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State Estimation for HALE UAVs with
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Abstract—High-altitude long-endurance (HALE) unmanned
aerial vehicles (UAVs) are employed in a variety of fields because
of their ability to fly for a long time at high altitudes, even in
the stratosphere. Two paramount concerns exist: enhancing their
safety during long-term flight and reducing their weight as much
as possible to increase their energy efficiency based on analytical
redundancy approaches. In this paper, a novel deep-learning-
aided navigation filter is proposed, which consists of two parts:
an end-to-end mapping-based synthetic sensor measurement
model that utilizes long short-term memory (LSTM) networks to
estimate the angle of attack (AOA) and sideslip angle (SSA) and
an unscented Kalman filter for state estimation. Our proposed
method can not only reduce the weight of HALE UAVs but
also ensure their safety by means of an analytical redundancy
approach. In contrast to conventional approaches, our LSTM-
based method achieves better estimation by virtue of its nonlinear
mapping capability.

Index Terms—Sensor Fusion, Aerial Systems: Applications,
Field Robotics, AI-Enabled Robotics

I. INTRODUCTION

AMONG the various types of unmanned aerial vehicles
(UAVs), a high-altitude long-endurance (HALE) UAV is

an unmanned aircraft capable of performing various missions,
such as stratospheric atmospheric weather monitoring, marine
pollution monitoring, communications relaying, and forest fire
monitoring, while flying in the stratosphere at an altitude
of approximately 20 km [1]. In 2016, the Korea Aerospace
Research Institute (KARI) developed a HALE electric aerial
vehicle known as the EAV-3, as presented in Fig. 1, which
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Fig. 1. System overview of the KARI EAV-3 [3].
can fly powered only by solar energy at a high altitude where
the atmosphere is thin and has succeeded in flying in the
stratosphere at an altitude of 18.5 km. This record is the third
best in the world, after two others achieved in the United States
and the United Kingdom [2].

Considering analytical redundancy, reliability, weight min-
imization and cost requirements for UAVs, various filtering
techniques for the estimation of the angle of attack (AOA)
and sideslip angle (SSA) without AOA/SSA vanes have been
proposed. In [4], synthetic AOA and SSA measurements were
developed based on the aerodynamic parameters of UAVs. In
[5], [6], the wind speed triangle equation was used to correlate
the airspeed measurement to the ground-speed measurement
from the Global Positioning System (GPS) to estimate flow
angles without relying on aircraft aerodynamic models. In [7],
the AOA and SSA were first estimated in the time domain and
then converted into the frequency domain to remove integrated
bias and drift.

In addition, in [8], the AOA and SSA were estimated by in-
tegrating inertial data over time using optimization algorithms
such as the Newton-Raphson solver; however, this method
is not suitable for real-time applications due to its computa-
tional complexity. In [9], synthetic SSA measurements under
the zero-angle assumption were proposed for UAVs without
AOA/SSA sensors to improve the state estimation performance
during GPS outages, but this approach is applicable only
during nonaggressive flight maneuvers. In [10], AOA/SSA
estimates could be obtained without GPS measurements if
partial aircraft aerodynamic model parameters and an airspeed
measurement could be obtained.

In summary, most of the conventional AOA/SSA estimation
methods require GPS measurements or sophisticated aircraft
dynamic models, which include large numbers of aerodynamic
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Fig. 2. The relationship between the AOA, SSA, and relative
wind.
coefficients. However, obtaining these accurate aerodynamic
coefficients requires a series of time-consuming and costly
wind tunnel tests or extensive flight testing, and even then,
the coefficients may still contain inherent uncertainty. There-
fore, the motivation for this work is to propose a novel
state estimation approach using deep-learning-aided virtual
AOA/SSA sensors that do not require aerodynamic coefficients
as an analytical redundancy approach to ensure safety while
reducing the weight of a UAV. In particular, long short-
term memory (LSTM) networks are employed to accurately
model the nonlinear dynamic behavior of sequential AOA/SSA
measurements. These synthetic AOA/SSA measurements ac-
quired through the proposed deep-learning-based approach are
utilized as the measurements of the navigation filter to estimate
the velocity, attitude, inertial measurement unit (IMU) biases,
3D wind states, AOA, and SSA. The proposed algorithm has
been comprehensively evaluated using real HALE UAV flight
data.

