior of SFF* is controlled via several parameters.
The parameter l specifies the size of the neighborhood where
new samples are generated around a node being expanded.
With increasing l, the tree grows faster (spreading more with
few iterations), but it can miss the entrance to more difficult
regions, e.g. to narrow passages. Therefore, the proper value
depends mainly on the map, and we recommend to start with
l according to the width of the expected narrow passages in
the environments. The number of samples per expansion is
determined by k. Low values speed up the expansion step, but
the performance may be decreased in the narrow passages.
We recommend to set up k ≈ 10. Two trees are virtually

(a) influence of pq (b) influence of n

Fig. 4: Behavior of SFF* depending on the parameter pq and
with the increasing number of targets. Graphs are made using 20
measurements in V-Dense (a) and Dense (b) maps.

connected if they approach each other to the distance d. Larger
d means that more connection tests will be performed, which
increases the runtime as these connections necessarily rely
on collision detection. We recommend to set d as a small
multiple of l, e.g. as d = 2 · l. With the higher probability
of using the priority queues, pq , SFF* prefers to connect near
trees in early stages of the method, which also decreases the
number of iterations required to find all target-to-target paths
(Fig. 4a). Our experiments show that pq = 0.9–0.95 yield the
best results.

SFF* can also be used in other planning problems that re-
quire search in the configuration space. However, the design of
SFF* assumes that several trees are grown simultaneously and
that discovering multiple connections between the trees brings
an advantage in the given task. Applying SFF* on a planning
problem with a single start/goal is possible, but in such a case,
the method reduces to RRT*, and the proposed features, e.g.,
priority heap, are not in use. SFF* can principally search high-
dimensional configuration space. It only requires to employ
a suitable nearest-neighbor data structure. For non-holonomic
systems, a local planner allowing exact connection of two near
configuration is required. These requirements are common also
for other sampling-based planners.

V. RESULTS

The SFF* was compared with the Multi-T-RRT planner [5],
Lazy-TSP [7], and with the Simple-SFF [29]. The contribution
of the tree rewiring was further examined by using NR-SFF*
version, which is SFF*, where rewiring is disabled (i.e., lines
12–17 in Alg. 2 are disabled). All methods were implemented
in C++, and the experiments were performed on eight 16-core
AMD Opteron 6376 2.3 GHz processors with 48 GB of RAM.

A. Performance in 2D workspace

In the first set of experiments, paths between 5, 10 and 20
targets has to be found for a holonomic hexagonal robot of
radius 10 units. Three scenarios were considered: Dense, V-
Dense and Triangles with size 2000× 2000 units (Fig. 6).

On average, finding the multi-goal paths on problems with
20 targets took 0.58 s for Multi-T-RRT, 13.49 s for Simple-
SFF, 13.83 s for NR-SFF*, and 16.19 s for SFF*. Lazy-TSP
is considerable slower, which is caused by the RRT* planner
that is internally used in Lazy-TSP to evaluate target-to-target
distances. On the problems with 5 and 10 targets, Lazy-TSP

6

took in average 18 s, but > 800 s was required to solve
problems with 20 targets.

The result of each planner is a roadmap in which target-to-
target paths were found using Dijkstra’s algorithm, and costs
of these paths were used in TSP. TSP was calculated using
the state-of-the-art TSP Concorde solver [1]. The runtimes of
TSP are, in our scenarios with few tens of nodes, negligible
compared to the runtime of the planners. Namely, TSP with
5 targets is solved in ∼ 20 ms, ∼ 26 ms for 10 targets, and
∼ 125 ms for 20 targets.

From the runtime point of view, Multi-T-RRT outperforms
the proposed SFF*. However, as will be demonstrated in the
following text, the proposed SFF* (and also Simple-SFF and
NR-SFF*) provides significantly better paths than Multi-T-
RRT. A practitioner may want to know whether running Multi-
T-RRT repeatedly and using the best solution (i.e., a solution
with the shortest paths between the targets) can yield similar
results as SFF*, but with a shorter computational time. We
investigated this alternative by considering another method
called Multi-T-RRT-20, which represents the best results out
of 20 trials of Multi-T-RRT. We decided to use 20 trials as
a single run of Multi-T-RRT is approximately 28 times faster
than SFF*, therefore running 20 times Multi-T-RRT would
still result in a faster planner than SFF*.

