Abstract:
Planning smooth and energy-efficient paths for wheeled mobile robots is a central task for applications ranging from autonomous driving to service and intralogistic robot...Show MoreMetadata
Abstract:
Planning smooth and energy-efficient paths for wheeled mobile robots is a central task for applications ranging from autonomous driving to service and intralogistic robotics. Over the past decades, several sampling-based motion-planning algorithms, extend functions and post-smoothing algorithms have been introduced for such motion-planning systems. Choosing the best combination of components for an application is a tedious exercise, even for expert users. We therefore present Bench-MR, the first open-source motion-planning benchmarking framework designed for sampling-based motion planning for nonholonomic, wheeled mobile robots. Unlike related software suites, Bench-MR is an easy-to-use and comprehensive benchmarking framework that provides a large variety of sampling-based motion-planning algorithms, extend functions, collision checkers, post-smoothing algorithms and optimization criteria. It aids practitioners and researchers in designing, testing, and evaluating motion-planning systems, and comparing them against the state of the art on complex navigation scenarios through many performance metrics. Through several experiments, we demonstrate how Bench-MR can be used to gain extensive insights from the benchmarking results it generates.
Published in: IEEE Robotics and Automation Letters ( Volume: 6, Issue: 3, July 2021)