To the best of our knowledge, this paper is the first to intro-
duce a new state estimation algorithm for HALE UAVs with
synthetic AOA/SSA measurements based on deep learning.
Compared to previous research, the novelty of the proposed
algorithm is that it requires neither sophisticated UAV aero-
dynamics models, which must usually be obtained through
time-consuming and cost-inefficient wind tunnel experiments,
nor GPS measurements to estimate the AOA/SSA. Instead,
the proposed algorithm requires only a minimal set of input
parameters, including the acceleration, angular rates, airspeed,
and control inputs, which are almost always available for any
type of UAV. Thus, the proposed algorithm can be easily
implemented for any type of UAV.
II. PROPOSED SYNTHETIC AOA/SSA SENSORS BASED ON

LSTM NETWORKS
The goal in this section is to derive formulas for synthetic

AOA/SSA sensors that require several aerodynamic parameters
and then replace these parameters with LSTM networks that
do not require them.
A. Preliminaries

The geometric relationship between the airspeed, AOA,
and SSA is depicted in Fig. 2. By utilizing this geometric
relationship, the airspeed vba, the AOA α, and the SSA β can
be expressed in the body-fixed frame as follows [11]:

vba,k =

ukvk
wk


b

=


∣∣∣vba,k∣∣∣ cosαk cosβk∣∣∣vba,k∣∣∣ sinβk∣∣∣vba,k∣∣∣ sinαk cosβk

 (1)

αk = tan−1(
wk
uk

) (2)

βk = sin−1(
vk∣∣∣vba,k∣∣∣ ) (3)

where uk, vk, and wk denote the x, y, and z components of
the airspeed, respectively. Va,k =

∣∣∣vba,k∣∣∣ =
√
u2
k + v2

k + w2
k is

the magnitude of the airspeed.

B. Problem Definition

To train LSTM networks to predict the AOA αk and the
SSA βk, proper design of the input layers is critical. Thus, this
section aims to derive the minimal inputs from an aerodynamic
point of view to reduce the complexity of the proposed
LSTM networks, which is one of the important academic
contributions of this paper. Motivated by our previous research
[12], the corresponding inputs for estimating the measured
AOA/SSA values from the aerodynamics of the HALE UAV
are introduced. Note that in this paper, we use the terms
“synthetic AOA/SSA measurements”, “synthetic AOA/SSA”,
and “estimated AOA/SSA” interchangeably.

1) Synthetic AOA measurement α̃k: First, the measured
acceleration along the z-axis at time k (i.e., amz,k) can be
expressed as follows [13]:

amz,k =
1

M
ξkSCz,k (4)

where S and M denote the wing area and mass of the
HALE UAV, respectively; ξk = 1

2ρV
2
a,k, with Va,k and

ρ denoting the airspeed and air density, respectively; and
Cz,k = −CL(αk) cosαk − CD(αk) sinαk, with CL(αk) and
CD(αk) denoting the lift and drag coefficients, respectively,
with respect to the AOA αk.

Then, amz,k can be re-expressed as

amz,k =
1

M
ξkS

(
−CL(αk) cosαk − CD(αk) sinαk

)
(5)

Subsequently, the lift coefficient CL(αk) in (5) can be
formulated as a nonlinear function of αk as follows [13]:

CL(αk) = (1− σ(αk)) (CL0
+ αk CLα)

+ 2σ(αk)sign(αk) sin2 αk cosαk (6)

where CL0
is the constant lift coefficient and CLα is the linear

lift coefficient. In (6), the linear lift relationship described by
these aerodynamic coefficients is blended with the effects of
stall using a sigmoid function given by

σ(αk) =
1 + e−L(αk−αc) + eL(αk+αc)(

1 + e−L(αk−αc)
) (

1 + eL(αk+αc)
) (7)

where αc is the cutoff parameter and L is a positive constant.
The drag coefficient CD(αk) in (5) can be similarly repre-

sented in terms of αk with the following nonlinear relationship
[13]:

CD(αk) = CDp +
(CL0

+ αk CLα)
2

πγAR
(8)

where CDp is the constant drag coefficient from the parasitic
drag effect, AR = b2/S is the wing aspect ratio, b is the wing
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span, and γ is the Oswald efficiency factor. The second term
in (8) represents the induced drag effect.