SFF* and NR-SFF* was run with pq = 0.95, d = 50 units
and l = 40 units and k = 12. Collision detection was called
3(n + k) times per iteration of SFF*, because each iteration
results in n + k edges that are tested for collisions at three
points (start/middle/end). Multi-T-RRT was run in a similar
manner: the expansion step was l = 40 units and the distance
for connecting two trees was d = 50 units. All methods were
terminated after Imax = 100× 103 iterations.

B. Target-to-target distance comparison

We first compare the costs of the paths between the targets
as follows. After each algorithm finishes, we find all target-to-
target paths. The cumulative cost of these paths is then used
for the comparison. For each map and the number of target
locations, each algorithm was run 104 times.

The results are depicted in Fig. 5 in the form of a his-
togram of the cumulative costs (in units). In all tested cases,
SFF* outperformed other methods because it provides smaller
cumulative costs, i.e., shorter paths, than other methods. The
planner Multi-T-RRT provides the highest cumulative costs.
Repeated runs of Multi-T-RRT with selecting the best solution
out of 20 trials (algorithm Multi-T-RRT-20) decreases the
cumulative costs, but not significantly, so even Multi-T-RRT-
20 is outperformed by SFF*.

Multi-T-RRT is also outperformed by the Simple-SFF
(which uses no rewiring and no priority heap but connects the
trees multiple times). This indicates that connecting the trees
multiple times already improves the quality of the solutions.
Contrary, Multi-T-RRT connects the trees only once, which
results in only one path connecting each target location. Due to
the stochastic behavior of Multi-T-RRT, this connection varies
between different runs, which also results in a higher deviation
of the cumulative costs. Contrary, the deviation of SFF*,

(a) Dense, 10 targets (b) Dense, 20 targets

(c) Triangles, 10 targets (d) Triangles, 20 targets

(d) V-Dense, 10 targets (f) V-Dense, 20 targets

Fig. 5: Histograms of cumulative costs of target-to-target paths, the
cost path (horizontal axis) is the map units.

Simple SFF and NR-SFF* is smaller. The comparison between
SFF and NR-SFF* shows the positive effect of the rewiring
procedure: SFF* provides better results (lower values of the
cumulative costs) than NR-SFF*. Lazy-TSP is not included in
Fig. 5 as it does not compute all target-to-target paths.

C. Multi-goal paths

Example of the final multi-goal tours are depicted in Fig. 6.
The progress of SFF* trees is depicted in Fig. 1. The results
are summarized in Tab. I, where the column ‘TSP’ is the total
length of the final paths (in units), the column ‘Iterations’
denotes how many sampling iterations were needed to connect
all targets to a single component. The shortest paths are
provided by SFF* and Lazy-TSP. The cases where Lazy-
TSP and SFF* provided statistically same results (using t-
test with α = 0.05) are marked ‘=’ in the table. The biggest
advantage of the proposed SFF* over Lazy-TSP is the number
of iterations required to find the solution: Lazy-TSP requires
5–10× more iterations than the SFF*. Consequently, also the
runtime of Lazy-TSP is significantly higher than the runtime
of SFF*. This enables SFF* to be run repeatedly and using the
best result with the minimum TSP cost. In this case, the best
result provided by SFF* is better than the best result provided
by Lazy-TSP (column ‘TSP best’ in Tab. I).

The cost of TSP solutions obtained using paths from Multi-
T-RRT is from 45.26 % to 75.23 % higher than the costs of
solutions achieved using SFF*. When repeated runs of Multi-
T-RRT are used, the cost of TSP solutions is from 32.54 % to
63.48 % higher than the cost of TSP solutions obtained using
SFF*. This indicates that running a planner providing low-
quality paths repeatedly, albeit it is faster, does not necessarily
improve the cost of the final solution. We have also examined

7

TABLE I: Comparison of the planners using costs of TSP solutions. The columns ‘TSP’ and ‘Iterations’ are in format mean | std. dev.
The results are based on 100 measurements. ‘TSP best’ is the smallest achieved TSP cost. TSP costs are computed using Concorde [1]
solver. Computing TSP using LKH [9] led to same results in all cases except ones denoted a, where the costs of LKH solution is by 0.21 %
smaller than the solution of Concorde; and in case b, where the cost of LKH solution is by 0.33 % smaller than the solution of Concorde.
The marks 6= and = denote if the cost of SFF* solution is different, or same, as solution of Lazy-TSP using t-test and α = 0.05.