The assumption of a small αk is generally valid, as the
flight trajectory of a HALE UAV does not typically include
aggressive flight maneuvers with a high AOA αk. Thus, the
following approximations of CL(αk) and CD(αk) in (6) and
(8) with a small AOA αk can be obtained [13]:

CL(αk) = CL0 + αk CLα

CD(αk) = CD0 + αk CDα (9)

where CD0 and CDα represent the constant and linear drag co-
efficients, respectively. For more details on the approximations
presented in (9), please refer to [12], [13].

A second-order small-angle approximation for the AOA can
be used to replace sinαk with αk and cosαk with 1− α2

k/2
in (5), resulting in the following expression:

amz,k = − 1

M
ξkS

(
CL0

+ αk(CLα + CD0
)

+ α2
k(CDα − CL0

/2)
)

(10)

When designing HALE UAVs, to ensure a long flight
duration, small drag forces and large lift forces are greatly
desired, resulting in drag coefficients that are much smaller
than the lift coefficients. Therefore, the effects of the drag
coefficients CD0 and CDα in (10) can be neglected in this
application. Under typical operating conditions, a HALE UAV
performs nonaggressive maneuvers, resulting in a small AOA
(i.e., |αk| ≤ 5◦). In addition, the coefficient CL0

is much
smaller than CLα ; therefore, the quadratic term corresponding
to CL0 in (10) can be reasonably neglected, as follows:

amz,k ≈ −
1

M
ξkS (CL0

+ αkCLα) (11)

Rearranging (11) yields

α̃k ≈ −
1

CLα

(
amz,k +

1

M
ξkS CL0

)
(12)

Now, (12) can be used to predict a synthetic AOA using
aerodynamic, inertial, and geometric parameters along with
the measured z-axis acceleration. However, the corresponding
aerodynamic coefficients in (12), such as CL0

and CLα ,
are assumed to not be available; instead, an LSTM network
is trained to capture the nonlinear relationship between the
synthetic AOA α̃k, the dynamic pressure ξk, and the measured
acceleration amz,k.

2) Synthetic SSA measurement β̃k: The side force Yk can
be expressed as

Yk =mamy,k (13)

=

(
cY0 + cYββk +

cYωmxωmx,kb

2Va,k
+
cYωmzωmz,kb

2Va,k

+cYδA δA,k + cYδR δR,k

)
ξkS

where δA,k and δR,k denote the aileron and rudder control
signals, respectively, and cYx , ∂cY

∂x , with cY denoting the
side force coefficient.

Rearranging (13) yields

β̃k =
1

cYβ

(
mamy,k
ξkS

− cY0 −
cYωmxωmx,kb

2Va,k
(14)

−
cYωmzωmz,kb

2Va,k
− cYδA δA,k − cYδR δR,k

)
Using (14), the synthetic SSA can be determined using

lateral-directional control inputs, angular rate measurements,
and the y component of the acceleration. However, this paper
assumes that the corresponding aerodynamic coefficients in
(14), such as cYβ , cY0 , cYωmx , cYωmz , cYβ , cYδA , and cYδR , are
not available; instead, an LSTM network is trained to capture
the nonlinear relationship between the synthetic SSA β̃k from
(14) and the known variables obtained from the IMU, airspeed
sensor, and control input information.

C. Proposed LSTM Networks

Under the assumption that the aerodynamic coefficient pa-
rameters in (12) and (14) are not available, LSTM networks are
employed to estimate the synthetic AOA α̃k and the synthetic
SSA β̃k. Let the LSTM network that takes Xα,k as its input
and outputs α̃k be denoted by α-LSTM, and let the other that
takes Xβ,k as its input and estimates β̃k be denoted by β-
LSTM. LSTM networks take sequential data as their inputs;
thus, Xα,k and Xβ,k are composed of sequential inputs as
follows:

Xα,k = F({xα,k−T+1,xα,k−T+2, . . . ,xα,k}) (15)

Xβ,k = F({xβ,k−T+1,xβ,k−T+2, . . . ,xβ,k}) (16)

where T , F(·), xα,k, and xβ,k denote the sequence length, a
normalization function (i.e., a min-max scaler), the input layer
of α-LSTM at time k, and the input layer of β-LSTM at time k,
respectively. Accordingly, the outputs of α-LSTM (Yα,k) and
β-LSTM (Yβ,k) are described as follows:

Yα,k = {α̂m,k−T+1, α̂m,k−T+2, . . . , α̂m,k} (17)

Yβ,k = {β̂m,k−T+1, β̂m,k−T+2, . . . , β̂m,k} (18)

where α̂m,k and β̂m,k represent the output layers of α-LSTM
and β-LSTM, respectively. Note that normalized values are
acquired from each LSTM network; hence,ˆindicates that the
corresponding value is normalized. Therefore, α̃k and β̃k must
be obtained through denormalization using F−1(·) as follows:

α̃k = F−1(α̂m,k) (19)

β̃k = F−1(β̂m,k) (20)

From the relationships between the synthetic AOA/SSA and
the deployable parameters in (12) and (14), xα,k and xβ,k can
be defined as follows:

xα,k = [amz,k ξk] ∈ R2 (21)

xβ,k = [amy,k Va,k ωmx,k ωmz,k δA,k δR,k] ∈ R6 (22)

The abovementioned parameters that are employed in (12)
and (14) are sufficient to allow the networks to learn the
nonlinear relationships of interest. However, the parameters
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presented in (21) and (22) are not the only ones affecting the
estimation of α̃k and β̃k; hence, using only these terms may
give rise to information loss. Since many approximations are
utilized in the derivation of (12) and (14), including the small
AOA assumption and the elimination of negligible parameters
and drag coefficients, the other available parameters not given
in (12) and (14) may nevertheless have an impact on α̃k and
β̃k. For that reason, taking all known variables obtained from
the IMU, airspeed sensor, and control signals as inputs pro-
vides the networks with more high-dimensional information.
This may enable the networks to estimate α̃k and β̃k better
than they could in the case of taking only a limited number
of parameters.

To verify the effectiveness of using all variables, instead
of only the input layers xα,k and xβ,k according to (21) and
(22) as deduced from the aerodynamic model (i.e., (12) and
(14)), all of the available sensor measurements from the IMU,
airspeed sensor, and control inputs are utilized as the training
inputs for the LSTM networks as follows:

x′α,k = [ωmx,k ωmy,k ωmz,k amx,k amy,k amz,k

Va,k δE,k δA,k δR,k] ∈ R10 (23)

x′β,k = [ωmx,k ωmy,k ωmz,k amx,k amy,k amz,k

Va,k δE,k δA,k δR,k] ∈ R10 (24)

where δE,k refers to an elevator control signal and ωm,k =
(ωmx,k, ωmy,k, ωmz,k) and am,k = (amx,k, amy,k, amz,k) de-
note the measured angular rates and accelerations, respectively.

For brevity, in the following sections, the minimal input pa-
rameters according to (21) and (22) are denoted by Minimal,
and all sensor information according to (23) and (24) is
denoted by All. The validity of taking Minimal or All
as the inputs is demonstrated in Section VII.A. Note that the
aerodynamic parameters in (12) and (14) are not utilized in
the proposed LSTM algorithm; instead, they are used only for
extracting the minimal input parameters according to (21) and
(22), denoted by LSTM-Minimal.

D. Training Loss

In this subsection, the method of training our networks is
described. The proposed deep learning architecture is able to
estimate α̃k and β̃k by means of optimization. Let Θ denote
the parameters of our network model. Our final goal is to find
the optimal parameters Θ∗ for precise estimation based on
analytical redundancy by minimizing the L2 loss term, which
represents the mean squared error (MSE) between the true
value Yk (i.e., α or β as actually measured by AOA/SSA
vanes) and the estimated angle value Ŷm,k (i.e., α̂m,k or β̂m,k),
as follows:

Θ∗ = argmin
Θ

1

N − T + 1

N∑
k=T−1

‖ F(Yk)− Ŷm,k ‖2 (25)

where N denotes the total number of sequences in the training
dataset.

III. STATE ESTIMATION WITH SYNTHETIC AOA AND SSA
MEASUREMENTS

The aim of nonlinear filtering is to estimate the state vector
xk from inputs uk and measurements yk using a recursive
Bayesian estimation framework. In this section, the states xk,
inputs uk, and measurements yk are defined. In addition, the
state prediction fk and the observation function hk are defined
for the estimation problem.

A. Problem Formulation

The state vector xk and system input vector uk can be
defined as{
xk =

[
uk vk wk φk θk ψk ab,k ωb,k vnw,k

]
∈ R15

uk = [amx,k amy,k amz,k ωmx,k ωmy,k ωmz,k] ∈ R6

(26)

where uk, vk, and wk denote the x, y, and z components
of the airspeed, respectively; φk, θk, and ψk denote the roll,
pitch, and yaw angles, respectively; ab,k = (abx,k, aby,k, abz,k)
and ωb,k = (ωbx,k, ωby,k, ωbz,k) are the IMU (accelerometer
and gyroscope) biases in the body-fixed frame; and vw,k =
(vwn,k,vwe,k,vwd,k) is the 3-dimensional wind state of the
navigation frame.

B. State Prediction Equations

The prediction equation related to the body-frame velocities
uk, vk, and wk is given by [14]ukvk

wk

 =

uk−1

vk−1

wk−1

+ Ts

 0 −wk vk
wk 0 −uk
−vk uk 0

ωmx,kωmy,k
ωmz,k


−

ωbx,kωby,k
ωbz,k

+ ωn,k

+ (Cb
n)

0
0
g

+

amx,kamy,k
amz,k

−
abx,kaby,k
abz,k


+ an,k (27)

where g = 9.80665 m/s2 is the gravitational acceleration, Ts
denotes the sampling time interval, and Cb

n denotes the direc-
tion cosine matrix, which is a rotation matrix that transforms
the navigation frame {n} into the body-fixed frame {b}.

The attitude prediction equation can be expressed asφkθk
ψk

 =

φk−1

θk−1

ψk−1

+ Ts

1 sinφk tan θk cosφk tan θk
0 cosφk −sinφk
0 sinφk sec θk cosφk sec θk


·

ωmx,kωmy,k
ωmz,k

−
ωbx,kωby,k
ωbz,k

+ ωn,k

 (28)

For the IMU bias prediction model, a first-order Gaussian
Markov (GM) model is used, as follows [11]:[

ab,k
ωb,k

]
=

[
ab,k−1 · e

−Ts
τa

ωb,k−1 · e
−Ts
τω

]
+

[
wa
k−1

wω
k−1

]
(29)

where τa and τω denote the correlation times and wa
k−1 and

wω
k−1 denote the zero-mean WG process noise components

for the IMU biases.
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Fig. 3. The proposed deep-learning-aided UKF-based state
estimation framework.

TABLE I
UKF parameters

Symbol Parameter
RVm 1.32 · 10−3 (m/s)2

Rαm,k 1.35 · 10−5 (rad)2

Rβm,k 1.56 · 10−5 (rad)2

Rψm 1.43 · 10−1 (rad)2

Rvng
1.45 · 10−3 (m/s)2

Ts 0.1
αukf 0.5
βukf 2
κukf 0

The discrete process equation for the 3D wind state is
assumed to follow an RW process, as follows [11]:

vnw,k = vnw,k−1 + wv
k−1 (30)

where wv
k−1 refers to the zero-mean Gaussian process noise

for the wind velocity [15].

C. Measurement Equations

In the proposed algorithm, the measurements yk at time
index k consist of the airspeed Va,k, the synthetic AOA α̃k,
the synthetic SSA β̃k, the heading ψk (from a magnetometer),
and the velocity measurement vng,k (from a GPS receiver),
represented as follows:

yk = [Va,k

from LSTM︷ ︸︸ ︷
α̃k β̃k ψk vng,k] (31)

Notably, the proposed algorithm does not require AOA
and SSA measurements from vanes; instead, α̃k and β̃k
in the measurement vector yk are the predicted AOA and
SSA, respectively, from the proposed LSTM networks. The
airspeed, AOA and SSA are defined in terms of the body-
frame velocities as shown in (1) - (3), respectively.