Num. of goals: 5 10 20

TSP TSP best Iterations TSP TSP best Iterations TSP TSP best Iterations
×103 ×103 ×103 ×103 ×103 ×103 ×103 ×103 ×103

Dense
SFF* 7.00 | 0.53 6.46 5.60 | 0.32 12.63 | 1.34a 9.99 10.72 | 10.74 15.18 | 1.23 a 12.25 12.25 | 12.53
NR-SFF* 9.09 | 0.61 7.60 6.21 | 0.36 15.04 | 1.50a 11.82 10.93 | 10.30 17.44 | 1.33 a 13.87 12.29 | 11.97
Simple-SFF 9.33 | 0.74 7.64 6.01 | 0.35 15.00 | 1.45a 11.87 11.40 | 10.94 17.60 | 1.40b 14.30 13.76 | 13.49
Multi-T-RRT 10.85 | 0.77 8.93 0.47 | 0.14 20.03 | 1.38 15.65 2.10 | 0.60 25.33 | 1.38 21.46 2.29 | 0.61
Multi-T-RRT-20 9.66 | 0.23 8.85 0.40 | 0.11 17.76 | 0.54 15.59 1.91 | 0.57 23.08 | 0.52 20.81 2.20 | 0.59
Lazy TSP 7.18 | 0.40 6= 6.59 20.99 | 8.08 10.30 | 0.50 6= 9.34 84.53 | 28.47 12.73 | 0.39 6= 11.95 125.94 | 32.99

Triangles
SFF* 1.82 | 0.19 1.59 2.84 | 2.99 2.42 | 0.18 2.07 2.61 | 1.28 3.22 | 0.20 2.65 2.45 | 1.25
NR-SFF* 2.25 | 0.22 1.74 2.97 | 2.13 2.74 | 0.19 2.24 2.76 | 1.95 3.36 | 0.21 2.85 2.53 | 1.44
Simple-SFF 2.23 | 0.23 1.73 2.90 | 2.41 2.75 | 0.22 2.23 2.69 | 1.03 3.42 | 0.23 2.85 2.54 | 1.48
Multi-T-RRT 2.78 | 0.21 2.18 0.10 | 0.03 4.07 | 0.24 3.38 0.13 | 0.03 5.42 | 0.24 4.65 0.14 | 0.03
Multi-T-RRT-20 2.42 | 0.08 2.15 0.09 | 0.02 3.66 | 0.10 3.31 0.12 | 0.03 5.00 | 0.11 4.48 0.13 | 0.02
Lazy TSP 1.81 | 0.09 = 1.64 1.74 | 0.79 2.35 | 0.10 6= 2.11 3.52 | 7.12 3.00 | 0.10 6= 2.75 3.29 | 0.83

V-Dense
SFF* 8.55 | 0.80 7.61 5.49 | 0.60 9.17 | 0.50 8.46 5.58 | 0.51 12.35 | 0.56 11.13 5.67 | 0.99
NR-SFF* 11.37 | 0.93 9.33 6.10 | 0.65 11.37 | 0.58 9.92 6.09 | 0.81 14.61 | 0.64 12.63 6.10 | 1.23
Simple-SFF 11.00 | 0.94 9.00 5.89 | 1.03 11.39 | 0.65 9.85 5.94 | 1.09 14.51 | 0.71 12.67 6.00 | 1.33
Multi-T-RRT 12.42 | 0.70 10.67 0.45 | 0.21 15.99 | 0.89 13.51 0.48 | 0.18 21.64 | 0.84 19.14 0.49 | 0.15
Multi-T-RRT-20 11.36 | 0.21 10.41 0.36 | 0.16 14.58 | 0.31 13.26 0.44 | 0.16 20.19 | 0.36 18.42 0.44 | 0.13
Lazy TSP 8.49 | 0.29 = 7.81 14.82 | 5.76 9.50 | 0.38 6= 8.81 34.12 | 9.62 12.28 | 0.36 = 11.30 51.39 | 12.62

(a) Dense, SFF* (b) Dense, NR-SFF*

(c) V-Dense, SFF* (d) Triangles, SFF*

Fig. 6: Final TSP solution on the V-Dense map (a) and on the
Triangles map (b).

the influence of TSP solver. Besides Concorde, that was used
to compute TSP solutions in Tab. I, also LKH [9] was used.
In our scenarios with few tens of targets, Concorde and LKH
provided the same results, except few cases that are marked
in Tab. I.