The proposed deep-learning-aided navigation filter is illus-
trated in Fig. 3. In this paper, the unscented Kalman filter
(UKF), which does not require Jacobian matrices, is utilized
[3]. The details of the UKF are omitted for simplicity. A
detailed description of the UKF can be found in [3]

IV. EXPERIMENTAL RESULTS

A. Experimental Flight Environment

Flight experiments involving the solar-powered KARI EAV-
3 were carried out. Further descriptions of the device equip-
ment, inertial/geometric parameters, and IMU noise charac-
teristics can be found in [3]. The tuning parameters and

(a) (b)
(c)

Fig. 4. Trajectories represented in the datasets.
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Fig. 5. Box plots of the (a) AOA (α) and (b) SSA (β) with
varying sequence lengths. The sequence lengths were set to
12 for α-LSTM and 36 for β-LSTM.

measurement noise R for the applied UKF are summarized
in Table I.

B. Acquisition of the Training/Test Data

Synchronized data were collected by an EAV-3 loaded with
the aforementioned sensor systems, with a sampling frequency
of 10 Hz. Three experiments were conducted, in which the
EAV-3 was piloted autonomously with predefined waypoints.
Accordingly, all the trajectories are entirely different, as shown
in Fig. 4. The individual flight datasets consist of 20,912,
244,082, and 38,807 samples, which correspond to 0.58, 6.78,
and 1.07 hours, respectively, when converted into flight time.
In particular, the second flight was a long-term flight of
approximately 7 hours, during which the HALE UAV reached
a maximum altitude of 14 km, enabling the feasibility of
the proposed algorithm to be thoroughly verified. After the
complete datasets were collected, the second flight dataset (i.e.,
the longest flight, approximately 7 hours, 244,082 samples)
was split into eight sequences, three of which were used as
test datasets, i.e., “test dataset 1”, “test dataset 2”, and “test
dataset 3”, while the rest were used as the training dataset.
Note that the true values of the AOA and SSA were measured
from the AOA/SSA vanes.

C. Training the Networks

After the data were acquired, all of the flight datasets except
the aforementioned three test datasets were used to train the
networks, including the data from the first and third flights,
which are represented in Fig. 4(a) and 4(c), respectively. The
proposed networks were trained over 20 epochs using the
Adam optimizer [16] with a learning rate of 0.005 and a
decay rate of 0.9 per step on an NVidia 2080Ti GPU. Since an
overly large batch size or an overly long sequence length will
result in overgeneralization, causing the network to tend to be
insensitive to unexpected noise attributed to the sensors [17],
we set a moderate batch size of 128. The sequence lengths
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Fig. 6. CDFs (a trial that reaches 100% faster is better) of
the (a) AOA (α) and (b) SSA (β).

TABLE II
Comparison with state-of-the-art methods [12], [18] in terms

of AOA (α) and SSA (β) performance

Method Input type RMSE (◦)

AOA (α) SSA (β)

Model-aided [12] - 0.3681 7.6742

RNN [18] Minimal 0.2801 1.2543

All 0.2131 1.1164

LSTM (proposed) Minimal 0.2791 1.1339

All 0.1934 1.0926

were set to 12 for α-LSTM and 36 for β-LSTM based on an
empirical analysis, as shown in Fig. 5.

V. DISCUSSION

A. Impact of Different Input Types

First, the impact of different input types (i.e., Minimal
and All) was investigated. Recurrent neural networks (RNNs)
were implemented with Minimal and All to check the
generality of the performance improvement of deep-learning-
based approaches, depending on the type of input. In this
ablation study, both the RNN and LSTM models with All
exhibited better cumulative distribution functions (CDFs) and
smaller root mean square errors (RMSEs), as represented in
Fig. 6 and Table II. In particular, the LSTM networks with All
yielded the smallest RMSEs for the AOA and SSA estimation.

However, note that the estimation results obtained with
Minimal (the minimal input parameters necessary to describe
the AOA/SSA, as discussed in Section II) were comparable to
those obtained with All when estimating the SSA. Moreover,
little difference in the CDF for the SSA was found when using
Minimal, as shown in Fig. 6(b). Thus, these results also
demonstrate that the minimal input parameters derived from
the perspective of aerodynamics are sufficient to estimate the
SSA.

B. Comparison Against the State-of-the-Art Methods

Our best model was compared with the existing state-of-the-
art synthetic AOA/SSA estimation method, which is referred
to as the model-aided method [12]. The model-aided approach
assumes that the aerodynamic coefficient parameters in (12)
and (14) are known as a result of wind tunnel experiments,
as described in [3]. Comparisons of the results are presented
in Figs. 6–8, in which the measured AOA/SSA values are
regarded as the ground truth.
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Fig. 7. Comparison of the AOA (α) errors on (a) test dataset
1, (b) test dataset 2, and (c) test dataset 3.
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Fig. 8. Comparison of the SSA (β) errors on (a) test dataset
1, (b) test dataset 2, and (c) test dataset 3.

The LSTM networks with all available information, namely,
the LSTM model with All, yielded promising estimation
results compared to the other methods. Note that the model-
aided method produced rather precise AOA and SSA estimates
on test dataset 2, as shown in Figs. 7(b) and 8(b), but not
on test dataset 3, as shown in Figs. 7(c) and 8(c). Moreover,
the model-aided method exhibited excessive overshoot on test
dataset 1, as depicted in Fig. 8(a), compared to the learning-
based approaches.

There are two primary reasons for these phenomena: a) a
growing gap between the real situation and the approximately
modeled situation and b) the experimental limitations on
the aerodynamic parameters. First, the model-aided approach
usually assumes a small AOA or neglects certain constants;
in other words, the aerodynamic models are derived under
constant-level flight conditions. Thus, they are not accurate for
the arbitrary flight maneuvers of a HALE UAV. Second, the
aerodynamic parameters, as described in [3], have inherent un-
certainties since these values are estimated empirically through
wind tunnel testing. In other words, these parameters may
reflect undesirable noise. Therefore, using such empirically
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Fig. 9. Estimation results for the (a) roll, (b) pitch, and (c)
yaw on test dataset 3.
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Fig. 10. Estimation results for the (a) ground speed and (b)
airspeed on test dataset 3.

TABLE III
Comparison of attitude estimation performance

RMSE (◦)

Test dataset 1 Test dataset 2 Test dataset 3

Computed
AOA/SSA

Proposed
LSTM

Computed
AOA/SSA

Proposed
LSTM

Computed
AOA/SSA

Proposed
LSTM

Roll 0.2862 0.2849 0.7909 0.3548 0.3373 0.3451
Pitch 0.5491 0.5466 1.2649 0.7313 0.4908 0.4851
Yaw 7.2412 5.9500 14.1907 16.5623 11.4353 13.3018

obtained parameters may degrade the accuracy of the state
estimation [19].

In contrast to the model-aided method, learning-based
approaches can achieve better estimation performance even
when the HALE UAV changes altitude significantly since
their nonlinear mapping capabilities allow them to learn the
general relationship between the sensor data inputs and the
AOA/SSA. Figs. 7(c) and 8(c) show that the LSTM-based
estimates closely follow the ground truth with little fluctuation.
Furthermore, the estimation performance of the RNNs are
worse than those of the LSTM networks, implying that the
latter have better nonlinear mapping capabilities, which is
consistent with the previous literature [20].

Therefore, LSTM-All was adopted as the method for
predicting the synthetic AOAs and SSAs to be utilized as the
measurements in our deep-learning-aided navigation filter.

TABLE IV
Comparison of ADS estimation performance

RMSE (◦)

Test dataset 1 Test dataset 2 Test dataset 3

Computed
AOA/SSA

Proposed
LSTM

Computed
AOA/SSA

Proposed
LSTM

Computed
AOA/SSA

Proposed
LSTM

AOA (◦) 0.1133 0.1703 0.1204 0.2636 0.1007 0.1170
SSA (◦) 0.1594 0.6480 0.1540 0.5328 0.1610 1.8403
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Fig. 11. Estimation results for the (a) AOA (α) and (b) SSA
(β) on test dataset 3.

C. Comparison of State Estimation with the Computed
AOAs/SSAs

To demonstrate the validity of the proposed algorithm,
the performance of the proposed navigation filter with the
predicted AOA/SSA measurements from the LSTM networks,
referred to as the “proposed LSTM” algorithm, was tested
by comparison with the measured AOAs/SSAs from the
AOA/SSA vanes, referred to as the “computed AOA/SSA”
values. For clarity, the proposed LSTM and computed
AOA/SSA measurements can be defined as follows:

yk = [Va,k

from AOA/SSA vane︷ ︸︸ ︷
αm,k βm,k ψm,k vng,k]

for computed AOA/SSA

yk = [Va,k

from LSTM︷ ︸︸ ︷
α̃k β̃k ψm,k vng,k]

for proposed LSTM

(32)

In other words, in the proposed LSTM, AOA and
SSA measurements are not the real measurements from the
AOA/SSA vanes but the synthetic measurements provided
by the proposed LSTM algorithm. Thus, the measurement
noise covariance for these synthetic measurements (i.e., Rα̃k

and Rβ̃k
) was set to be approximately 3 times as large as

the measurement noise covariance for the real measurements
(i.e., Rαm,k and Rβm,k , as shown in Table I) to mitigate the
slight inaccuracy of the synthetic AOA/SSA measurements in
the estimation results.