D. Performance in 3D workspace

Multi-goal path planning in 6D configuration space (3D
robot in 3D workspace) was tested using three scenarios
(Fig. 7) and compared to Multi-T-RRT. The size of the
workspace is 100×100×100 units and robot was 10 units long
with radius 3 units. In average, SFF* takes 10 minutes on the
scenarios with 20 targets and Multi-T-RRT takes 5 minutes.
The speed of Lazy-TSP was too high (> 50 minutes per trial
for more than 10 and 20 targets), and therefore, Lazy-TSP was

(a) Dense 3D (b) Building (c) Triangles 3D

Fig. 7: 3D workspace with partially grown SFF* trees. Spheres
denote the target locations.

not tested in this case. The results are summarized in Tab. II.
SFF* utilized all allowed iterations (Imax = 100 × 103) but
still found multiple connections between the trees. The reason
for so many iterations is the growth of the trees outwards
from the obstacles (towards the open space), not the inability
to connect individual trees. This is confirmed by the quality
of TSP paths, which is lower for SFF* and higher for Multi-
T-RRT.

VI. CONCLUSION

This paper focused on multi-goal path planning, where the
task is to visit several target locations in an environment with
obstacles. The order of visiting the targets is obtained by
solving the related Traveling Salesman Problem. The core of
the paper is the novel path planner called Space-Filling Forest
(SFF*) that finds high-quality paths between the individual
targets. SFF* builds multiple trees in the configuration space
starting from the target locations. The trees are grown in the
free space until they approach each other or their growth
is locally stopped by an obstacle. Multiple connections are
found between the trees that approached each other to a
predefined distance. Paths between the targets are found in the
connected trees. To find good-quality paths, the trees are grown
in the RRT* manner, i.e., with rewiring the nodes during the

8

TABLE II: Comparison of the planners using costs of TSP solutions. The columns ‘TSP’ and ‘Iterations’ are in format mean | std. dev.
The results are based on 100 measurements. ‘TSP best’ is the smallest achieved TSP cost. TSP costs are computed using Concorde [1]
solver and the same TSP costs were obtained also using LKH solver [9].

Num. of goals: 5 10 20

TSP TSP best Iterations TSP TSP best Iterations TSP TSP best Iterations
×103 ×103 ×103 ×103 ×103 ×103 ×103 ×103 ×103

Dense 3D
Multi-T-RRT 14.99 | 1.81 11.05 1.44 | 0.52 29.20 | 2.35 23.80 2.15 | 0.53 46.58 | 2.96 39.82 2.45 | 0.50
SFF* 6.79 | 0.14 6.50 34.05 | 0.39 10.63 | 0.50 9.96 32.77 | 0.33 14.29 | 0.49 13.48 32.64 | 2.09

Building
Multi-T-RRT 0.16 | 0.01 0.12 27.74 | 13.88 0.27 | 0.02 0.22 18.28 | 10.00 0.40 | 0.02 0.34 19.27 | 9.64
SFF* 0.06 | 0.00 0.06 100.00 | 0.00 0.09 | 0.00 0.08 100.00 | 0.00 0.13 | 0.00 0.12 100.00 | 0.00

Triangles 3D
Multi-T-RRT 0.11 | 0.01 0.08 3.82 | 1.21 0.20 | 0.02 0.16 5.07 | 1.31 0.31 | 0.02 0.25 6.04 | 1.33
SFF* 0.04 | 0.00 0.04 100.00 | 0.00 0.06 | 0.00 0.06 100.00 | 0.00 0.09 | 0.00 0.08 100.00 | 0.00

growth. The experiments have shown superior performance in
comparison to state-of-the-art methods.

REFERENCES

[1] Concorde TSP Solver. http://www.math.uwaterloo.ca/tsp/concorde.html
Accessed 2020-10-09.

[2] G. Best, J. Faigl, and R. Fitch. Multi-robot path planning for budgeted
active perception with self-organising maps. In 2016 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 2016.

[3] M. Clifton, G. Paul, N. Kwok, D. Liu, and D. Wang. Evaluating
performance of multiple RRTs. In IEEE/ASME International Conference
on Mechtronic and Embedded Systems and Applications, pages 564–569,
2008.

[4] T. Danner and L. E. Kavraki. Randomized planning for short inspection
paths. In IEEE International Conference on Robotics and Automation,
volume 2, pages 971–976 vol.2, 2000.

[5] D. Devaurs, T. Siméon, and J. Cortés. A multi-tree extension of the
transition-based RRT: Application to ordering-and-pathfinding problems
in continuous cost spaces. In IEEE/RSJ IROS, 2014.

[6] M. Elbanhawi and M. Simic. Sampling-based robot motion planning:
A review. IEEE Access, 2:56–77, 2014.

[7] B. Englot and F. S. Hover. Three-dimensional coverage planning for
an underwater inspection robot. The International Journal of Robotics
Research, 32(9-10):1048–1073, 2013.