Fig. 9 depicts the roll, pitch, and yaw estimation results
based on the proposed LSTM and computed AOA/SSA
measurements, respectively, for comparison with the true val-
ues from the GPS/INS system (UAF-C700). The statistical
attitude estimation performance of the two algorithms during
the flight test is summarized in Table III. In both Fig. 9 and
Table III, the attitude estimation results of the proposed
LSTM algorithm are comparable to those of the computed
AOA/SSA approach, although the yaw estimation result of
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the proposed LSTM algorithm is slightly worse than that
of the computed AOA/SSA approach due to the use of the
predicted AOAs/SSAs from the LSTM networks.

Fig. 10(a) depicts the measured and estimated ground
speeds during the flight experiment as obtained via the two
approaches. Note that the measured ground speed vng,k was
obtained from a GPS receiver, while the estimated ground
speed was obtained by summing the airspeed estimate and the
3D wind state estimate in the navigation frame on the basis of
the wind triangle relationship (i.e., v̂ng,k = Ĉn

b v̂
b
a,k + v̂nw,k,

where v̂ba,k = [ûk, v̂k, ŵk]
T ). From this relationship, the

accurate attitude Ĉn
b , airspeed v̂ba,k, and 3D wind state v̂nw,k

appear to be necessary to obtain the accurate ground speed
v̂ng,k. Fig. 10(a) shows that the estimated ground speeds
from the proposed LSTM and the computed AOA/SSA
approaches are both accurate with respect to the measured
ground speed from a GPS receiver, thus implying that the
estimated attitudes, airspeeds, and 3D wind states obtained
with both approaches are accurate.

Similarly, Fig. 10(b) depicts the measured and estimated
airspeeds during the flight experiment as obtained via the two
approaches. Note that the measured airspeed vna,k was obtained
from an airspeed sensor, while the estimated airspeed was ob-
tained in accordance with the relation Va,k =

√
v2
k + u2

k + w2
k,

representing is the magnitude of the 3-axis velocity in the body
frame. Fig. 10(b) shows that both the proposed LSTM and
computed AOA/SSA approaches yield accurate airspeed
estimation results, thus implying that the estimated velocities
in the body-fixed frame are accurate.

The estimated AOAs and SSAs obtained from the
computed AOA/SSA and proposed LSTM measure-
ments are plotted in Figs. 11(a) and (b), respectively. The
statistics concerning the AOA and SSA estimation perfor-
mance of the two approaches during the flight tests are listed
in Table IV, where the measured AOA and SSA values from
the air data system (ADS) are considered as the basis for
comparison [4]. As seen from Table IV and Fig. 11, the
RMSEs of the AOAs and SSAs from the proposed LSTM
algorithm on the three test datasets are less than approxi-
mately 0.27◦ and 1.85◦, respectively. Considering that the
estimation performance of the proposed LSTM algorithm
is comparable to that of the computed AOA/SSA approach,
the proposed LSTM algorithm offers acceptable estimation
performance for analytical redundancy.

VI. CONCLUSIONS
This paper has presented a novel deep-learning-aided state

estimator for the velocity, attitude, IMU biases, 3D wind state,
AOA, and SSA of a HALE UAV. LSTM networks were trained
to accurately model the nonlinear dynamics of sequential
AOAs/SSAs, and then, the predicted AOA/SSA measurements
obtained from the proposed LSTM algorithm were utilized
as synthetic measurements in the UKF. The results of long-
duration flight experiments demonstrated that the proposed
algorithm can yield accurate state estimates for a HALE UAV
without real AOA/SSA measurements. Therefore, this study
has successfully verified the utility of the proposed algorithm
as a concept for achieving analytical redundancy.
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