[8] J. Faigl and G. A. Hollinger. Unifying multi-goal path planning for
autonomous data collection. In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2937–2942, 2014.

[9] Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for
constrained traveling salesman and vehicle routing problems. Roskilde:
Roskilde University, 2017.

[10] J. D. Hernández, M. Moll, and L. E. Kavraki. Lazy evaluation of
goal specifications guided by motion planning. In 2019 International
Conference on Robotics and Automation (ICRA), pages 944–950, 2019.

[11] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal
motion planning. The International Journal of Robotics Research,
30(7):846–894, 2011.

[12] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12:566–580,
1996.

[13] C. Kew, B. A. Ichter, M. Bandari, E. Lee, and A. Faust. Neural
collision clearance estimator for batched motion planning. In The 14th
International Workshop on the Algorithmic Foundations of Robotics
(WAFR), 2020.

[14] G. Kizilateş and F. Nuriyeva. On the nearest neighbor algorithms for the
traveling salesman problem. In Dhinaharan Nagamalai, Ashok Kumar,
and Annamalai Annamalai, editors, Advances in Computational Science,
Engineering and Information Technology, pages 111–118, Heidelberg,
2013. Springer International Publishing.

[15] J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach
to single-query path planning. In IEEE International Conference on
Robotics and Automation, volume 2, pages 995–1001. IEEE, 2000.

[16] S. M. LaValle. Rapidly-exploring random trees: A new tool for path
planning, 1998. Technical report 98-11.

[17] S. R. Lindemann and S. M. LaValle. Incrementally reducing dispersion
by increasing voronoi bias in RRTs. In IEEE International Conference
on Robotics and Automation, volume 4, pages 3251–3257. IEEE, 2004.

[18] N. Mathew, S. L. Smith, and S. L. Waslander. A graph-based approach to
multi-robot rendezvous for recharging in persistent tasks. In 2013 IEEE
International Conference on Robotics and Automation, pages 3497–
3502, 2013.

[19] J. McMahon and E. Plaku. Autonomous underwater vehicle mine
countermeasures mission planning via the physical traveling salesman
problem. In OCEANS 2015 - MTS/IEEE Washington, pages 1–5, 2015.

[20] J. McMahon and E. Plaku. Mission and motion planning for autonomous
underwater vehicles operating in spatially and temporally complex
environments. IEEE J. of Oceanic Engineering, 41(4):893–912, 2016.

[21] J. Ny, E. Feron, and E. Frazzoli. On the dubins traveling salesman
problem. IEEE Transactions on Automatic Control, 57(1):265–270,
2012.

[22] A. Otto, N. Agatz, J. Campbell, B. Golden, and E. Pesch. Optimization
approaches for civil applications of unmanned aerial vehicles (uavs) or
aerial drones: A survey. Networks, 72(4):411–458, 2018.

[23] D. Perez, P. Rohlfshagen, and S. M. Lucas. The physical travelling
salesman problem: Wcci 2012 competition. In IEEE Congress on
Evolutionary Computation, pages 1–8, 2012.

[24] R. Pěnička, J. Faigl, and M. Saska. Physical orienteering problem
for unmanned aerial vehicle data collection planning in environments
with obstacles. IEEE Robotics and Automation Letters, 4(3):3005–3012,
2019.

[25] R. Pěnička, J. Faigl, P. Váňa, and M. Saska. Dubins orienteering
problem. IEEE Robotics and Automation Letters, 2(2):1210–1217, 2017.

[26] M. Saha, G. Sanchez-Ante, and J.-C. Latombe. Planning multi-goal
tours for robot arms. In IEEE International Conference on Robotics
and Automation (ICRA), volume 3, pages 3797–3803, 2003.

[27] S. N. Spitz and A. A. G. Requicha. Multiple-goals path planning for
coordinate measuring machines. In IEEE International Conference on
Robotics and Automation, volume 3, pages 2322–2327 vol.3, 2000.

[28] M. Strandberg. Augmenting RRT-planners with local trees. In IEEE
International Conference on Robotics and Automation, volume 4, pages
3258–3262 Vol.4, 2004.

[29] V. Vonásek and R. Pěnička. Space-filling forest for multi-goal path plan-
ning. In 24th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pages 1587–1590, 2019.

[30] W. Wang and Y. Li. A multi-RRTs framework for robot path planning
in high-dimensional configuration space with narrow passages. In
International Conference on Mechatronics and Automation, pages 4952–
4957, 2009.

